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failures of components may change lifetimes of surviving components because of load sharing, a linear trend for
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1. Introduction

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) random variables with a common distribution
function (DF), say F , and abbreviated by X1, · · · , Xn

i.i.d.∼ F . Denote in magnitude order of X1, · · · , Xn by
X1:n ≤ · · · ≤ Xn:n, which are known as order statistics (OSs). The theory of OSs has been widely studied in
literature specially in system reliability analyses. For example, lifetimes of known r-out-of-n systems coincide
to Xr:n where X1, · · · , Xn stand for component lifetimes; For more information, see Barlow and Proschan [3],
David and Nagaraja [11] and references therein. In order to introduce more flexible models for analysing practical
systems, various generalizations of OSs such as fractional order statistics and generalized order statistics have
been proposed. The former is useful for providing more flexible tools and the later is a setting to unify similar
results (David and Nagaraja [11], p. 21). In this paper, we deal with another unified concept, called sequential
order statistics (SOS). There is also another motivation in reliability analyses for implementing SOS. Specifically,
when component lifetimes are i.i.d., the OSs are suitable for describing the r-out-of-n system lifetime. Thus failing
a component does not effect the DFs of lifetimes of surviving components. As motivated by Cramer and Kamps [7],
in practice the failure of a component may result in a higher load on the surviving components and hence causes
lifetime distributions change. This property may be due to load sharing and/or common working environments and
hence dependent component lifetimes. More precisely, suppose that Fj and fj , for j = 1, · · ·n, denote the common
DF and probability density function (PDF) of the component lifetimes when n− j + 1 components are jointly
working. Then, the components begin to work independently at time t = 0 with the common DF F1. When at
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time x1, the first component failure occurs, the remaining n− 1 components are working with the (left truncated)
common DF F2 at x1. This process continues up to n− r + 1 components with the common DF Fr work until
the r-th failure occurs at time xr and hence the whole system fails. This system is called sequential r-out-of-
n system (or dynamic system) and the system lifetime is then r-th observed component failure time, denoted
by X(r). In the literature, (X(1), · · · , X(r)) is called SOSs. Let x = (x1, . . . , xr) be the observed values from
SOSs (X(1), · · · , X(r)) with DFs (F1, . . . , Fr) and PDFs (f1, . . . , fr) of component lifetimes. The joint PDF of
X(1), · · · , X(r) (r ≤ n) is

L(F1, · · · , Fr;x) =

(
n!

(n− r)!

){r−1∏
j=1

fj(xj)

(
F̄j(xj)

F̄j+1(xj)

)n−j
}
fr(xr)F̄r(xr)

n−r, (1)

where x1 < x2 < · · · < xn and F̄j(xj) = 1− Fj(xj), j = 1, . . . , r. Statistical properties of SOSs have been studied
by Kamps [15, 16], Cramer and Kamps [7, 8], Balakrishnan et al. [1], Beutner and Kamps [6], Esmailian
and Doostparast [12], Bedbur [5], Hashempour and Doostparast [13] and references therein. In Equation (1),
Fj(j = 1, . . . , r) depends usually on some unknown parameters. Let the number of independent parameters of

Fj be kj . Thus, Equation (1) depends on
r∑

j=1

kj parameters. We consider a simplified statistical model to reduce

the dimension of the parameter space in Equation (1) which is called proportional hazard rate model.
A large family of models introduced by Cox (1972) focuses directly on the hazard rate function. The simple

member of the family is the proportional hazard rate model. Different kinds of proportional hazard models may be
obtained by making different assumptions about the baseline survival function, or equivalently, the baseline hazard
rate function. Let F0(.) be a absolutely continuous DF with a corresponding PDF f0(.). The hazard rate function
is defined by h0(t) = f0(t)/F̄0(t) for t > 0, where F̄0(t) = 1− F0(t) is the survival function of the DF F0(.). If
X is a member of proportional hazard family with the baseline DF F0(.), then the survival function of X becomes
F̄ (t; θ) = F̄ θ

0 (t), t ∈ S, where θ is the proportional parameter and F0(.) is the baseline DF and S is the support of
the baseline DF. In this case, the hazard rate function of X is given by h(t; θ) = f(t; θ)/F̄ (t; θ) = θh0(t) for t > 0.

In this paper, we consider the problem of estimating the parameters on the basis of s (≥ 2) independent
SOSs samples under a proposed linear trend conditional proportional hazard rates (LTCPHR) model, defined by
F̄j(t) = F̄ aj

0 (t) for j = 1, · · · , r, where aj = a× j, a > 0 and F0(t) is the underlying DF. Remember that the
hazard rate function of the DF F defined by h(t) = f(t)/F̄ (t) for t > 0, where f(t) = ∂F (t)/∂t is the probability
density function (PDF) of the DF F (t). Therefore, hj(t) = ajh0(t), for j = 1, · · · , r, is the proportional hazard
rate function of the DF Fj , where h0(t) is hazard rate function of the baseline DF F0 for all t.

The LTCPHR model is a new defined statistical concept for modelling engineering systems in which components
share the system load. In fact, impact of failing a component on the surviving components are modeled via hazard
rate components. Notice that Fi is the common component distribution function when n− i+ 1 components are
jointly working. The connection between Fi is done by assuming a proportional hazard rate among them. Hence,
it is called conditionally proportional hazard rate models.
In this paper, we consider the problem of the estimation parameters of the LTCPHR model with independent
multiple SOS samples coming from heterogeneous exponential populations. Thus, this paper is organized as
follows: In Section 2, the maximum likelihood estimates (MLEs) of parameters are derived and the generalized
likelihood ratio test (GLRT) is used for testing homogeneity of the parent exponential populations. In Section 3,
we analyse a simulated data set. Finally, some concluding remarks are given in Section 4.

2. Statistical inference for the LTCPHR model parameters

In this section, we obtain MLEs of LTCPHR model parameters. Also, GLRT is derived for testing homogeneity of
populations. To do these, two scenarios, namely, (i) the parameter a is known; and (ii) the parameter a is unknown,
are considered.
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2.1. Maximum likelihood estimation

Suppose that we observed s (≥ 2) independent heterogeneous SOS samples. The available data may be represented
as

x = [[xij ]]i=1,··· ,s,j=1,··· ,r, (2)

where the i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th system. The likelihood
function (LF) of the available data given by (2) is then derived from (4) as

L(F ;x) =

(
n!

(n− r)!

)s s∏
i=1

r−1∏
j=1

f [i]
j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j
 f [i]

r (xir)F̄
[i]
r (xir)

n−r

 , (3)

where F = {F [i]
j , i = 1, · · · , s, j = 1, · · · , r} and for i = 1, · · · , s, j = 1, · · · , r, F̄j

[i]
(x) = 1− F

[i]
j (x), F [i]

j and

f
[i]
j denote the survival function, DF and PDF of jth component lifetime of the i−th dynamic system, respectively.

For more details, see Cramer and Kamps [8, 9] and Hashempour and Doostparast [13]. Suppose that the baseline
DF of the i-th dynamic system (i = 1, · · · , s) follows the exponential distribution with the mean σi, i.e.

F0(t) = 1− exp{− t

σi
}, t > 0, σi > 0. (4)

It should be mentioned that the baseline DFs for the considered LTCPHR model for component lifetimes are
heterogeneous with different scale parameters. Therefore under the earlier mentioned LTCPHR model in Section 1,
we have F̄j

[i]
(xij) = exp{−ajxij/σi} and fj

[i](xij) = ajσ−1
i exp{−ajxij/σi} for i = 1, · · · , s and j = 1, · · · , r.

Then, Equation(3) yields the LF of the available data as

L(σ1, · · · , σs, a;x) =

(
r!n!

(n− r)!

)s (
a
)rs( s∏

i=1

σi

)−r

exp
{
−

s∑
i=1

r∑
j=1

(xijmj

σi

)}
, (5)

where a > 0, and mj = (n− j + 1)ja− (n− j)(j + 1)a with convention (n− r)(r + 1)a ≡ 0. For sake of
brevity, we assumed that the proportional parameter a are the same among the s sequential r-out-of-n systems.
Following Cramer and Kamps [8] and Hashempour and Doostparast [13], two cases are considered in sequel: (i) a
is known, and (ii) a is unknown.

Case I: The parameter a is known

Suppose that the parameter a in Equation (5) is known. If σ1 = · · · = σs, the ML estimate of the common mean of
the s baseline exponential populations, say σ0, is derived by maximizing (5) with respect to σ0 as

σ̂0 =
a

rs

s∑
i=1

r∑
j=1

(n− j + 1)jDij

=
1

rs

s∑
i=1

r∑
j=1

xijmj , (6)

where Dij = xij − xi,j−1, for j = 1, · · · , r, with convention xi0 := 0 for i = 1, · · · , s. Notice that∑r
j=1 xijmj =

∑r
j=1 j(n− j + 1)aDij , for i = 1, · · · , s.

If baseline exponential populations are heterogeneous, the (unique) ML estimate of σi (i = 1, · · · , s) is derived
from Equation (5) as

σ̂i =
a

r

r∑
j=1

(n− j + 1)jDij =
1

r

r∑
j=1

xijmj . (7)

Stat., Optim. Inf. Comput. Vol. 8, June 2020



M. HASHEMPOUR, Z. PAKDAMAN AND M. DOOSTPARAST 465

Under the LTCPHR with the one-parameter exponential baseline DF, we have

Qi :=

r∑
j=1

(n− j + 1)jaDij ∼ Γ(r, σi), i = 1, · · · , s, (8)

where Γ(m,n) calls for the gamma distribution with the shape and the scale parameters m and n, respectively.
From Equation (8) and for i = 1, · · · , s, σ̂i ∼ Γ(r, σi/r), and then E(σ̂i) = σi and V ar(σ̂i) = σ2

i /r. Notice that
the ML estimate σ̂0 in Equation (6) is the arithmetic mean of the ML estimates σ̂i for the mean populations
given by Equation (7), i.e. σ̂0 =

∑s
i=1 σ̂i/s. So, E(σ̂0) = σ̄ and V ar(σ̂0) = σ2/sr where σ̄ =

∑s
i=1 σi/s and

σ2 =
∑s

i=1 σ
2
i /s.

Case II: The parameter a is unknown

Suppose that the parameter a in Equation (5) is unknown. In this case, calculations are complicated. The logarithm
of LF in Equation (5) can be written as

l(σ1, · · · , σs, a;x) = rs ln a− r

s∑
i=1

lnσi − a

s∑
i=1

r∑
j=1

j(n− j + 1)Dij

σi
. (9)

The ML estimates of the parameters which are shown by ˆ̂σi and â for i = 1, . . . , s, (if exist) are obtained
(numerically) by solving the following likelihood equations:

∂l

∂a
=

rs

a
−

s∑
i=1

r∑
j=1

j(n− j + 1)Dij

σi
= 0, (10)

and

∂l

∂σk
=

a

σ2
k

r∑
j=1

j(n− j + 1)Dkj −
r

σk
= 0, k = 1, . . . , s. (11)

From Equations (10) and (11), we have

â(σ1, . . . , σk−1, σk+1, . . . , σs) =
r(s− 1)

s∑
i=1i̸=k

r∑
j=1

j(n−j+1)Dij

σi

, (12)

and

ˆ̂σk(σ1, . . . , σk−1, σk+1, . . . , σs) =

(s− 1)
r∑

j=1

j(n− j + 1)Dkj

s∑
i=1i ̸=k

r∑
j=1

j(n−j+1)Dij

σi

, k = 1, . . . , s. (13)

Equations (12) and (13) cannot be solved analytically. The matrix of second derivatives of the likelihood with
respect to the parameters is called Hessian matrix (HM), that is HM = [[(∂2 log(L)/∂θi∂θj)1≤i,j≤s+1]], where
θi = σi, (1 ≤ i, j ≤ s) and θi = a, (i, j = s+ 1). For more information, see Khuri [17]. After some algebraic
calculations, we have

HM =

(
B11 B12

B21 B22

)
, (14)
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where

B11 =

{
d

r

σ2
i

−
2a
∑r

k=1 k(n− k + 1)Dij

σ3
i

}
i=1,··· ,s

,

B22 =
{−sr

a2

}
j=1,··· ,r

,

B12 = BT
21 =

[[∑r
j=1(n− j + 1)Dij

σ2
i

]]
i=1,··· ,s,j=1,··· ,r

,

and {
d
ai} denotes a diagonal matrix with element ai on the main diagonal. The Hessian matrix (14) is not

necessary negative definite on the parameter space. Therefore, one needs to use numerically methods for
maximizing the LF (9) with respect to a and σ1, · · · , σs by using Equations (12) and (13).

2.2. Generalized likelihood ratio test

In this section, we consider the problem of homogeneity testing on the basis of independent SOS samples from
different exponential populations, i.e.,

H0 : σ1 = · · · = σs v.s H1 : σi ̸= σj ∃i ̸= j. (15)

Case I: The parameter a is known

The GLRT statistic for testing the problem of hypotheses (15) is

Λ1 =
supΩ0

L(σ1, · · · , σs;x)

supΩ L(σ1, · · · , σs;x)

=

s∏
i=1

(
σ̂i

σ̂0

)r

exp
{ s∑

i=1

r∑
j=1

( 1

σ̂i
− 1

σ̂0

)
mjxij

}
, (16)

where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} =: R+s is the whole parameter space and Ω0 = {(σ1, . . . , σs) :
σ1 = · · · = σs, σi > 0, i = 1, · · · , s} denotes the parameter space under the null hypothesis H0. After some
algebraic manipulations, the logarithm of the GLRT statistic Λ1 given by Equation (16) reduces to

log Λ1 = r

s∑
i=1

log

(
sQi∑s
j=1 Qj

)
, (17)

where Qi is defined by Equation (8) and “ log ” stands for the natural logarithm. Then, the null hypothesis H0 is
rejected if

A(Q,a) > c, (18)

where Q = (Q1, · · · , Qs) and

A(Q,a) = −
s∑

i=1

log

(
Qi∑s
j=1 Qj

)
.

The constant c in Equation (18) is obtained subject to the level of the test, say γ. To derive the constant c in
Equation (18), we need the distribution of the vector Q under the null hypothesis H0 in (15). To do this, we need
the following lemma.

Lemma 1
(Balakrishnan and Nevzorov [2])
Let Z1, · · · , Zk be independent random variables and Zi ∼ Γ(ai, 1), for i = 1, · · · , k. Then (U1, · · · , Uk) ∼
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D(a1, · · · , ak) where Ui = Zi/
∑k

j=1 Zj , for i = 1, · · · , k. Here, D(a1, · · · , ak) stands for the Dirichlet
distribution with PDF

f(u1, · · · , uk) =
Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

(
k∏

i=1

uai−1
i

)
, 0 ≤ ui ≤ 1,

k∑
i=1

ui = 1.

Let Vi = Qi/
∑s

j=1 Qj , for i = 1, · · · , s− 1 and Vs = −
∑s

i=1 log
(
Qi/
∑s

j=1 Qj

)
. The Jacobian transforma-

tion is then

J = exp{−vs}/
s−1∏
i=1

vi. (19)

The joint PDF of (V1, · · · , Vs) under the homogeneity hypothesis H0 in (15) is derived from Equations (8) and (19)
and Lemma 1 as

fV1,··· ,Vs
(v1, · · · , vs) =

Γ(sr)

Γ(r)s

(
s−1∏
i=1

vr−1
i

)
exp{−(r − 1)vs}∏s−1

i=1 vr−1
i

exp{−vs}∏s−1
i=1 vi

=
Γ(sr)

Γ(r)s
exp{−rvs}∏s−1

i=1 vi
,

(20)

for vi ≥ 0, 1 ≤ i ≤ s and
∑s−1

i=1 vi + exp{−vs}/
∏s−1

i=1 vi = 1. Therefore, the marginal PDF of Vs is readily
obtained from Equation (20) as

fVs(vs) =

B︷ ︸︸ ︷∫ ∫
· · ·
∫

Γ(sr)

Γ(r)s
exp{−rvs}∏s−1

i=1 vi
dv1 · · · dvs−1, (21)

where B =
{
(v1, · · · , vs−1)|vi ≥ 0,

∑s−1
i=1 vi + exp{−vs}/

∏s−1
i=1 vi = 1

}
. In practice, one may use numerical

methods such as Monte Carlo simulation to derive the threshold c in the rejection region (18). For more details, see
Hashempour [14].

Remark 1
It is easy to verify that the distribution family (5) is invariant with respect to the group of the scale transformations

G = {gd : gd(x) = dx = {dx⋆
ij}1≤i≤s,1≤j≤r, d > 0}. (22)

Also, the problem of hypotheses testing (15) remains invariant under G in (22) since Ḡ(Ω) = Ω and
Ḡ(Ω0) = Ω0 where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} = R+s, Ω0 = {(σ1, . . . , σs) : σ1 = · · · = σs, σi >
0, i = 1, · · · , s} and Ḡ = ḡd(σ1, · · · , σs) = (dσ1, · · · , dσs) is the induced group of transformations by the group of
transformations G in Equation (22) on the parameter space Ω. Finding the uniformly most powerful invariant test
(if exists) for the problem (15) remains as an open problem.

From Equation (8), one can see that 2r (σ̂i/σi) ∼ χ2
2r, where χ2

ν stands for the chi-square distribution with ν
degrees of freedom. So, an equi-tailed confidence interval at level 100γ% for σi (i = 1, · · · , s) is(

2rσ̂i

χ2
2r,(1+γ)/2

,
2rσ̂i

χ2
2r,(1−γ)/2

)
, (23)

where χ2
ν,p calls for the p-th quantile of the χ2

ν-distribution.
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Note that the observed Fisher Information (FI), denoted by Ijk(σ̂1, · · · , σ̂s), on the basis of the available SOSs
data (2) is equal to minus of the Hessian matrix (HM) at the point of MLEs, i.e.

Ijk(σ̂1, · · · , σ̂s) = [[(−∂2 log(L)/∂σi∂σj)1≤i,j≤s]]|σ1=σ̂1,··· ,σs=σ̂s .

It is well known that the unique MLEs follow asymptotically the multivariate normal distribution with mean
vector (σ1, · · · , σs) and the variance-covariance matrix [Ijk(σ̂1, · · · , σ̂s)]

−1 (see, e.g., Lehmann and Romano, [18]).
Therefore, an approximate equi-tailed 100γ% confidence interval for σi is

(
σ̂i − z(1−γ)/2

√
σ̂2
i

r
, σ̂i + z(1−γ)/2

√
σ̂2
i

r

)
, (24)

where zγ stands for the γ-quantile of the standard normal distribution.

Case II: The parameter a is unknown

It is easy to verify that the unique ML estimates of the parameters under the null hypothesis H0 are

ˆ̂σ0 =

∑s
i=1

∑r
j=1 xijm̂0,j

rs
=

â0
rs

s∑
i=1

r∑
j=1

(n− j + 1)jDij , (25)

and
â0 =

rs∑s
i=1

∑r
j=1(n− j + 1)jDij

ˆ̂σ0, (26)

where m̂0,j = (n− j + 1)jâ0 − (n− j)(j + 1)â0, with convention â0(r + 1) ≡ 0. Therefore, the GLRT statistic
for the hypotheses testing problem (15) is

Λ2 =

r∏
j=1

(
â0
â

)rs s∏
i=1

(
ˆ̂σi

ˆ̂σ0

)r

exp
{ s∑

i=1

r∑
j=1

(m̂j

ˆ̂σi

− m̂0,j

ˆ̂σ0

)
xij

}
, (27)

where m̂j = (n− j + 1)α̂j − (n− j)α̂j+1. The logarithm of the GLRT statistic Λ2 in Equation (27) reads

log Λ2 = rs log

(
â0
â

)
+ r

s∑
i=1

log

(
ˆ̂σi

ˆ̂σ0

)
+

s∑
i=1

r∑
j=1

(
m̂j

ˆ̂σi

− m̂0,j

ˆ̂σ0

)
xij . (28)

The null hypothesis H0 rejects if
− 2 log Λ2 > c, (29)

where −2 log Λ2 follows asymptotically chi-square distribution. Exact distribution of the statistic log Λ2 in Equation
(28) under the null hypothesis H0 is complicated and we could not obtained an explicit expression. This remains
as an open problem. In practice, one may use numerical methods such as the Monte Carlo simulation to derive
the threshold c in the rejection region (29). Bedbur [5] obtained the uniformly most powerful unbiased tests under
the conditionally proportional hazard rates model based on multiple homogeneous SOS samples from a common
exponential distribution.

3. An illustrative example

In order to assess the performance of the derived estimates in the preceding sections a simulation study was
conducted. In the case of unknown parameter a, N = 104 multiple SOS samples were generated for some
selected values of parameters. For this purpose, we assume that a = 0.9, 1, 1.1, n = 10, 20, s = 4, r = 4, 6, 15
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and (σ1, . . . , σs) = (1, . . . , 1). Here, Bias and MSE stand for estimated bias and mean squared error of estimators.
The Bias and MSE of the ML estimates of parameters (σ1, . . . , σs) and a are reported in rows of Table 1 from up
to down, respectively.
For n = 10, s = 1, a = 1.1 and r = 4, the equi-tailed confidence intervals at level 95% for unknown parameters
σi (i = 1, . . . , n ) in Equation (23) are (0.4570, 3.6768), (0.4658, 3.7471), (0.4477, 3.6018) and (0.4614, 3.7120),
respectively. The length of aforementioned confidence intervals for unknown parameters σi for i = 1, . . . , s are
3.2208, 3.2813, 3.1540 and 3.2506, respectively. Also, from Equation (24), the approximate 95% confidence
intervals for the unknown parameters σi for i = 1, . . . , s are given by (0.0200, 1.9835), (0.0200, 1.9835),
(0.0200, 1.9835) and (0.0200, 1.9835), respectively.

The length of approximate confidence intervals for unknown parameters σi for i = 1, . . . , s are 1.9635, 2.0010,
1.9234 and 1.9823, respectively.

Table 1. The MSE and Bias of ML estimates in case where the parameter a is unknown.

a = 0.9 a = 1 a = 1.1
n r Bias MSE Bias MSE Bias MSE

10 4 -0.0121 0.0662 -0.0129 0.0541 -0.0114 0.0504
-0.0259 0.0579 -0.0165 0.0533 -0.0151 0.0537
-0.0277 0.0538 -0.0209 0.0466 -0.0224 0.0486
-0.0109 0.0484 -0.0257 0.0449 -0.0164 0.0516
-0.0699 0.0514 -0.0782 0.0668 -0.0900 0.0828

10 6 -0.0095 0.0436 -0.0247 0.0494 -0.0130 0.0448
-0.0247 0.0518 -0.0262 0.0531 -0.0241 0.0506
-0.0245 0.0534 -0.0157 0.0451 -0.0136 0.0469
-0.0202 0.0455 -0.0127 0.0432 -0.0135 0.0506
-0.0706 0.0508 -0.0797 0.0652 -0.0855 0.0757

20 4 -0.0186 0.0560 -0.0184 0.0427 -0.0133 0.0479
-0.0125 0.0514 -0.0172 0.0474 -0.0853 0.0438
-0.0231 0.0481 -0.0198 0.0433 -0.0185 0.0464
-0.0159 0.0401 -0.0154 0.0493 -0.0164 0.0411
-0.0712 0.0500 -0.0808 0.0628 -0.0857 0.0763

20 15 -0.0092 0.0510 -0.0130 0.0412 -0.0247 0.0410
-0.0141 0.0400 -0.0109 0.0461 -0.0065 0.0421
-0.0239 0.0426 -0.0204 0.0420 -0.0024 0.0441
-0.0082 0.0396 -0.0230 0.0430 -0.0116 0.0406
-0.0797 0.0442 -0.0850 0.0537 -0.0961 0.0633

Empirical evidences from Table 1 are summarized as follow;

• The MSEs are decreasing in n and r.
• The Biases are negligible and negative.
• The MSE of the obtained numerical estimator of parameter a is increasing in a.

4. Conclusions and further remarks

In this paper, based on independent SOSs coming from heterogeneous exponential populations under a linear trend
model, the MLEs parameters were obtained on the basis of multiple SOS samples. The GLR tests were derived for
testing homogeneity of the exponential populations. Some open problems were also mentioned. The results of this
paper may be extended in some directions. For example, derivation of the uniformly most powerful scale-invariant
test (if exist) is worth for further consideration.
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