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Abstract Segmented regression is a standard statistical procedure used to estimate the effect of a policy intervention
on time series outcomes. This statistical method assumes the normality of the outcome variable, a large sample size, no
autocorrelation in the observations, and a linear trend over time. Also, segmented regression is very sensitive to outliers. In
a small sample study, if the outcome variable does not follow a Gaussian distribution, then using segmented regression to
estimate the intervention effect leads to incorrect inferences. To address the small sample problem and non-normality in the
outcome variable, including outliers, we describe and develop a robust statistical method to estimate the policy intervention
effect in a series of longitudinal data. A simulation study is conducted to demonstrate the effect of outliers and non-normality
in the outcomes by calculating the power of the test statistics with the segmented regression and the proposed robust statistical
methods. Moreover, since finding the sampling distribution of the proposed robust statistic is analytically difficult, we use
a nonparametric bootstrap technique to study the properties of the sampling distribution and make statistical inferences.
Simulation studies show that the proposed method has more power than the standard t-test used in segmented regression
analysis under the non-normality error distribution. Finally, we use the developed technique to estimate the intervention
effect of the Istanbul Declaration on illegal organ activities. The robust method detected more significant effects compared
to the standard method and provided shorter confidence intervals.
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1. Introduction

Interrupted time series is a quasi-experimental design used to evaluate the intervention effect in longitudinal
data [1, 2]. Segmented regression analysis is a powerful statistical method to find the effects of implemented
policy interventions on interrupted time series data [3]. In a segmented regression analysis, before and after the
intervention, each segment of the time series is allowed to exhibit different levels and trends [1]. Segmented
regression analysis can also allow researchers to include variables other than the intervention that can potentially
cause a change in the level and/or trend of the outcome of interest [2].

Segmented regression analysis is suitable when the outcome variable is serially ordered as a time series and
when several observations are available in both pre-intervention and post-intervention periods [1]. A change in
the trend of the outcome after the policy intervention indicates the intervention effect. A detailed description of
segmented regression analysis and its methodological guidance are found in [4, 5]. Different statistical approaches
can be applied to estimate pre- and post-intervention levels and trends [1, 2].

The segmented regression model fits the least square regression line to each segment of the independent variable-
time [1, 3]. The accuracy of the statistical results found by using the segmented regression model depends on four
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assumptions: linearity between time and the outcome variable, statistical independence (no autocorrelation) of the
errors, homoscedasticity of the errors, and normality of the error distribution [1, 3, 6].

If any of these assumptions is violated, then the hypothesis testing, confidence intervals and forecasts developed
by the segmented regression model are inefficient and biased. The presence of autocorrelation causes the standard
errors of the estimates to be inflated, and consequently, the type II error rate increases [1, 3]. Linden [3] developed
STATA commands based on NEWEY-WEST [14] and PRAIS [15] to detect and control the autocorrelation.

The construction of confidence intervals and significance tests for the coefficients of the segmented regression
model are based on the assumption of normally distributed errors. Confidence intervals may be either too wide or
too narrow if the error distribution is not normal. In large sample studies, the normality assumption is robust, and
valid results can be obtained using the normal approximation.

In a small sample study, if the errors are not normally distributed, then estimating the intervention effect using
segmented regression analysis leads to incorrect inferences. The normality assumption is not robust in small sample
studies, and the normal approximation is therefore not appropriate. To address the small sample problem and non-
normality in the outcome variable, the intervention effect on longitudinal data is estimated using the rank-based
method of Theil [11] and Sen [10] for a nonparametric slope. In addition to this, a bootstrap based testing procedure
is developed for testing the significance of the intervention effect.

In this article, we investigate the effect of the violations of the normality assumption on the power of the standard
t-test used in segmented regression. We compare the standard t-test with a robust rank-based median test for the
slope of the line calculated by Theil and Sen’s nonparametric approach and use a bootstrap based test to determine
whether the intervention coefficient is significantly different from zero.

2. Statistical Model and Hypothesis Testing

2.1. Intervention Effect Estimation

Consider the standard linear Interrupted Time Series Analysis (ITSA) regression model

Yt = β0 + β1Tt + β2Xt + β3XtTt + ϵt, (2.1)

where Yt is the outcome variable measured at equally-spaced time point t ; Tt is the time since the start of the study;
Xt is a dummy variable representing the intervention ( pre-intervention periods Xt = 0, otherwise Xt = 1 ); XtTt

is an interaction term. The model (2.1) can be written as Yt = β0 + β1Tt + ϵt for the pre-intervention outcomes,
and Yt = (β0 + β2) + (β1 + β3)Tt + ϵt for the outcomes after the intervention. Therefore, β0 is the initial level of
the outcome variable and β1 is the slope or trend of the outcome variable for the data prior to the introduction of
the intervention; β2 is the change in the level of the outcome between the pre- and post- intervention model; β3 is
the difference between the pre-intervention and post-intervention slopes or trend of the outcome variable.

Although the goal of segmented regression analysis is to evaluate whether there is a change in the level (β2) or
trend (β3) of an outcome after an intervention, we focus on estimating the change in the slope (or trend) of the
regression model before and after the intervention, β3, and its corresponding inference. If the change in the slope
before and after the intervention is zero, we can conclude that there is no effect due to the intervention on the trend
of the outcome variable of interest.

The segmented regression model (2.1) can be written as Yn×1 = Wn×4β4×1 + ϵn×1, where we assume that
ϵn×1 ∼ Nn(0n, σ

2In). The least squares estimate of β4×1 is

β̂4×1 = (W ′
4×nWn×4)

−1W ′
4×nYn×1, (2.2)

where W4×1 is the design matrix. Since β̂ is a linear function of Y, β̂ = (W ′W )−1W ′Y ∼ N4(β, σ
2(W ′W )−1),

where Y ∼ Nn(Wβ, σ2In). Therefore, β̂3 ∼ N(β3, σ
2a33), where a33 is the corresponding diagonal element of

(W ′W )−1.
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Since the sampling distribution of β̂3 depends on the normality assumption of the errors and in small sample
studies, this property may not hold, we will present a non-parametric approach to estimate the intervention effect
on the trend using the Theil [11] and Sen [10] approaches. To estimate the effect, we split the data into pre- and
post-intervention groups and calculate the slopes of each segment of the data. The procedure is as follows.

Let y11, y12, . . . , y1n1 be the measurements of the response variable at n1 points in time t11, t12, . . . , t1n1 for the
pre-intervention time series. We then calculate n1(n1−1)

2 nonparametric slope estimates

y1j − y1i
t1j − t1i

(2.3)

for all j > i and i = 1, 2, · · · , (n1 − 1) and j = 2, 3, · · · , n1, where y1j and y1j are the measurements of the
response variable at times t1i tand t1j respectively for the pre-intervention segment of the data.

The estimate of trend (slope) for the pre-intervention segment of the data is β̂13 = median(y1j−y1i

t1j−t1i
) ∀j > i.

Similarly, for the post-intervention segment of data, the estimate of the trend (slope) is β̂23 = median(y2j−y2i

t2j−t2i
)

where i = 1, 2, · · · , (n2 − 1) and j = 2, 3, · · · , n2. Then, the intervention effect on the trend is calculated as
follows:

β̂3 = β̂23 − β̂13. (2.4)

2.2. Hypothesis Testing

If the intervention effect on the trend does not exist, the difference in slopes, which is β3, has to be zero. Therefore,
the test for no effect on the trend is

H0 : β3 = 0.

Testing H0 : β3 = 0 based on the normality assumption is outlined below. The test statistic under the null
hypothesis is

β̂3√
a33σ̂2

∼ tn−4,

where a33 is the corresponding diagonal element of (W ′W )−1, σ̂2 = Y ′Y−β̂′W ′Y
n−4 and β̂3 is the OLS estimate of

the intervention effect β3 in (2.2)
However, the literature has shown that this test is not applicable for small sample sizes where the errors do not

follow a normal distribution. Hence, we propose a rank-based nonparametric test procedure to test the hypothesis
H0 : β3 = 0. Based on the intervention effect calculated in (2.4), testing H0 : β3 = 0 is equivalent to the two-sample
median test.

Let the slopes calculated in (2.3) for both the pre- and post-intervention data be two mutually independent
random samples V1, V2, · · · , VN1 , and W1,W2, · · · ,WN2 from populations with continuous cumulative distribution
functions F and G respectively.

The null hypothesis H0 : β3 = 0 is equivalent to H0 : F (t) = G(t) for all t against the one-sided alternative
hypothesis that W is larger (or smaller) than V . The alternative hypothesis can be written as Ha : G(t) = F (t− β3),
for all t where β3 is the shifted amount(intervention effect). If β3 = 0, the intervention effect is zero. If β3 > 0, the
intervention effect is positive, and if β3 < 0, the effect is negative. In the location-shift model, the null hypothesis
reduces to H0 : β3 = 0 against Ha : β3 ̸= 0.

In literature, many nonparametric two-sample tests such as Wilcoxon Rank sum test, Mann-Whitney test [20],
Wald-Wolfowitz run test, and Kolmogorov-Smirnov two sample test, etc. have widely been proposed. However, to
test H0 : β3 against Ha : β ̸= 0, we here consider a bootstrap testing procedure. The reason for this is that we need
to know the sampling distribution of the test statistic under the null hypothesis to test the hypothesis H0 : β3 = 0,
but deriving the sampling distribution of the intervention effect, β̂3, defined in (2.4) analytically is intractable. The
bootstrap procedure for a two-sample test statistic for H0 : β = 0 is derived below.

Stat., Optim. Inf. Comput. Vol. 8, March 2020



MOHAMMAD M. ISLAM, AND ERIK L. HEINY 321

Bootstrapping [7, 8, 9] is a computer-intensive approach to statistical inference. The idea behind bootstrapping
is that sample information is used as a “proxy population”. One takes samples with replacement from the original
sample and calculates the statistic of interest repeatedly. The bootstrap method is easy to understand and implement,
and it does not require any normality assumption of the sample data [9, 12]. For more details about bootstrapping
see [9, 13].

Under the null hypothesis, the pre-intervention distribution of the slope, F (v), is statistically the same as
the post-intervention distribution of the slope, G(w). We draw B bootstrap samples of size N1 +N2 from
the same distribution, and each bootstrap sample represents the combined samples of V1, V2, · · · , VN1 , and
W1,W2, · · · ,WN2 . Let the first N1 observations be denoted as V ∗ and the remaining N2 observations be denoted
as W ∗. The intervention effect β̂∗b

3 = β̂∗b
23 − β̂∗b

13, b = 1, 2, · · · , B, is then calculated for each bootstrap sample.
The approximate achieved significance level (ASL) is |β̂∗b

3 |≥|β̂0
3 |

B where β̂0
3 is the observed intervention effect. If

there is no intervention effect, ASL should be close to 0.5. If ASL is less than the significance level α = 0.05, we
reject the null hypothesis H0 : β3 = 0 .

To construct the percentile bootstrap confidence interval for β3, for each bootstrap sample, we calculate β̂∗b
3 =

β̂∗b
23 − β̂∗b

13, b = 1, 2, · · · , B and these resulting β̂∗b
3 ’s are placed in ascending order. The 100(α2 )th and 100( 1−α

2 )th
percentile values of β̂∗b

3 are selected to find a 100(1− α) percent percentile bootstrap confidence interval for β3 of
(β̂

∗b(α
2 )

3 , β̂
∗b(1−α

2 )
3 ).

3. Power Comparison of Two Testing Procedures

In this section, we will compare the power of the two tests described above to test the null hypothesis H0 : β3 = 0.
The power of the test is the probability of rejecting the null hypothesis when it is false. The power for the t-test, and
the two-sample median bootstrap test, described in Section 2, will be estimated by Monte Carlo simulation under
both standard normal and non-normal distributions for the errors.

Power =
#rejected null hypotheses

R
,

where R is the total number of simulation experiments. The simulation was performed to generate 1000
independent and identically distributed random samples of the response variable Yt of size 16 using the model
(2.1) with the error distribution: (I) exponential distribution with rate 0.10, and (II) standard normal for the errors,
and the following design matrix:

Table 1. Design Matrix for the Segmented Regression Model

X0 Tt Xt Xt.(Tt − 8)

1 1 0 0
1 2 0 0
...

...
...

...
1 8 0 0
1 9 1 1
1 10 1 2
...

...
...

...
1 16 1 8

The null regression coefficients configuration is set to be (β0, β1, β2, β3) = (4, 4, 0, 0). The effect size for β3

is set to be (0, 1, 2, · · · , 10), and (0, 0.1, 0.2, · · · , 1.0) when the error distributions are exponential and standard
normal respectively. Statistical Computing package R and Statistical software STATA 15.0 are used to compute the
power of the tests and confidence intervals for the intervention effect parameters, and to analyze the real data used
in this article.
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Table 2. Power of the Tests under Non-normality ( Error Distribution is Exponential with Rate 0.10)

β3 0 1 2 3 4 5 6 7 8 9 10
t-test 0.05 0.06 0.18 0.31 0.47 0.60 0.75 0.83 0.90 0.94 0.97
Robust Median Test 0.05 0.08 0.20 0.36 0.62 0.82 0.93 0.97 0.99 0.99 1.00
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Figure 1. Power Comparisons under Non-normality (Error Distribution is Exponential )

Table 3. Power of the Tests under Normality( Error Distribution is Normal)

β3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t-test 0.05 0.07 0.14 0.24 0.39 0.59 0.71 0.84 0.92 0.97 0.99
Robust Median Test 0.05 0.06 0.12 0.21 0.36 0.54 0.69 0.83 0.91 0.96 0.98

In segmented regression analysis, to use the t-test for statistical inference regarding the regression coefficients,
we must assume the residuals are normally distributed. If this assumption does not hold, but we have large sample
sizes, we can use an approximate test. However, with small sample sizes, and a severe departure from normality,
the normal approximation results in low power of rejecting the correct alternative hypothesis (incorrectly declares
no intervention effect on the trend). As shown in figure 1 above, the power of the robust median test is higher than
the standard t-test under the non-normality and a small sample size of 16.

On the other hand, under the normality assumption of the error distribution, the standard method produces a
slightly higher power of rejecting the incorrect null hypothesis (i.e. correctly identifies the intervention effect on
the trend) than the robust median test does. However, the improvement in power using the standard method is
very small, and even using small sample sizes, both methods are essentially equally effective in identifying the
intervention effect on the trend (see figure 2). Furthermore, both methods are very sensitive in detecting small
changes in the trend under the normality assumption of the error distribution.
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Figure 2. Power Comparisons under Normal Error Distribution

4. Applications

Organ transplantation is the most effective method of treating terminal organ failure, both in developed and
developing countries[16, 19] . However, organ trafficking, transplant tourism, and transplant commercialism
threaten to undermine the safe practice of transplantation worldwide [17].

The Istanbul Declaration 2008 outlines specific actions that take measures to protect the poorest and most
vulnerable groups from transplant tourism and the sale of tissues and organs, as well as ways to reduce the
prevalence of international trafficking in human tissues and organs [19, 21]. Within the Istanbul Declaration
framework, the signee country must introduce programs to control and reduce the unethical practices of organ
trafficking. However, numerous reports indicate that organ trafficking and transplant tourism continue to increase
even though more than 100 countries have signed to control these unethical practices. In this section, we apply the
two procedures described earlier to evaluate the impact of the Istanbul Declaration 2008 on the reduction of illegal
and immoral practices on human organ trafficking.

We collected incidences of organ transplantation-related crimes reported on the Internet from 11 randomly
selected countries from among the original participants of the Declaration. Selected countries include Brazil,
Colombia, Egypt, India, Iran, Mexico, Nigeria, Pakistan, Philippines, Thailand, and Turkey. Incidence rates were
collected from 2002-2015 for each country as reported in 2018. The population of each country was obtained from
the World Bank database [18]. The occurrence rate per million population for each country was then calculated
and used as the response.

We split the data into two categories; the pre-intervention time series 2002-2007, and the post-intervention time
series 2008-2015 based on the year of the Declaration as an intervention. We calculated the change in the trend
using two methods.
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324 A ROBUST STATISTICAL METHOD TO ESTIMATE THE INTERVENTION EFFECT WITH LONGITUDINAL DATA

The time series plot in Figure 3 below shows a clear upward trend in organ trafficking for the period 2002 to
2015. In some countries, the increase in organ trafficking seems to increase over time leading to a non-linear trend.
However, in other countries, the upward trend is linear and not as dramatic.
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Figure 3. Time Series Plot for the Rate of Organ Trafficking per Million Population

Recall that one of the assumptions for segmented regression is that there is a linear relationship between the
outcome variable and time. To that end, we calculated the logarithm of the rate per million population to make
the data linear. Since the presence of autocorrelation causes the standard errors of the estimates to be inflated, and
consequently the confidence interval becomes wider, it is likely to come up with the wrong conclusion about the
intervention effect. To detect the autocorrelation in the measurements, we use the Durbin Watson test. If it exists in
the data, we control the autocorrelation based on NEWEY-WEST [14] and PRAIS [15] methods.

Table 4 reports estimates of the linear trend effects, their associated standard errors, and 95% confidence intervals
for each country. These estimates were calculated using the standard technique that assumes normally distributed
errors. We see that for all countries in our sample except Colombia, Nigeria, and Turkey (β̂3 = 0.04, 0.03, 0.01)
respectively, the differences in pre- and post-intervention regression slopes are negative. This indicates that the
reported rate of organ trafficking has decreased in these countries. But what does this tell us about the incidence of
organ trafficking since the Istanbul Declaration? Some care should be given to the interpretation of β̂3 since it is
being used to predict ln(Yt) and not Yt itself.

First consider the pre-intervention model defined as:

ln(Yt) = β0 + β1Tt + ϵt. (4.1)

How do we interpret β1 in the context of the original organ trafficking rate, Yt ? It is best to think in terms of percent
changes of Yt. It can be shown [22] that for every unit increase in Tt (i.e. from one year to the next) the percent
change in Yt is

(eβ1 − 1)× 100 ≈ 100β1. (4.2)
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Figure 4. Time Series Plot for the Lograte of Organ Trafficking per Million Population

Table 4. Standard Method Estimation of the Intervention
Effect on Linear Trend (β3)

Country β̂3 ŝe(β̂3) 95% CI for β3

Brazil -0.04 0.0272 (-0.09, 0.02)
Colombia 0.04 0.0544 (-0.07, 0.14)
Egypt -0.05 0.0296 (-0.11, 0.01)
India -0.05** 0.0205 (-0.09, -0.01)
Iran -0.01 0.0214 (-0.06, 0.03)
Mexico -0.01 0.0208 (-0.05, 0.03)
Nigeria 0.03 0.0382 (-0.05, 0.10)
Pakistan -0.14** 0.0358 (-0.21, -0.07)
Philippines -0.09** 0.0398 (-0.17, -0.01)
Thailand -0.15** 0.0268 (-0.20, -0.10)
Turkey 0.01 0.0256 (-0.04, 0.06)

**statistically significant results

The model defined in equation (4.1) indicates that the percent increase in organ trafficking incidents will be
constant from one year to the next, which means that the actual increase in organ trafficking incidents will be larger
from one year to the next. This is clearly seen in the plot of the original time series data in Figure 3. So, what does
this mean for β3? The post-intervention model is defined as:

ln(Yt) = (β0 + β2) + (β1 + β3)Tt + ϵt. (4.3)
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Post-intervention, or since the Istanbul Declaration 2008, the percent change in Yt is now:

(eβ1+β3 − 1)× ≈ 100(β1 + β3). (4.4)

Consider the example where β1 = 0.05 and β3 = −0.01. This would indicate that the constant percent change in Yt

is approximately 5% pre-intervention, and approximately 4% post-intervention. Researchers would conclude that
organ trafficking is still increasing since the Istanbul Declaration, but at a slower rate. Returning to the results from
Table 3, this is the exact conclusion regarding organ trafficking in all but three countries. However, this decline
in the rate of reported organ trafficking was statistically significant in only four countries: India (95% CI: -0.09,
-0.01), Pakistan (95% CI: -0.21, -0.07), Philippines (95% CI: -0.17,-0.01), and Thailand (95% CI: -0.20, -0.10).

Table 5. Robust Method Estimation of the Intervention
Effect on Linear Trend (β3)

Country β̂3 p-value 95% CI for β̂3

Brazil -0.046 0.245 (-0.08, 0.02)
Colombia 0.047 0.417 (-0.05, 0.14)
Egypt -0.044 0.465 (-0.08, 0.04)
India -0.052** 0.006 (-0.10, -0.02)
Iran -0.145** 0.001 (-0.18, -0.09)
Mexico -0.115** 0.001 (-0.16, -0.07)
Nigeria 0.002 0.572 (-0.04, 0.10)
Pakistan -0.130** 0.001 (-0.18, -0.07)
Philippines -0.110** 0.002 (-0.17, -0.04)
Thailand -0.150** 0.001 (-0.20,-0.08)
Turkey 0.006 0.658 (-0.04, 0.09)

**statistically significant results

Table 5 reports the results for the robust method. While the signs of the estimated trend effects are all the
same, there are noticeable differences in the magnitude of these coefficients, as well as the number of statistically
significant results. The estimated reduction in trends for Iran and Mexico went from -0.01 using the standard
method, to -0.145 and -0.115 respectively using the robust method. Furthermore, the estimated reduction in trend
was statistically significant in six countries (India, Iran, Mexico, Pakistan, Philippines, and Thailand) using the
robust method instead of only three. Finally, the length of a 95% confidence interval for β3 is slightly shorter using
the robust median method rather than that of the standard method, implying that the robust method is more accurate
as well.

5. Conclusion

Segmented regression is a very powerful technique to detect changes in trend after the intervention on time series
data. However, researchers should exercise caution when faced with small sample sizes. The standard regression
technique includes the assumptions of linearity between time and the outcome variable, statistical independence
(no autocorrelation) of the errors, homoscedasticity of the errors, and normality of the error distribution [1, 3, 6].
Transformations can be made in the presence of non-linearity and heteroscedasticity, and adjustments can be made
for autocorrelation as well (NEWEY-WEST[14] and PRAIS [15]). However, the normality assumption is not robust
for small sample sizes. If researchers are faced with non-normality and small sample sizes, the robust nonparametric
median test will provide more power in significance testing, and more precise confidence intervals in estimation.
This was demonstrated both by simulation and when applied to time series data on organ trafficking, before and
after the Istanbul Declaration.
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