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Abstract This article deals with a one-searcher multi-target search problem where targets with different detection priorities
move in Markov processes in each discrete time interval over a given space search area, and the total number of search time
intervals is fixed. A limited search resource is available in each search time interval and an exponential detection function is
assumed. The searcher can obtain a target detection reward, if the target is detected, which represents the detection priority
of target and does not increase with respect to time. The objective is to establish the optimal search plan that allocates
the search resource effort over the search areas in each time interval in order to maximize the total detection reward. The
analysis shows that the given problem can be decomposed into interval-wise individual search problems, each being treated
as a single stationary target problem for each time interval. Thus, an iterative procedure is derived to solve a sequence of
stationary target problems. The computational results show that the proposed algorithm guarantees optimality.
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1. Introduction

In modern warfare, many weapon systems implemented in intelligence, surveillance, and reconnaissance (ISR)
mission have been developed and utilized in the military field. One of those is the target-acquisition system, where
the most important issue is how to accurately detect targets in a timely way. Search theory has given reasonable
answers to these problems. Search problems deal with the search plan or strategy that allocates search resources
to maximize the detection probability, including three major elements: probability distributions for targets location
and motion, detection functions, and constraints on the search resource. The information about the targets position
at a certain time interval and its subsequent motion can be quantified in terms of a probability distribution. The
detection function relates the amount of resources placed in an area to the probability of detecting a target located
in that area. Generally, the searcher has a limited amount of resources available to conduct a search mission. The
limitation of resources may restrict distribution of the search resource infinitely over search areas.

As an object of interest, there are two types of targets. A stationary target is assumed to be located in one of
the discrete cells that partition the search area and does not change its location. A moving target moves from one
cell to another cell as time goes by. Earlier studies on search problems have been focused on detecting a single
stationary target or a single moving target. However, in the real environment of modern warfare, there are many
different types of targets that are moving in operational area, and the searcher is interested in detecting some or all
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of them, not only a particular one. The targets displace their location frequently during the operation in order to
secure their survivability. Furthermore, they all have different degrees of threat. Therefore, it is important for the
searcher to consider the detection priorities of targets when he is planning for the search operation.

Motivated by these facts, a search problem of detecting multiple moving targets with different detection reward
will be addressed in this article. A single searcher, an Unmanned Aerial Vehicle (UAV) with limited search
resources performs an ISR mission. The UAV search is conducted in discrete time intervals, which are mutually
independent of each others time interval. Multiple targets are moving among discrete cells along the Markov
process between time intervals. The probability distribution of the targets initial location, the transition probability
of each target, and the exponential detection function are known to the UAV. Then, the problem for the UAV is to
establish the optimal search plan that allocates the given limited resources to the cells at each time interval in order
to maximize the total detection reward.

The remainder of this article is organized as follows. The next section presents a brief review of related
literature. In Section 3, the problem description and formulation is presented. Section 4 proposes an algorithm
based on solution properties, and Section 5 gives the computational results of numerical examples. Finally, Section
6 concludes this work and discusses future work.

2. Related work

Numerous studies research search problems in the military domain. Koopman [9] provided the basic probabilistic
foundation. He has defined the elements of the basic problem of optimal search: a prior distribution on target
location, a function relating search resource and detection probability, and a constrained amount of search resource.
He has also shown the optimization criteria of maximizing detection probability subject to a constraint on resource
and found the optimal allocation of a fixed amount of search resource to a stationary target using an exponential
detection function.

For a stationary target which emits radio frequencies, Kim [8] developed various methods to use Directional
Finders (DFs) to determine the location of the starionary target in situations where there is an enemy threat.
He presented six models, each appropriate for a different battlefield situation. Stone [11] found necessary and
sufficient conditions for optimal search plan for a general class of stationary target problems involving Lagrangian
multipliers. These conditions were used to show that incrementally optimal or myopic search plans are totally
optimal for the standard cases (e.g., regular detection function), when a detection function is called regular if its
first derivative is continuous, positive, and strictly decreasing.

Smith and Kimeldorf [10] considered the discrete search problem with an unknown number, N , of stationary
targets. The objective of the problem is to minimize the expected cost which is associated with finding at least one
target. They have showed that a locally optimal plan was identical to the global optimal plan when N has a Poisson
distribution.

As an extension of stationary target problem, a single moving target is considered for a search problem.
Stone [12] found solutions for special types of moving target problems, e.g., two-celled Markovian motion and
conditionally deterministic target motion. For the case of target motions described by a continuous time-and-space
Markov process and the detection function being exponential, necessary conditions for an optimal detection search
were found.

The first substantial progress in developing an algorithm for moving target detection problems was obtained by
Brown [2]. For the case of an exponential detection function, he applied the Karush-Kuhn-Tucker conditions to
find an algorithm for computing the optimal detection search allocation for a target moving in discrete space and
time, according to a Markov process. For this case, he was able to reduce the moving target problem to that of
solving a sequence of stationary target problems. Lately, his work was extended to the problem with generalized
linear constraints by Dambreville and Le Cadre [4] who explored the management of mixed search resources, such
as radar and sonar.

Washburn [15] found the necessary and sufficient conditions for optimality for a general moving target problem
that lends itself to the successive improvement of the search plan. After several years, Washburn [16] proposed
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Forward and Backward (FAB) algorithm which is a generalized Browns algorithm to apply to a wider class of
payoff functions than any maximizing probability of detection. Tierney and Kadane [14] developed an algorithm
to search strategy which maximizes the detection probability of the target with the constraint of the limited budget.
Kadane [6] further developed such a search strategy under the restraint of the existing budget. Thomas and Eagle
[13] considered a single searcher problem with a perishable target whose lifetimes are geometrically distributed
and proposed several heuristic methods.

While the classical search problem deals with a single stationary target [2, 15, 16, 17], recent works on search
problem have extended to include moving and/or multiple targets. Kim et al. [7] considered a search planning
and task allocation problem for multiple UAVs and multiple moving targets. Dell et al. [5] dealt with the problem
with multiple searchers searching for a single target whose probability distribution of location is known. They have
proposed a branch-and-bound algorithm and several heuristic algorithms. Berger et al. [1] exploited a mixed-integer
programming to solve a multi-target, multi-searcher search problem.

3. Problem description

The proposed problem considers the situation where enemy troop is moving in an operation area and a friendly
force is preparing for reconnaissance operation. The operation area is partitioned into several smaller sections,
called cells. It is assumed that the terrain analysis of each cell is immediately completed. The friendly force
performs reconnaissance operation with a single UAV carrying a limited search resource, say flight time, to detect
the enemy troop targets. The UAV searches consecutively for targets over the operation area during the scout flight.

The goal of the reconnaissance operation is to detect threatening moving targets, which keep displacing their
positions from one cell to another cell to secure survivability. The UAV obtains some reward if it detects a target.
The detection reward depends on the priority of the target and decreases in time, which implies motivation to detect
the targets as soon as possible. The objective of the proposed problem is to find an optimal search plan that allocates
the flight time of the UAV to each cell during given time interval so as to maximize the detection reward subject to
the limited total flight time. The assumptions considered are as follows;

1. The targets do not respond to the UAVs search action such that targets are passive, not either evading or
hiding.

2. The number of targets, the probability distribution of each targets initial location, and its transition
probability are assumed to be known in advance.

3. The search is conducted during each time interval and the targets move among the cells. The numbers of
cells and time intervals are finite.

4. The targets moving process follows the Markov process. It is assumed that target transitions are independent
of each other.

5. A target is not divided into several targets and targets are not merged together during the reconnaissance
operation.

6. The detection function is assumed as an exponential function, which represents detection probability of the
search resource.

Targets move around in a search space that consists of a finite number of cells C = {1, 2, , c}. N discrete time
intervals T = {1, 2, , n} are considered to detect the targets. A path of target j, wj , is defined as a sequence
of cells {cij : i = 1, 2, , n}. Target j takes a path wj from a finite set of paths, Ω, with probability π(wj),
where

∑
wj∈Ω π(wj) = 1 holds. Since each targets movement follows a Markov process, it holds that π(wj) =
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pj(c1j)× tjc1j ,c2j × · · · × tjcn−1,jcnj where pj(k) is the probability that target j is placed in cell k at the initial
time and tjks is the probability that target j moves from cell k to cell s. A UAV is provided with limited flight
time, Ri ≥ 0, during the ith time interval, assuming that the whole limited search flight time is distributed among
the cells in arbitrary proportion to detect the targets which are represented by xik ≥ 0 where xik is the flight time
of UAV allocated in cell k during the time interval i. Let the search plan X be the sequence of xik for k ∈ C
and i = 1, 2, · · · , n. The sum of such elapsed flight times in all cells during each time interval cannot exceed
the allocated flight time during that time interval, which is constrained as

∑
k∈C xik ≤ Ri for all i and k. The

probability of detecting a target during the ith time interval, assuming that the target is in cell k, is described by
the detection function, 1− exp(−αikxik), where αik > 0 is a constant reflecting the search condition in the cell
during a time interval i. It is assumed that all searches during distinct time intervals are mutually independent,
letting gj(x, i) be the overall probability that target j will be undetected untill the ith time interval; gj(x, i) can be
derived as

gj(x, i) =
∑
wj∈Ω

π(wj)

i∏
h=1

exp(−αh,chj
xh,chj

),where chj ∈ wj . (1)

Let hj(x, i) be the probability of detecting target j during time interval [1, i]. Then, it holds that hj(x, i) =
1Cgj(x, i), and the UAV can detect target j during the ith time interval at the probability hj(x, i) = hj(x, i− 1). If
the detection is made during the ith time interval, then the UAV will get the detection reward Vij . Therefore,
the expected detection reward due to the detection of target j during the ith time interval is derived as
Vij [hj(x, i)Chj(x, iC1)]. Then, the expected total detection reward can be expressed as

∑n
i=1

∑m
j=1 Vij(hj(x, i)−

hj(x, i− 1). Accordingly, the objective function of the proposed problem can be stated as to maximize the expected
total detection reward, which can be rearranged as follows;

n∑
i=1

m∑
j=1

Vij(hj(x, i)− hj(x, i− 1))

=

m∑
j=1

[(V1j − V2j)hj(x, 1) + · · ·+ (Vn−1,j − Vnj)hj(x, n− 1) + Vnjhj(x, n)]

=

n∑
i=1

m∑
j=1

∆Vijhj(x, i)

(2)

where hj(x, 0) = 0 for all j, ∆Vij = Vij − Vi+1,j and Vn+1,j = 0. It is easy to find out that maximizing the
objective function of Eq. (2) is equivalent to minimize

∑n
i=1

∑m
j=1 ∆Vijgj(x, i). Consequently, the given problem

can be formulated as follows;

Minimize f(X) =

n∑
i=1

m∑
j=1

∆Vijgj(x, i) (3)

where gj(x, i) =
∑
wj∈Ω

π(wj)

i∏
h=1

exp(−αh,chj
, xh,chj

),∆Vij = Vij − Vi+1,j and Vn+1,j = 0

subject to
∑
k∈C

xik ≤ Ri for all iand k, (4)

where xik ≥ 0 for all i and k.
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4. Proposed approach

4.1. Analysis

The objective of the problem is to determine the optimal distribution of the search resource among all cells in
each time interval to maximize the total expected detection reward. For the problem analysis, consider the situation
where a target with no priority moves among the partitioned search areas during finite time intervals. Let g(x, i)
be defined as the probability that the target will be undetected until the ith time interval. The problem to minimize
the non-detection probability of the target, that is, to minimize g(x, i) subject to Eq. (4), can be viewed as a single
moving target problem. There is an efficient method to find the optimal search plan for a single moving target
problem, which has been provided by Brown [2].

The objective function f(X) of the given problem is a linear combination of the functions, gj(x, i) for
i = 1, 2, · · · , n and j = 1, 2, · · · ,m. To minimize each gj(x, i), it can be viewed as the single moving target
problem for target j. However, any one of the optimal solutions to each single moving target problem may not
be the optimal one to the proposed problem. It is because each target has its own probability of the initial location
and transition, and priority that is different from the others. Thus, it may not be appropriate to decompose the given
problem into several single moving target problems, each being solved separately. Several solution properties
should be analyzed to derive the efficient algorithm to guarantee the optimality for the given problem. Firstly,
the objective function f(X) is convex in xik because gj(x, i) =

∑
wj∈Ω π(wj)

∏i
h=1 exp(−αh,chj

, xh,chj
) was

proved to be convex in a single moving target problem by Brown [2]. Moreover, f(X) is a linear combination of
the functions gj(x, i), for i = 1, 2, · · · , n and j = 1, 2, · · · ,m, which are non-negatively weighted by ∆Vij . This
implies that the given problem becomes a convex programming problem since f(X) is convex and all constraints
are linear.

Consider a special case where n = 1 and m = 1, which is a single stationary target problem. This problem
minimizes the non-detection probability

∑
k∈C p(k)exp(−αkxk) in a single time interval, where p(k) is the

probability that a target is located in cell k. In a general case where n ̸= 1 and m ̸= 1, consider the movement
of target in a particular time interval. Each target occupies exactly one cell in each of n time intervals. That is, there
are no other targets moving into another cell in a single time interval. Then, the targets in a particular time interval
can be considered as stationary targets. Thus, the stationary target problem is investigated for the given problem.

Review the single moving target case. For a particular time interval t for 1 ≤ t ≤ i, the overall non-detection
probability is equivalent to the probability that no target was detected before time interval t, is detected at time
interval t, and will be detected after time interval t to i. Therefore, the function g(x, i) can be derived as follows:

g(x, i) =
∑
k∈C

p(x, t)exp(−αtkxtk)q(x, t, i) (5)

where p(x, t) is the probability that a target arrives at cell k in the tth time interval without being detected before
the tth time interval, and q(x, t, i) is the probability that a target is in cell k in the tth time interval and will not be
detected after the tth time interval to the ith time interval, given no detection in the time interval [1, t].

The function of Eq. (5) is required for a stationary target problem, and the stationary target problem can be
solved if p(x, t) and q(x, t, i) are known. The given problem can be reduced to a stationary target problem, given
any search plan X fixed except for a particular time interval. The reason is as follows:
Let pjk(X, t) be the probability that target j is in cell k in the tth time interval and not detected by the search plan
X before the tth time interval, and qjk(X, t, i) be the probability that target j is in cell k in the tth time interval
and will not be detected by the search plan X to the ith time interval after the tth time interval for 1 ≤ t < i. Then,
pjk(X, t) and qjk(X, t, i) can be expressed as

pjk(X, t) =
∑
s∈C

pjk(X, t− 1)exp(−αt−1,sxt−1,s)tjsk, (6)

where pjk(X, 0) = 1 for all all j and k, and

qjk(X, t, i) =
∑
s∈C

tjskexp(−αt+1,sxt+1,s)qjk(X, t+ 1, i), (7)
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where qjk(X, i, i) = 1 for all all j and k. Eq. (6) and (7) are put together to give gj(X, i) as

gj(X, i) =
∑
k∈C

pjk(X, t)exp(−αtkxtk)qjk(X, t, i) (8)

Thus, f(X) can be expressed as follows;

f(X) =

n∑
i=1

m∑
j=1

∆Vijgj(x, i) =

n∑
i=1

m∑
j=1

∑
k∈C

∆Vijpjk(X, t)exp(−αtkxtk)qjk(X, t, i) (9)

Since all xik are given except xik for k = 1, 2, · · · , c, it is possible to compute each pjk(X, t) and qjk(X, t, i).
Therefore, Eq. (9) represents the formula for a single stationary target search problem.

Finally, the problem reduced to a stationary target problem for the tth time interval can be viewed as the problem
of choosing xtk for the single stage search problem. After solving the single stage search problem, given any
feasible search plan, a new plan includes all the elements of the prior plan, xik for i ̸= t and also the updated value
of xtk, which means the allocation of the search resource for the tth time interval for k = 1, 2, · · · , c. The new
search plan, after the single stage search problem, can then improve the objective function value rather than the
prior one. Given any feasible solution X that constraints Eq. (4), let another feasible solution that is obtained after
the single stage search problem be X ′. Then f(X) ≥ f(X ′) for every t. The reason is as follows:
As shown above, f(X) can be expressed as Eq. (9). After solving the single stage search problem, X ′ is given as
X ′ = {xik ∈ X for i = 1, · · · , n and x′

tk satisfies Eq. (4)}. By the definition of the single stage search problem,
f(X ′) = minx′

ik /∈X f(X). Therefore, f(X ′) is always less than or equal to f(X). According to the solution
properties mentioned above, a new search plan generated by the single stage search problem updates current
solutions so as to improve the objective function value. Therefore, these solution properties can be used to establish
an effective algorithm to find the optimal search plan.

4.2. Algorithm

The basic idea of the algorithm is to transform the given problem to the sequence of single stage search problems.
This iterative procedure guarantees optimality. The first step of the algorithm is to find an initial search plan X0,
which is a feasible solution that satisfies constraints Eq. (4). The next step is to reduce the problem to a single
stage search problem. In order to solve the single stage search problem, the particular time interval is selected from
all partitioned time intervals. After picking up one time interval, the initial solution is fixed except for the chosen
time interval and the single stage search problem is solved. Then, we need to calculate the functions, pjk(X0, t)
and qjk(X0, t, i), for all i, j and k. If Ω is small enough to practically enumerate its elements, then pjk(X0, t) and
qjk(X0, t, i) may be calculated directly. However, in most cases it is impractical to enumerate Ω. However, the
recursive formulas in Eq. (6) and (7) permit an efficient calculation.

After computing pjk(X0, t) and qjk(X0, t, i), the single stage search problem becomes a typical stationary target
problem. This problem can be solved easily by the Stone [12]s algorithm. He proved the existence of a unique
solution to stationary search problem, adopting an exponential detection function and proposed an efficient method.
A new search plan is produced after solving the single stage search problem. This plan includes the solution of the
single stage search problem for the chosen time interval and the other solutions of the previous search plan except
for the solution at that time interval. This implies that the elements at the chosen time interval are replaced by the
new ones from the solution of the single stage search problem. As shown in the third solution property, the updated
search plan improves the objective function value. Consequently, the search resource is reallocated to cells in order
to increase the total detection reward by the new search plan.

The next step is to choose another time interval. The search plan is fixed again except for that time interval and
the single stage search problem is solved once more. These steps are applied recursively from the 1st time interval
to the nth time interval. At the end of the first search the resource is allocated to cells for all time intervals. However,
this plan may not be the best one because the plan may be improved. So the above procedure continues at the next
iterations.
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Let Yt(X) be the new search plan after solving the single stage search problem for the tth time interval, given
any feasible solution X , and set Xt = Yt(Xt−1) with the initial solution. In this case forming X1, X2, · · · , Xn

corresponds to allocating the search resource for the successive time intervals in order to obtain the greatest
decrease in the objective function value at the current time interval. According to the third solution property,
limu→∞ f(Xu) exists since f(X0) ≥ f(X1) ≥ f(X2) ≥ · · · > 0. Washburn [15] showed the necessary and
sufficient condition for the optimality of the moving target problems, which leads to a successive improvement
of search plan. In addition it has been proved that the associated strategy of renewing the search plan at a given
time interval has a certain limit point, using a target location distribution. A strategy that cannot be improved by
the above technique is called Criticality. Evidently, criticality is a necessary and sufficient condition for optimality
in the case of the Markovian motion of target in discrete time and space. This condition says that the proposed
algorithm guarantees the optimality. Accordingly, the optimization algorithm proceeds as follows;

Step 1: Let X0
t satisfies Eq. (3) and (4) be the initial solution.

Step 2: Let ε be a small positive number.
Step 3: Set r = 1.
Step 4: Set t = 1.
Step 5: Solve a single stage search problem.
Step 6: Update current solution by setting Xr

t = Yt(X
r
t−1).

Step 7: If t = n, then to go Step 8. Otherwise, Increase t by 1 and go to Step 5.
Step 8: If | f(Xr

t )− f(Xr−1
t ) |< ε, then stop. Otherwise, increase t by 1 and go to Step 4.

5. Computational results

This section consists of two parts. The first part presents the numerical results of myopic search and the proposed
search algorithm. Specifically, the difference of search resource allocations and the detection probabilities of targets
in both plans are compared. In the second part, the optimal search plans for multiple moving targets with identical
and/or different priorities are compared. In a search plan for targets with different priorities, the search resource is
allocated preferentially depending on the priorities of targets.

We consider the case where 5 targets move among 9 cells in 8 time intervals. The probability distribution of the
initial location is given in Table 1 and the transition of targets are generated randomly. The detection rewards of
targets, search resource Ri based on time interval, are shown in Table 2 and ε is set to 0.01.

Table 1. The detection reward of targets and the available search resource

Time interval
1st 2th 3th 4th 5th 6th 7th 8th

Target #1 466 400 380 354 199 160 88 87
Target #2 457 449 365 139 138 91 64 22
Target #3 462 436 351 242 235 183 175 22
Target #4 491 475 378 347 314 287 239 62
Target #5 398 381 363 302 265 209 74 68

Search Resource Ri 41 43 32 39 23 41 38 25

5.1. Numerical results of myopic and proposed search algorithm

Table 3 shows the search resource allocation of myopic search and the proposed search algorithm. Though the
myopic search distributes the resource to decrease the objective function value at the current time interval, it
does not improve the value at each consecutive iteration. However, the proposed search algorithm reallocates the
resource to minimize the objective function value through successive iterations. This indicates that the proposed
algorithm improves the objective function value iteratively until convergence is reached.

Stat., Optim. Inf. Comput. Vol. 8, June 2020



478 EXTENDED SEARCH PLANNING

Table 2. The probability distribution of targets initial location

CELL
1 2 3 4 5 6 7 8 9

Target #1 0.1959 0.1306 0.0836 0.1755 0.0062 0.1000 0.0939 0.1449 0.0694
Target #2 0.1742 0.1706 0.0089 0.0575 0.1688 0.0718 0.1436 0.0520 0.1526
Target #3 0.0315 0.1223 0.0982 0.0963 0.0815 0.0759 0.1777 0.1574 0.1592
Target #4 0.0902 0.1967 0.1111 0.0138 0.1712 0.1805 0.0069 0.0671 0.1620
Target #5 0.0753 0.0077 0.1428 0.1506 0.1142 0.0051 0.0727 0.1870 0.2441

Table 3. The search resource allocation of myopic search plan

CELL
1 2 3 4 5 6 7 8 9

1st Time Interval 0.0000 3.6579 6.7238 4.7808 5.6280 8.2627 2.9967 3.8285 5.1211
2nd Time Interval 0.0000 2.6054 4.8157 3.0069 13.7173 5.8571 4.6585 2.7146 5.6245
3rd Time Interval 2.8583 2.5272 5.4364 0.0000 7.7871 3.7524 4.2364 2.6642 2.7377
4th Time Interval 3.7931 5.0333 4.7652 4.3567 4.3048 7.4532 5.7762 0.0000 3.5170
5th Time Interval 2.1045 2.9141 2.7247 0.0000 2.7095 3.9425 3.2025 2.3805 3.0213
6th Time Interval 0.0000 4.6726 6.5410 3.7802 3.9747 9.9530 3.8919 4.5995 3.5837
7th Time Interval 2.9309 5.9042 5.0922 5.5376 0.0000 5.0651 4.8445 3.1742 5.4509
8th Time Interval 2.5400 3.5719 3.6172 2.6702 3.0073 4.0750 3.2242 0.0000 2.2941

Figure 1 illustrates the detection probabilities achieved by the myopic plan and the proposed algorithm. The
detection probability of target 4, which has more detection rewards than the others throughout almost all time
intervals, is higher than those of the others. This indicates that the search plan for multiple targets adjusts properly
the resource allocation to detect the targets with higher priorities.

Figure 1. The detection probability of myopic search
and the proposed algorithm

Figure 2. The objective function value based on time
interval

As shown on Figure 2, the objective function value decreases rapidly throughout successive iterations of the
algorithm. The objective function value converges to the limit within the 4th or 5th iteration and there is no
possibility of improvement after the 5th iteration.
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5.2. Comparison of the optimal search for target with identical and/or different priorities

The resource allocation of the optimal search plan for the targets with identical priorities is quite different from
that of the search plan for the targets with different priorities. Table 4 and 5 show the difference between these two
cases.

Table 4. The search resource allocation of the proposed search algorithm

CELL
1 2 3 4 5 6 7 8 9

1st Time Interval 0.0000 4.6250 6.2162 6.4240 4.0974 5.6779 3.7647 4.8770 5.2990
2nd Time Interval 6.2986 3.3486 5.0164 3.8683 0.0000 5.5190 5.4355 3.8195 9.6938
3rd Time Interval 3.2988 3.0042 5.5928 0.0000 5.4368 3.3099 4.2833 3.8164 3.2574
4th Time Interval 5.0631 5.5872 4.4182 4.1736 3.6920 6.7281 0.0000 5.7409 3.5965
5th Time Interval 2.7323 3.1459 2.3490 0.0000 2.5989 3.6366 3.0064 2.4247 3.1058
6th Time Interval 0.0000 4.8956 6.3506 3.7039 4.1317 9.5251 3.9536 4.9000 3.5391
7th Time Interval 2.8021 5.9759 4.7479 5.6759 0.0000 5.0546 4.8554 3.1138 5.7741
8th Time Interval 2.4828 3.5654 3.7240 2.7056 3.1490 3.8878 3.1878 0.0000 2.2972

Table 5. The search resource allocation of search plan for targets with identical value

CELL
1 2 3 4 5 6 7 8 9

1st Time Interval 0.0000 2.5330 10.0400 0.4930 6.0505 10.3253 3.0204 3.7213 4.8162
2nd Time Interval 0.0000 2.0057 5.5633 2.1366 15.4687 6.8154 4.3191 2.3984 4.2926
3rd Time Interval 1.4557 2.2314 7.7375 0.0000 7.5168 4.1487 4.1680 2.2357 2.5058
4th Time Interval 2.4745 4.6392 5.4328 3.7663 4.4284 8.6680 6.1220 0.0000 3.4684
5th Time Interval 1.3375 3.2020 3.1697 0.0000 2.9126 4.1234 3.7407 2.3537 2.1300
6th Time Interval 0.0000 4.7381 7.0427 3.5566 4.0324 9.9771 3.5265 4.7807 3.3455
7th Time Interval 2.7185 5.6001 5.3630 5.3530 0.0000 5.3083 4.9787 3.3264 5.3516
8th Time Interval 2.3818 3.5249 3.8196 2.8112 3.0169 3.8793 3.1437 0.0000 2.4224

Figure 3. The detection probability of myopic search and the proposed algorithml

In the case of the targets with identical priorities, the search plan distributes the resource among the cells or
the paths that are more likely to have a target and better search condition. However, the optimal search plan for
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the targets with different priorities allocates the resource preferentially to the cells where the targets with higher
priorities are located.

The detection probabilities in the search plan for the targets with identical priorities are dispersed between 0.82
0.89 as shown in Figure 3. However, the detection probabilities in the search plan for the targets with different
priorities are different, depending on the targets priorities. This implies that the search resource should be allocated
to detect the targets with higher priorities.

6. Conclusion

This article deals with a search problem for multiple moving targets with search priorities incorporated. Though
most of the search problems in the literature have considered a single moving target to maximize the detection
probability, this article considers multiple targets that move in Markov processes in discrete time over a given
space. The worth of targets is evaluated based on priorities and does not increase in time to reflect real condition
in intelligence, surveillance, and reconnaissance operation. The objective is to determine the optimal search plan
which allocates the limited

It is shown that the given problem can be decomposed into interval-wise individual search problems, each of
which is treated as a single stage target problem for given time interval. Therefore, the problem can be solved by
working on the sequence of single stage target problems iteratively. At each iteration, search resource reallocation is
needed to improve the objective function value so as to maximize the total detection reward. The proposed iterative
procedure shows that the objective function value converges to the limit point, implying that the optimality is
guaranteed. The computational results show that the optimal search plan of the proposed algorithm provides more
improved objective function value and increased detection probability of target than the myopic search plan. As a
further study, other search models considering different detection functions, dynamic search cost, other constraints
on the UAVs path and can be considered to extend the problem.
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