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Abstract In this paper, we propose a large-update primal-dual interior point algorithm for convex quadratic semidefinite
optimization (CQSDO) based on a new parametric kernel function. This kernel function is a parameterized version of the
kernel function introduced by M.W. Zhang (Acta Mathematica Sinica. 28: 2313-2328, 2012) for CQSDO. The investigation
according to it generating the best known iteration bound O(

√
n logn log nϵ ) for large-update methods. Thus improves the

iteration bound obtained by Zhang for large-update methods. Finally, we present few numerical results to show the efficiency
of the proposed algorithm.
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1. Introduction

Let Sn denote the space of real symmetric matrices of order n and Sn+ the cone of symmetric positive semidefinite
matrices. The standard primal form of convex quadratic semidefinite optimization (CQSDO) problems is as follows

(P) min
X

{C •X +
1

2
X • Q (X) s.t. Ai •X = bi, 1 ≤ i ≤ m, X ≽ 0},

and its Lagrange dual problem

(D) max
(X, y, Z)

{b⊤y − 1

2
X • Q (X) s.t.

∑m

i=1
yiAi −Q (X) + Z = C, Z ≽ 0},

where C, Ai ∈ Sn, with the Ai are linearly independent, b ∈ Rm and Q : Sn → Sn is a self-adjoint linear operator
on Sn, i.e., A • Q (B) = Q (A) •B, for all A,B ∈ Sn. The notation X ≽ 0 means that the matrix X ∈ Sn+.
However, the symbol A •B denotes the trace inner-product in Sndefined by A •B = Tr(AB) =

∑n
i,j=1AijBij .

The CQSDO problem has many important applications in engineering and scientific area (see, e.g., [17]). It
is also a generalization of the semidefinite optimization (SDO) and a special case of the semidefinite linear
complementarity problem (SDLCP) [13]. There are many solution approaches for CQSDO. Among them, the
interior-point methods (IPMs) gained much more attention than others [2, 5]. Several, IPMs designed for linear
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optimization (LO) have been successfully extended to CQSDO, (e.g.,[4, 14, 17, 19, 22, 23, 24]), due to their
polynomial complexity and practical efficiency.

Kernel functions play an important role in the design of new primal-dual interior point algorithms. Recently, Peng
et al. [15] presented primal-dual IPMs for LO and SDO based on the self-regular barrier function. Subsequently,
Bai et al. [7, 8, 9] proposed a class of primal-dual IPMs for LO based on a variety of non-self-regular kernel
functions and obtained the same favorable iteration bounds for large- and small-update methods as in [15].
Moreover, Bai and her co-authors extended the aforementioned results for LO to SDO [20] and CQSDO [19].
We note that similar algorithms are successfully prolonged to convex quadratic optimization over symmetric cone
(CQSCO) (see [10, 21]). For some other related interior-point algorithms based on the kernel functions we refer
to [1, 3, 6, 11, 18, 22, 23, 24, 25]. A kernel function is a univariate strictly convex function which is defined for
all positive real t and is minimal at t = 1 whereas the minimal value equals 0. In the other words ψ(t) is a kernel
function when it is twice differentiable and satisfies the following conditions:

ψ(1) = ψ
′
(1) = 0, ψ

′′

(t) > 0 and lim
t7→∞

ψ(t) = lim
t 7→0

ψ(t) = ∞.

The last condition indicates the barrier property of ψ(t). Furthermore, from the above properties, ψ(t) is completely
determined by its second derivative

ψ(t) =

t∫
1

ξ∫
1

ψ
′′

(ζ)dζdξ.

This kernel function may be extended to a scaled barrier function Ψ defined from Sn to Sn by Ψ(V ) := Tr(ψ(V ))
where V is a symmetric positive definite matrix. Therefore the value of the barrier function can be considered as a
measure for the closeness of X and (y, Z) to the µ-centers of (P) and (D). In the next section, we describe how
any such barrier function defines a primal-dual interior-point method. The iteration bound for such large-update
algorithm is obtained by showing that each iteration decreases the barrier function by a sufficient amount. The best
iteration bound namely, O(

√
n log n log n

ϵ ) was obtained so far by some parameterized barrier kernel functions in
Table 1.

Kernel function Parameter References
t2−1
2 − t1−q−1

q−1 , q > 1 q = 1
2 log n [15, 16]

t2−1
2 − t1−q−1

q−1 − q−1
q (t− 1), q > 1 q = 1

2 log n [15, 16]
tp+1−1
p+1 + t1−q−1

q−1 , p ∈ [0, 1] , q > 1 p = 1, q = log n [9]

t2−1
2 −

t∫
1

eq(
1
ξ−1)dξ, q ≥ 1 q = O(log n) [8]

t2−1
2 + q

1
t
−1−1
log q , q > 1 q = 1 +O(n) [1]

Table 1. five kernel functions with the best known iteration bound for large-update methods.

Recently, Zhang [23], has introduced the following kernel function

ψ(t) =
t2 − 1

2
− (t− 1)e

1
t−1, t > 0,

in the design of primal-dual IPMs for solving CQSDO. He showed that the iteration bound for the corresponding
large-update algorithm is

O
(√

n(log n)2 log
n

ϵ

)
.

This bound is a factor log n worse than the above bound in Table 1.
In this paper, we introduce a new parameterized kernel function as follows:

ψ(t) =
t2 − 1

2
− t− q

q2 − q + 1
eq(

1
t−1) +

1− q

q2 − q + 1
, t > 0, (1)
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where q ≥ 1 is a parameter. Note if q = 1, the parameterized kernel function in (1) reduces to Zhang’s kernel
function. Therefore (1) is a parameterized version of it. With a suitable choice of the parameter q, namely
q = O(log n), we show that the kernel function in (1) generating the best-known iteration bound for large-update
methods, namely, O(

√
n log n log n

ϵ ). Thus improves the iteration bound for large-update methods obtained by
Zhang [23]. Moreover, our analysis is straightforward to the SDO problems. Finally, few preliminary numerical
results are reported to show by using different value of the parameter q, the best numbers are achieved with the
value q = O(log n).

The paper is organized as follows. In Section 2, we recall some known facts about matrices and matrix functions
which will be used in the analysis of the algorithm. The generic primal-dual interior point algorithm based on a
new kernel function for CQSDO is described. In Section 3, we show that the kernel function in (1) satisfies the
eligibility conditions that defines the class of kernel functions considered in Bai et al. [7]. In what follows, we use
the general scheme for analyzing the generic algorithm, as presented in [7]. In Section 4, we obtain the iteration
bound for large-update methods based on a new kernel function. Some numerical results are provided in Section 5.
Finally, some concluding remarks follow in Section 6.

The following notations are used throughout the paper. Sn++ denote the cone of n× n symmetric positive definite
matrices. FurthermoreX ≽ 0 (X ≻ 0) means thatX ∈ Sn+ (X ∈ Sn++). For any matrixX,λi(X), 1 ≤ i ≤ n denote
its eigenvalues. The trace of a n× n matrix X is denoted by Tr (X) =

∑n
i=1Xii and ∥.∥ denote the Frobenius

norm. The symmetric positive definite square root of any symmetric definite matrix X is denoted by X1/2. For
f(x), g(x) : Rn

+ → Rn
++, f(x) = O(g(x)) if f(x) ≤ kg(x) for some positive constant k and f(x) = Θ(g(x)) if

k1g(x) ≤ f(x) ≤ k2g(x) for some positive constants k1 and k2. Finally, I and 0n×n denotes the identity and zero
matrix of order n, respectively.

2. The generic primal-dual IPM algorithm for CQSDO

In this section, we review some known facts about matrices and matrix functions which will be used in the analysis
of the algorithm and then we mainly derive the new kernel-function-based Nesterov-Todd direction. Finally, we
present the generic primal-dual algorithm for CQSDO.

Definition 2.1
Let X be a symmetric matrix and let

X = Q−1
X diag(λ1(X), . . . , λn(X))QX ,

be the eigenvalue decomposition of X , where λi(X), 1 ≤ i ≤ n, denote the eigenvalues of X, and QX is
orthogonal. If ψ(t) is any univariate function whose domain contains {λi(X), 1 ≤ i ≤ n} then the matrix function
ψ(X) is defined by

ψ(X) = Q−1
X diag(ψ(λ1(X)), . . . , ψ(λn(X)))QX .

The Definition 2.1 is called the Spectral Decomposition Theorem of symmetric matrices. Its importance enables
us to extend the definition of any function ψ : R −→ R to a function from Sn to Sn [12].
Now, throughout the paper, without loss of generality, we assume that both (P) and (D) satisfy the interior point
condition (IPC), i.e., there exists (X0 ≻ 0, y0, Z0 ≻ 0) such that

Ai •X0 = bi, 1 ≤ i ≤ m, X0 ≻ 0,

m∑
i=1

y0iAi −Q
(
X0
)
+ Z0 = C,Z0 ≻ 0.

In addition, the operator Q is monotone, i.e., X • Q (X) ≥ 0, for all X ∈ Sn.
If the IPC holds, it is well known that finding an optimal solutions of (P) and (D) is equivalent to solving the
following system: 

Ai •X = bi, 1 ≤ i ≤ m,X ≽ 0,
m∑
i=1

yiAi + Z −Q (X) = C, y ∈ Rm, Z ≽ 0,

XZ = 0.

(2)
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The basic idea of primal-dual IPMs is to replace the third equation XZ = 0 in the system (2), the so-called
complementarity condition for (P) and (D), by the parameterized equation XZ = µI (µ > 0). Thus we consider

Ai •X = bi, 1 ≤ i ≤ m,X ≻ 0,
m∑
i=1

yiAi + Z −Q (X) = C,Z ≻ 0,

XZ = µI.

(3)

Since the IPC holds and the Ai are linearly independent, the parameterized system (3), has a unique solution
(X(µ), y(µ), Z(µ)) for any µ > 0, where X(µ) is the µ−center of (P) and (y(µ), Z(µ)) is the µ−center of (D).
The set of µ−centers defines the central-path of (P) and (D) (with µ−running through positive real numbers). If
µ→ 0, then the limit of the central-path exists and since the limit points satisfy the complementarity condition,
the limit yields optimal solutions for (P) and (D) (see [14]). If (X(µ), y(µ), Z(µ)) is known for some positive µ,
then we decrease µ to µ := (1− θ)µ for some fixed θ ∈ (0, 1) and solve the following system:

Ai •∆X = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiAi +∆Z −Q (∆X) = 0,

∆XZ +X∆Z = µI −XZ,

(4)

to obtain search directions (∆X, ∆y, ∆Z). Note that ∆Z is symmetric due the second equation in (4) but ∆X
may be not symmetric. Many researchers have been proposed several methods for symmetrizing the third equation
in (4) such that the resulting new system has a unique symmetric solution.
In this paper, we use the Nesterov-Todd symmetrization scheme [3, 4, 15], which defines the so-called NT-direction.
Let us define the matrix

P = X
1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 = Z− 1

2 (Z
1
2XZ

1
2 )

1
2Z− 1

2 ,

and D = P
1
2 , where P

1
2 denotes the symmetric square roote of P . The matrix D can be used to scale X and Z to

the same matrix V as follows
V :=

1
√
µ
D−1XD−1 =

1
√
µ
DZD. (5)

Note that both matricesD and V are symmetric and positive definite. So the NT-direction (DX ,∆y,DZ) is obtained
from the system: 

Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

(∆y)iĀi +DZ − Q̄ (DX) = 0,

DX +DZ = V −1 − V,

(6)

with

DX : =
1
√
µ
D−1∆XD−1, DZ :=

1
√
µ
D∆ZD, (7)

Āi =
1
√
µ
DAiD, 1 ≤ i ≤ m, and Q̄(DX) = DQ(DDXD)D.

Since the Ai are linearly independent so the Āi, then the system (6) has a unique solution DX ,∆y, and DZ

with DX and DZ are symmetric matrices. Furthermore, since Q is a self-adjoint and monotone linear operator,
then DX •DZ = DZ •DX = 1

µ∆X • Q (∆X) ≥ 0. The above described search direction defines the classical
NT-direction.

Now, as mentioned in the introduction, the barrier function is defined for every given kernel function ψ(t) as
follows

Ψ(X,Z;µ) := Ψ(V ) :=

n∑
i=1

ψ(λi(V )) = Tr(ψ(V )), λi(V ) > 0. (8)

Stat., Optim. Inf. Comput. Vol. 8, December 2020



880 A PARAMETRIC KERNEL FUNCTION FOR CQSDO

When we use the function ψ(.) and its first three derivatives ψ
′
(.), ψ

′′
(.) and ψ

′′′
(.) without any specification, it

denotes a matrix function if the argument is a matrix and a univariate function if the argument is in R.
Followed [7, 11, 15, 16], we turn now to describe the new NT-direction for CQSDO. The kernel-function-based

NT-direction for CQSDO is simply based in replacing the right hand side V −1 − V in the third equation in (6) by
−ψ′(V ). Thus, we have the following system:


Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

(∆y)iĀi +DZ − Q̄ (DX) = 0,

DX +DZ = −ψ′(V ),

(9)

where ψ(t) is a given kernel function and ψ(V ), ψ
′
(V ) are the associated matrix functions. Note that if ψ(t) is

the classical kernel function ψ(t) = t2−1
2 − log t, then (9) coincides with the classical NT-direction in (6). Now,

by taking a suitable default step-size α ∈ (0, 1), these search directions construct a new triple (X + α∆X, y +
α∆y, Z + α∆Z). We repeat the procedure until we find an iterate in a certain neighborhood of (X(µ), y(µ), Z(µ)).
Then µ is again reduce by the (1− θ) and we apply Newton’s method targeting the new µ−centers, and so on. This
process is repeated until µ is small enough and at this stage we have found an ϵ-solution of the problems (P) and
(D).

We can now describe the algorithm in a more formal way. The generic form of the large-update primal-dual
interior point algorithm for solving CQSDO is stated as follows.

Generic primal-dual algorithm for CQSDO

Input:
A threshold parameter τ, τ ≥ 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible pair (X0, y0, Z0) and µ0 = 1 s.t. Ψ(X0, Z0;µ0) ≤ τ ;
begin
X := X0; y := y0; Z := Z0; µ := µ0;
While nµ ≥ ϵ do

begin
µ := (1− θ)µ;
While Ψ(X,Z;µ) > τ do

begin
solve the system (9) and use (7) to obtain (∆X,∆y,∆Z);
determine a suitable step-size α;
update (X, y, Z) := (X, y, Z) + α(∆X, ∆y,∆Z);

end
end

end

The parameters θ, τ and the step-size α described in the algorithm are chosen in such a way that the number of
iterations required by the algorithm is as small as possible. Usually, if θ is a constant independent of the dimension
of the problem n, for instance θ = 1

2 , then the algorithm is called large-update method.
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3. A general class of the kernel functions

In [7], Bai, El Ghami and Roos introduced a general class of kernel functions by using the following conditions:

tψ
′′
(t) + ψ

′
(t) > 0, t < 1, (10)

tψ
′′
(t)− ψ

′
(t) > 0, t > 1, (11)

ψ
′′′
(t) < 0, t > 0, (12)

2ψ
′′
(t)2 − ψ

′′′
(t)ψ

′
(t) > 0, t < 1, (13)

ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1. (14)

The kernel function ψ(t) was called eligible if it satisfies (10) to (14). It was also shown that (11) and (12) imply
(14). So to prove the eligibility, we verify only the conditions from (10) to (13).
The first three derivatives of ψ(t) in (1) are:

ψ
′
(t) = t− eq(

1
t−1)(t2 − qt+ q2)

t2(q2 − q + 1)
, (15)

ψ
′′
(t) = 1 +

eq(
1
t−1)q2(t+ q)

t4(q2 − q + 1)
> 0 for all t > 0 and q ≥ 1, (16)

ψ
′′′
(t) = −e

q( 1
t−1)(3q2t2 + 5q3t+ q4)

t6(q2 − q + 1)
< 0 for all t > 0 and q ≥ 1. (17)

It follows that ψ(1) = ψ
′
(1) = 0, and it is also easy to verify that

lim
t 7→∞

ψ(t) = lim
t 7→0

ψ(t) = ∞.

Therefore, ψ(t) is a barrier kernel function. By substituting ψ
′
(t) and ψ

′′
(t) in (15) and (16), we obtain

tψ
′′
(t) + ψ

′
(t) = 2t+

eq(
1
t−1)

t3(q2 − q + 1)
(−t3 + qt2 + q3).

Since 0 < t < 1 and q ≥ 1, it follows that q2 − q + 1 > 0 and −t3 + qt2 + q3 ≥ (q − 1)t3 + q3 > 0. This proves
(10). We furthermore have for all t > 1, and q ≥ 1,

tψ
′′
(t)− ψ

′
(t) =

eq(
1
t−1)

t3(q2 − q + 1)
(t3 − qt2 + 2q2t+ q3).

Then to prove (11), we prove only t3 − qt2 + 2q2t+ q3 > 0 for all t > 1 and q ≥ 1. Letting g(t) = t3 − qt2 +
2q2t+ q3. We have

g′(t) = 3t2 − 2qt+ 2q2,

g′′(t) = 6t− 2q = 0 ⇔ t =
q

3
,

g′′′(t) = 6 > 0.

Therefore, g′(t) ≥ g′( q3 ) =
5q2

3 > 0 for all q ≥ 1. This implies that g(t) is strictly increasing and hence g(t) ≥
g(1) = q(q2 − 1) + 1 + 2q2 > 0. This proves that the condition (11) is satisfied. For (12) is satisfied, from the
(17). Finally, for t < 1 this implies that 1

t > 1 and for q ≥ 1, we have B2 = e2q(
1
t−1) ≥ B = eq(

1
t−1) > 1, and

C = q2 − q + 1, with C2 ≥ C ≥ 1. Thus after some elementary reductions, we have

2ψ
′′
(t)2 − ψ

′′′
(t)ψ

′
(t) ≥ 2 +

1

C2t8
(7t5 + (9q − 3)t4 + q(q − 2)t3 + 3q2t2 + q4).
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If q ∈ [2,+∞[ , then 7t5 + (9q − 3)t4 + q(q − 2)t3 + 3q2t2 + q4 > 0 and consequently 2ψ
′′
(t)2 − ψ

′′′
(t)ψ

′
(t) > 0

for all 0 < t < 1. Now, for the case q ∈ [1, 2[ , letting

7t5 + (9q − 3)t4 + q(q − 2)t3 + 3q2t2 + q4 = 7t5 + (9q − 3)t4 + g(t),

where g(t) = q(q − 2)t3 + 3q2t2 + q4. Hence 7t5 + (9q − 3)t4 + q(q − 2)t3 + 3q2t2 + q4 > 0 ⇔ g(t) > 0 for all
0 < t < 1 and q ∈ [1, 2[ . We have

g′(t) = 3q(q − 2)t2 + 6q2t = 0 ⇔ t = 0 or t =
2q

2− q
> 0.

Note that the root t = 2q
2−q is excluded since t ≥ 2 for q ∈ [1, 2[. We only concentrate on the root t = 0. For that ,

we have
g′′(t) = 6(q(q − 2)t+ q2) = 0 ⇔ t =

q

2− q
≥ 1 for all q ∈ [1, 2[ .

This implies that g′′(t) > 6(q(q − 2)t+ q2t) = 12q(q − 1)t ≥ 0 for all 0 < t < 1. This implies that g′(t) is
monotonically increasing for all t ∈ (0 , 1) which leads to g

′
(t) > g

′
(0) = 0. Thus the function g(t) is

monotonically increasing for all t ∈ (0 , 1) . Then g(t) ≥ g(0) = q4 > 0 and consequently 2ψ
′′
(t)2 − ψ

′′′
(t)ψ

′
(t) >

0 for all t < 1 and q ∈ [1, 2[ . So we have 2ψ
′′
(t)2 − ψ

′′′
(t)ψ

′
(t) > 0 and hence condition (13) holds. Therefore

ψ(t) is an eligible kernel function.
The analysis of the generic algorithm by using an eligible kernel function is based on the application of the

following general scheme as presented in [7].
Step 1. Solve the equation − 1

2ψ
′
(t) = s to get ρ(s), the inverse function of − 1

2ψ
′
(t) for t ≤ 1. If the equation is

hard to solve, derive a lower bound for ρ(s).
Step 2. Calculate the decrease of Ψ(V ) in terms of δ = δ(V ) for the default step size α̃ from

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
.

Step 3. Solve the equation ψ(t) = s to get ϱ(s),the inverse function of ψ(t) for t ≥ 1. If the equation is hard to
solve, derive an upper bound for ϱ(s).
Step 4. Derive a lower bound for δ(V ) in terms of Ψ(V ) by using

δ(V ) ≥ 1

2
ψ

′
(ϱ(Ψ(V ))).

Step 5. Using the results of steps 3 and 4 find positive constants γ and β̄, with γ ∈ (0, 1] , such that

f(α̃) ≤ −β̄Ψ(V )1−γ .

Step 6. Calculate the uniform bound for the total Ψ0 for Ψ(V ) from

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
ϱ( τn )√
1− θ

)
.

Step 7. Derive an upper bound for the total number of iterations from

Ψγ0
θγβ̄

log
n

ϵ
.

Step 8. Set τ = O(n) and θ = Θ(1) so as to calculate an iteration bound for large-update IPMs, or set τ = Θ(1)
and θ = O(n) to get an iteration bound for small-update methods.

In the scheme, we use the barrier function Ψ(V ) defined in (8) as a measure function and also a norm-based
proximity measure δ(V ) is used in the analysis of the algorithm and which is defined by

δ := δ(V ) =
1

2
∥DX +DZ∥ =

1

2
∥ψ′(V )∥ =

1

2

√
Tr(ψ′(V ))2. (18)

Note that
δ(V ) = 0 ⇔ V = I ⇔ Ψ(V ) = 0.
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4. Iteration bound of the large-update algorithm

Also through the scheme, we need in step 1 and step 3 the inverse functions ρ(s) of − 1
2ψ

′
(t) for t ≤ 1 and ϱ(s) of

ψ(t) for t ≥ 1. Since we are unable to get explicit expressions for the inversion functions we derive some bounds
for these inverse functions by using these two lemmas in [7] without proofs.

Lemma 4.1
Let ϱ : [0,+∞[ −→ [1,+∞[ be the inverse function of ψ(t) for t ≥ 1. Then we have

√
1 + 2s ≤ ϱ(s) ≤ 1 +√

2s, s ≥ 0.

Lemma 4.2
Let ψb(t) be the barrier term of ψ(t) and let ρ̄ : [0,∞) → (0, 1] be the inverse function of the restriction of −ψ′

b(t)
to the interval (0, 1]. Then one has ρ(s) ≥ ρ̄(1 + 2s).

Now by sing these two lemmas, we derive some bounds for ρ(s) and ϱ(s).
Step1. From the equation −ψ′

b(t) = s, we have

−ψ
′

b(t) =
eq(

1
t−1)(t2 − qt+ q2)

t2(q2 − q + 1)
= s.

Since t ∈ (0, 1], this implies

eq(
1
t−1) ≤ (q2 − q + 1)s

(t2 − qt+ q2)
.

For t ∈ (0, 1], we have {
t2 − qt+ q2 ≥ 3q2

4 si q ∈ [1, 2)
t2 − qt+ q2 ≥ q2 − q + 1 si q ≥ 2.

Now, it is easy to see that q2 − q + 1 ≥ 3q2

4 , for all q ≥ 1, which implies that

t2 − qt+ q2 ≥ 3q2

4
, for all q ≥ 1.

This leads to

eq(
1
t−1) ≤ 4(q2 − q + 1)s

3q2
, for all q ≥ 1.

≤ 4s

3
, for all q ≥ 1,

where the last inequality is satisfied since q2−q+1
q2 ≤ 1, for all q ≥ 1. Then, we deduce that

t = ρ̄(s) ≥ 1

1 + 1
q log(

4s
3 )

, for all q ≥ 1.

Next, by Lemma 4.2, since ρ(s) ≥ ρ̄(1 + 2s), we derive a lower bound for ρ(s) as follows

ρ(s) ≥ 1

1 + 1
q log

(
4
3 (1 + 2s)

) , for all q ≥ 1.

Step 2. The function ψ
′′
(t) is monotonically decreasing, hence

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
≤ − δ2

ψ′′(ρ̄(1 + 4δ))
.

Stat., Optim. Inf. Comput. Vol. 8, December 2020



884 A PARAMETRIC KERNEL FUNCTION FOR CQSDO

Putting t = ρ̄(1 + 4δ), we have t ≤ 1 and we can write

f(α̃) ≤ − δ2

ψ′′(t)
≤ − δ2

1 + q2(t+q)eq(
1
t
−1)

t4(q2−q+1)

. (19)

Note that

t = ρ̄(1 + 4δ) ⇔ 1 + 4δ = −ψ
′

b(t) =
eq(

1
t−1)(t2 − qt+ q2)

t2(q2 − q + 1)
.

Substituting this equation into (19), gives

f(α̃) ≤ − δ2

1 + (1 + q)(1 + 4δ) q2

(t2−qt+q2)t2
.

Again by using the inequality,

t2 − qt+ q2 ≥ 3q2

4
, for all q ≥ 1,

we get

f(α̃) ≤ − δ2

1 + (1 + q)(1 + 4δ) 4
3t2

, for all q ≥ 1.

On the other hand
1

t2
=

1

(ρ̄(1 + 4δ))2
≤
(
1 +

1

q
log

(
4(1 + 4δ)

3

))2

, for all q ≥ 1,

it follows that

f(α̃) ≤ − δ2

1 + 4
3 (1 + q)(1 + 4δ)

(
1 + 1

q log
(
4
3 (1 + 4δ)

))2 , for all q ≥ 1. (20)

Step 3. By Lemma 4.1, the inverse function of ψ(t) for t ≥ 1 satisfies√
1 + 2ψ(t) ≤ ϱ(ψ(t)) ≤ 1 +

√
2ψ(t). (21)

Step 4. Using δ(V ) ≥ 1
2ψ

′
(ϱ(Ψ(V ))), and since ψ

′

b(t) is monotonically increasing for all q ≥ 1 and t ≥ 1, where
ψb(t) denotes the barrier term, we have

δ ≥ 1

2
ψ

′
(ϱ(Ψ(V )))

≥ 1

2

(
√
1 + 2Ψ− e

q( 1√
1+2Ψ

−1)

(1 + 2Ψ)(q2 − q + 1)
(1 + 2Ψ− q

√
1 + 2Ψ + q2)

)

≥ 1

2
(
√
1 + 2Ψ− 1) =

Ψ

1 +
√
1 + 2Ψ

≥ 1

2

√
Ψ

3
. (22)

Step 5. Let Ψ0 ≥ Ψ ≥ τ ≥ 1. We deduced from (22), that
√
Ψ ≤ 2

√
3δ ≤ 4δ. Now due to (20), we have

f(α̃) ≤ − δ2

1 + 4
3 (2

√
3δ + 4δ)(1 + q)

(
1 + 1

q log
(
4
3 (1 + 4δ)

))2 , for all q ≥ 1,

≤ − δ

60
3 (1 + q)

(
1 + 1

q log
(
4
3 (1 + 4δ)

))2 , for all q ≥ 1,
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that is,

f(α̃) ≤ −
√
Ψ

80(1 + q)
(
1 + 1

q log
(
4
3 (1 +

√
Ψ0)
))2 , for all q ≥ 1. (23)

Thus it follows that

Ψk+1 ≤ Ψk − β̄ (Ψk)
1−γ

, k = 0, 1, . . . ,K − 1,

where

γ =
1

2
and β̄ =

1

80(1 + q)
(
1 + 1

q log
(
4
3 (1 +

√
Ψ0)
))2 , for all q ≥ 1,

and K denotes the number of inner iterations.
Step 6. From Lemma 4.1, we have ϱ( τn ) ≤ 1 +

√
2τ
n . As a consequence

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
ϱ( τn )√
1− θ

)
≤ nψ

1 +
√

2τ
n√

1− θ

 .

Since ψ(t) ≤ t2−1
2 for t ≥ 1,

Ψ0 ≤ n

2

 (1 +
√

2τ
n )2

1− θ
− 1

 =
nθ + 2

√
2nτ + 2τ

2(1− θ)
. (24)

Step 7. By inequality (23), the number of inner iterations is bounded above by

K ≤ Ψγ0
γβ̄

1

θ
log

n

ϵ
= 160(1 + q)

(
1 +

1

q
log

(
4

3
(1 +

√
Ψ0)

))2

Ψ
1
2
0

1

θ
log

n

ϵ
, q ≥ 1.

Substituting (24) in this inequality gives

K ≤ 114(1 + q)

(
1 +

1

q
log

(
4

3

(
1 +

χ√
2

)))2

χ
1

θ
log

n

ϵ
, for all q ≥ 1, (25)

with χ =
(
nθ+2

√
2nτ+2τ

1−θ

) 1
2

.

Step 8. For large update methods set τ = O(n) and θ = Θ(1). As a consequence,

Ψ0 ≤ nθ + 2
√
2nτ + 2τ

2(1− θ)
= O(n).

By choosing q = log
(
4
3 (1 +O(n))

)
= O(log n), the iteration bound in (25) becomes

O
(√

n log n log
n

ϵ

)
,

which is the currently best know complexity for such large-update methods.
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5. Numerical results

In this section, we present some numerical results under Matlab 8.1 with the implementation is done over a Pentium
4, for solving some convex quadratic semidefinite optimization problems. Different values of the parameters q
and θ are presented to show their influence on the number of iterations produced by the large-step primal-dual
algorithm. The initial primal dual point (X0, y0, Z0) with µ0 > 0 is chosen such that the pair is strictly feasible and
the proximity Ψ(X0, Z0;µ0) ≤ τ. However, the experiments with the selected theoretical step-size α during each
inner iteration guarantees the convergence of the method but it yields to unfavorable results, i.e., a slow convergence
of the corresponding algorithm. Therefore a practical one is used instead based on the following strategy. We
compute at each inner iteration a maximum step size αmax such that X + ξαmax∆X ≻ 0 and Z + ξαmax∆Z ≻ 0
with αmax = min(αX , αZ) and ξ ∈ (0, 1), where αX and αZ are the primal and the dual feasible step size given by
αX = minni=1 α

′

X [i], with

α
′

X [i] =


−1

λi

(
X

−1
2 ∆XX

−1
2

) , if λi
(
X

−1
2 ∆XX

−1
2

)
< 0

1 , if λi
(
X

−1
2 ∆XX

−1
2

)
≥ 0,

and as well as for αZ = minni=1 α
′

Z [i], with

α
′

Z [i] =


−1

λi

(
Z

−1
2 ∆ZZ

−1
2

) , if λi
(
Z

−1
2 ∆ZZ

−1
2

)
< 0

1 , if λi
(
Z

−1
2 ∆ZZ

−1
2

)
≥ 0.

The kernel function used here is:

ψ(t) =
t2 − 1

2
− t− q

q2 − q + 1
eq(

1
t−1) +

1− q

q2 − q + 1
, t > 0, q ≥ 1.

Now, we test the algorithm on two problems of convex quadratic semidefinite optimization.
Problem 1.
We consider the SDO problem in [20], whose the primal-dual pair of (P) and (D) have the following data:
m = 3, n = 5, Q(X) = 0n×n , b = [−2, 2,−2]⊤,

A1 =


0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2



A3 =


2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

 , C =


3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

 .
We take X0 = Z0 = I and y0 = [1, 1, 1]⊤as a feasible starting point. Here, we take µ0 = 1, τ = 3 and ϵ = 10−8

with Ψ(X0, Z0;µ0) = 0 ≤ τ . An exact optimal solution for the problem 1, is given by

X∗ =


0.0914 −0.0718 0.0169 0.0649 −0.1583
−0.0718 0.0724 −0.0183 −0.0602 0.1676
0.0169 −0.0183 0.0103 −0.0084 −0.0772
0.0649 −0.0602 −0.0084 0.1481 0.0056
−0.1583 0.1676 −0.0772 0.0056 0.6022

 ,
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Z∗ =


1.4338 0.5754 −0.0295 −0.4043 0.2169
0.5754 1.0965 0.3401 0.2169 −0.1120
−0.0295 0.3401 1.1874 0.2169 0.0478
−0.4043 0.2169 0.2169 0.2831 −0.1415
0.2169 −0.1120 0.0478 −0.1415 0.0957


and y∗ =

[
0.8585 1.0937 0.7831

]⊤, the optimal value of both problems is equal to −1.0957. We summarize
the obtained numerical results in table 2 where the parameters θ and q used in the implementation are as follows:

q ∈ {1, 1.5, 3, log(4
3
(1 + n))}

and
θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

q \ θ 0.1 0.3 0.5 0.7 0.9

1 (Zhang) 20 18 18 17 17
1.5 16 15 15 15 15
log( 43 (1 + n)) 15 15 15 15 15
3 39 46 24 55 17

Table 2. Number of inner iterations for several choices of q and θ.

Problem 2.
Let m = 3, n = 4, Q(X) = X , b = [−2, 2, 0]⊤,

A1 =


0 1 0 0
1 2 0 −1
0 0 −2 −1
0 −1 −1 −2

 , A2 =


0 0 −2 0
0 2 1 2
−2 1 −2 1
0 2 1 2

 , A3 =


2 2 −1 −1
2 0 2 1
−1 2 0 1
−1 1 1 −2

 ,
and

C =


2 3 −3 −1
3 4 3 2
−3 3 −4 1
−1 2 1 −2

 .
We take X0 = Z0 = I and y0 = [1, 1, 1]⊤ as a feasible starting point with Ψ(X0, Z0;µ0) = 0 ≤ τ . An exact
optimal solution for problem 2 is given by

X∗ =


0.0574 −0.0368 −0.0554 −0.0304
−0.0368 0.0648 0.0536 0.1540
−0.0554 0.0536 0.2056 0.1688
−0.0304 0.1540 0.1688 0.4996

 ,

Z∗ =


0.1081 0.1681 0.0311 −0.0557
0.1681 0.2615 0.0483 −0.0867
0.0311 0.0483 0.0089 −0.0160
−0.0557 −0.0867 −0.0160 0.0287

 ,
and

y∗ =
[
0.8458 1.0559 0.9747

]⊤
,

the optimal value of both problems is equal to 0.2101. In this example, we take µ0 = 1,τ = 3 and ϵ =
10−6. Furthermore, the parameters q and θ are taken as follows: q ∈ {1, 1.5, 3, log( 43 (1 + n))} and θ ∈
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{0.1, 0.3, 0.5, 0.7, 0.9}. We summarize the obtained numerical results in table 3.

q \ θ 0.1 0.3 0.5 0.7 0.9

1 (Zhang) 12 12 12 11 11
1.5 11 11 11 11 11
log( 43 (1 + n)) 10 10 10 10 10
3 22 10 10 10 10

Table 3. Number of inner iterations for several choices of q and θ.

Comment. Across the numerical results obtained by the algorithm by using different values of q and θ, the minimal
number of inner iterations is achieved with the value of q = log( 43 (1 + n)).

6. Conclusion

In this paper, we introduced a new kernel function which is a parameterized version of the kernel function
introduced by Zhang and showed that it yields the best known iteration bound for large-update methods for solving
CQSDO. The work was inspired from general primal-dual interior point methods based on kernel functions and
the scheme for analyzing such methods. Finally, we present some numerical results to show the efficiency of these
algorithms and to consolidates our theoretical results under the effect of the parameter q.
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