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Introduction

In this paper, we apply entropy methods to studying sample paths of stochastic processes X(t), t ∈ T , where T
is a parameter set, belonging to Orlicz spaces of random variables. Recall that the entropy approach requires to
evaluate entropy characteristics of the set T with respect to particular metrics generated by the underlying process
X . Then one can express assumptions on X to be sample bounded, or to be sample continuous, or to have other
properties, in terms of the so-called entropy integrals.

The origins of this approach can be traced back to the paper by Dudley [7], where sufficient conditions for
the boundedness of Gaussian processes were based on the corresponding entropy integrals. Ideas from [7] were
extended by Fernique in [9] and Ledoux and Talagrand in [16] using the majorising measures methods. Further
studies by the mentioned authors and numerous other researchers resulted in a rich and well-developed theory
providing tools for bounding Gaussian and related processes and treatment of other properties of their sample
paths. A thorough presentation of these topics can be found, for example, in the classical monographs [1], [8], [17],
[21], [22], see also references therein. We mention also the detailed account of conditions of regularity of sample
paths of Gaussian processes given in [2, Section 3]. The questions of applicability of entropy based methods for
more general classes of processes were treated by Buldygin and Kozachenko [4]. Section 2 in [4] is devoted to
the full investigation of sample paths properties for stochastic processes taking values in Orlicz spaces of random
variables. More specific attention is paid to a subclass of processes from Orlicz spaces of exponential type, which
are called φ-sub-Gaussian processes and go beyond the Gaussian and sub-Gaussian ones.

∗Correspondence to: L. Sakhno (lms@univ.kiev.ua), Department of Probability Theory, Statistics and Actuarial Mathematics, Faculty of
Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01601 Kyiv, Ukraine

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2020 International Academic Press



O. HOPKALO, YU. KOZACHENKO, E. ORSINGHER AND L. SAKHNO 723

In this paper, our interest is focused on the case where the parameter set T is unbounded. We investigate which
conditions are required in order for the process X to be sample bounded and sample continuous. We also obtain
bounds for the distribution of the supremum of such processes. Note that the previous studies in [4, Chapter 3], [5],
[12], [13], [15] considered these questions for processes defined on compact sets.

We cite some publications related to our approach. In [12], [13], the rate of growth of processes from Orlicz
spaces over unbounded domains was studied and applied to wavelet expansions of such processes. Papers [6],
[10] stated results on asymptotic bounds with probability 1 for the rate of growth of Gaussian processes defined on
unbounded domains. These results were applied to problems of statistical estimation of models involving fractional
Brownian motion. In [14] similar results for φ-sub-Gaussian processes were obtained. In [11], the rate of growth
was evaluated for the solutions to higher-order heat-type equations with φ-sub-Gaussian initial conditions.

Our study of conditions for sample boundedness and sample continuity with probability 1 for stochastic
processes is partially motivated by aplications to the study of Cauchy problems for partial differential equations
with random initial conditions. Indeed, suppose we have properties of sample paths with probability 1 for a
stochastic process taken as initial condition. If these properties correspond to those needed in nonrandom case,
then we can apply the standard theory to study solutions of partial differential equations with such random
initial condition. This is one of the possible approaches in the treatment of Cauchy problems with random initial
conditions.

The structure of the paper is as follows. In Section 1 we present basic facts and definitions on Orlicz spaces of
random variables and processes. In Section 2 we review the results on boundedness, continuity and the distribution
of suprema of Orlicz processes defined on compact sets. On the base of the results of Section 2 we obtain the
corresponding results for the processes defined on an unbounded domain in Section 3. Having stated the conditions
of sample boundedness and continuity with probability 1 for Orlicz processes, we can use such processes to
construct the models of processes related to some partial differential equations. Possible applications in this
direction are discussed in Section 4. In Section 5, we present examples of the processes, which satisfy the conditions
of theorems stated in Section 3.

1. Orlicz spaces of random variables and processes. Basic definitions

We present here some basic facts from the theory of Orlicz random variables and processes following the exposition
in book [4, Chapter 2].

Definition 1.1. A continuous symmetric function U = (U(x), x ∈ R), is called a C-function if U(x) is monotone
increasing for x > 0 and U(0) = 0.

Definition 1.2. We say that a C-function U satisfies the g-condition if there exist constants z0 ≥ 0, K > 0, and
A > 0 such that the inequality

U(x)U(y) ≤ AU(Kxy)

holds for all x ≥ z0, y ≥ z0.

Example 1.3. The following functions are C-functions satisfying the g-condition:
1) For a > 0 and α ≥ 1, the function U(x) = a|x|α, x ∈ R, satisfies the g-condition with K = 1, A = a, and z0 = 0;
2) For c > 0, a > 0 and α ≥ 1, the function U(x) = c(exp{a|x|α} − 1), x ∈ R, satisfies the g-condition with
K = 1, A = c, and z0 = 21/α;
3) For c > 0, the function U(x) = c(exp{ϕ(x)} − 1), x ∈ R, where ϕ(x), x ∈ R, is an arbitrary C-function, satisfies
the g-condition with K = 1, A = c2, and z0 = 2.

Definition 1.4. Let (Ω,F, P ) be a probability space, U be an arbitrary C-function. The Orlicz space of random
variables LU (Ω) is defined as the family of random variables where for each ξ ∈ LU (Ω) there exists a constant
rξ > 0 such that

EU
( ξ

rξ

)
< ∞.
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The Orlicz space LU (Ω) is a Banach space with the norm

∥ξ∥U = inf

{
r > 0 : EU

(ξ
r

)
≤ 1

}
which is called the Luxemburg norm.

Example 1.5. Suppose that U(x) = |x|p, x ∈ R, p ≥ 1. Then LU (Ω) is the space Lp(Ω), and the Luxemburg norm
∥ξ∥U coincides with the norm ∥ξ∥p = [E|ξ|p]1/p.

The most useful property of Orlicz random variables is the estimate for their tail probabilities stated in the next
lemma (see, [4, Lemma 2.3.1]).

Lemma 1.6. Assume that U is an arbitrary C-function and take ξ ∈ LU (Ω) satisfying ∥ξ∥U ̸= 0. Then for all x > 0

P{|ξ| > x} ≤
(
U
( x

∥ξ∥U

))−1

.

Note: Here and in what follows we write (U(·))−1 for 1
U(·) , and the notation U (−1)(·) stands for the inverse function

to U(·).

Definition 1.7. A stochastic process X(t), t ∈ T , is called an Orlicz process belonging to the space LU (Ω) if, for
all t ∈ T , the random variables X(t) belong to LU (Ω).

The following notion is important for studying properties of sample paths of Orlicz processes.

Definition 1.8. A monotone non decreasing sequence of positive numbers (χU (n), n ∈ N) is called the M -
characteristic (majorant characteristic) of an Orlicz space if for any n ∈ N and ξk ∈ LU (Ω), k = 1, . . . , n, the
following inequality holds: ∥∥∥∥ max

1≤k≤n
|ξk|
∥∥∥∥
U

≤ χU (n) max
1≤k≤n

∥ξk∥U .

Definition 1.8 enables us to control an Orlicz norm of the maximum of a family of random variables belonging to
an Orlicz space by means of the M -characteristic of this space and using information (for example, upper bounds)
on individual Orlicz norms of the members of this family of random variables.

For a function U satisfying the g-condition, Lemma 1.9 expresses the M -characteristic of the space LU (Ω) in a
form that is convenient for applications.

Lemma 1.9. Assume that a function U satisfies the g-condition and U (−1) is the inverse function to U . Take z0 ≥ 0,
A > 0 and K > 0 appearing in Definition 1.2. Set

CU = K(1 + U(z0)max(1, A)). (1.1)

and define a sequence (χU (n), n ∈ N) in the following way:

χU (n) =

{
CU U (−1)(n), if n > U(z0);
n, if n ≤ U(z0)

Then (χU (n), n ∈ N) is the M -characteristic of the space LU (Ω).

As we can see, for a function U satisfying the g-condition, the Orlicz norm of the maximum of n variables
behaves as U (−1)(n), n ∈ N.

Example 1.10. If U(x) = |x|p, x ∈ R, for some p ≥ 1, then χU (n) = n1/p, n ∈ N.
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2. Sample paths properties of Orlicz processes defined on a compact

In this section, we review some results for Orlicz processes which will be used to state the results in Section 3.
Let X = {X(t); t ∈ T} be an Orlicz stochastic process, (T, ρ) be a metric (pseudometric) space. Recall that a

function ρ : T × T → [0,∞) is a pseudometric on T if it satisfies all properties of a metric but with one exception:
if ρ(t, s) = 0, then not necessarily t = s.

Let N(u) = Nρ(T, u), u > 0, be the metric massiveness of the set T with respect to the pseudometric ρ, that is,
the smallest number of closed balls of a radius at most equal to u necessary to cover T .

The notions of the metric massiveness N(u), u > 0, or the metric entropy H(u) := lnN(u), u > 0, are useful
for describing the properties of sample paths of the process X .

Entropy methods enable us to study whether a process belonging to an Orlicz space LU (Ω) is sample bounded
and sample continuous. The distribution of the supremum of a process in this space can be expressed in terms of
the so-called entropy integrals involving the metric massiveness N and the M -characteristic χU of the underlying
Orlicz space.

The most general bound for the norm of the supremum of a process belonging to an Orlicz space LU (Ω), which
entails also an estimate for the distribution of the supremum itself, was stated in book [4, Theorem 3.3.2]. In [12]
this result was specified under an additional condition on the process increments.

Theorem 2.1 ([12], Theorem 2.2). Let (T, ρ) be a compact metric (pseudometric) space and denote by N the metric
massiveness of (T, ρ). Let X = {X(t); t ∈ T} be a separable stochastic process from an Orlicz space LU (Ω) and

sup
ρ(t,s)≤h

∥X(t)−X(s)∥U ≤ σ(h), (2.1)

where σ = {σ(h), 0 ≤ h ≤ supt,s∈T ρ(t, s)} is a monotonically increasing continuous function and σ(0) = 0.
Suppose that for some ε > 0 ∫ ε

0

χU (N(σ(−1)(u)))du < ∞, (2.2)

where the function σ(−1)(u) is the inverse of the function σ(u), (χU (n), n ∈ N) is the M-characteristic of the space
LU (Ω). Then with probability 1 the random variable supt∈T |X(t)| belongs to the space LU (Ω), and∥∥∥∥sup

t∈T
|X(t)|

∥∥∥∥
U

≤ ∥X(t0)∥U +
1

θ(1− θ)

∫ ω0θ

0

χU (N(σ(−1)(u)))du =: B(t0),

where t0 ∈ T is an arbitrary point, ω0 = σ(supt∈T ρ(t0, t)), 0 < θ < 1.
In addition, for any ε > 0 the following inequality holds:

P{sup
t∈T

|X(t)| > ε} ≤
(
U
( ε

B(t0)

))−1

.

The next theorem is a variant of a general result stated in [4, Theorem 3.5.2].

Theorem 2.2 ([12], Theorem 2.3). Let (T, ρ) be a compact metric (pseudometric) space and let X be a separable
stochastic process belonging to an Orlicz space LU (Ω). Suppose that the assumptions in Theorem 2.1 hold. Then
we have

lim
h→0

∥∥∥∥∥ sup
ρ(t,s)≤h

|X(t)−X(s)|

∥∥∥∥∥
U

= 0,

and the process X is sample continuous on (T, ρ) with probability 1.

Introducing the additional assumption on the function U , the above theorems can be reformulated in the form,
which is more convenient for applications.
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Theorem 2.3. Let (T, ρ) be a compact metric (pseudometric) space, N be the metric massiveness of (T, ρ). Let
X = {X(t); t ∈ T} be a separable stochastic process from an Orlicz space LU (Ω) with a function U satisfying the
g-condition, and

sup
ρ(t,s)≤h

∥X(t)−X(s)∥U ≤ σ(h), (2.3)

where σ = {σ(h), 0 ≤ h ≤ supt,s∈T ρ(t, s)} is a monotonically increasing continuous function and σ(0) = 0.
Suppose that for some ε > 0 ∫ ε

0

U (−1)(N(σ(−1)(u)))du < ∞ . (2.4)

Then with probability 1 the random variable supt∈T |X(t)| belongs to the space LU (Ω), and∥∥∥∥sup
t∈T

|X(t)|
∥∥∥∥
U

≤ ∥X(t0)∥U +
CU

θ(1− θ)

∫ ω0θ

0

U (−1)
(
N(σ(−1)(u))

)
du =: D(t0), (2.5)

where t0 ∈ T is an arbitrary point, ω0 = σ(supt∈T ρ(t0, t)), CU is given by (1.1), θ is an arbitrary point such that
0 < θ < min(1, θ̂) for θ̂ = sup{θ > 0 : N(σ(−1)(ω0θ)) ≥ U(z0)}.

In addition, for any ε > 0 the following inequality holds:

P{sup
t∈T

|X(t)| > ε} ≤
(
U
( ε

D(t0)

))−1

, (2.6)

and the process X is sample continuous on (T, ρ) with probability 1.

Proof
The theorem follows from Theorems 2.1 and 2.2. A variant of this theorem was given in [15, Theorem 3.4]. The
restriction on θ can be deduced from the expression for χU . Indeed, in our case we have χU (n) = CU U (−1)(n) for
n > U(z0) (Lemma 1.9) and

χU (N(σ(−1)(u)) = CU U (−1)(N(σ(−1)(u))

for N(σ(−1)(u) ≥ U(z0), and since 0 < u < θω0, we obtain that θ should be such that

N(σ(−1)(θω0) ≥ U(z0). (2.7)

The fact that X is sample continuous follows from Theorem 2.2.

Consider now the space Rn with the metric

ρ̂(t̄, s̄) = max
i=1,n

|ti − si|, t̄ = (t1, . . . , tn), s̄ = (s1, . . . , sn), (2.8)

and the compact set T̂ = (ai ≤ ti ≤ bi, i = 1, n), for some ā, b̄ ∈ Rn, ai < bi, i = 1, . . . , n.
For the metric massiveness N of the set T̂ with respect to metric ρ̂, the following inequality holds:

n∏
i=1

(
bi − ai
2u

)
≤ N(u) ≤

n∏
i=1

(
bi − ai
2u

+ 1

)
, u > 0, (2.9)

and inequality (2.7) will be true if
n∏

i=1

(
bi − ai

2σ(−1)(θω0)

)
≥ U(z0).

Hence, we have the following result as a corollary of Theorem 2.3.
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Theorem 2.4. Let T̂ = (ai ≤ ti ≤ bi, i = 1, n) with metric ρ̂(t̄, s̄) defined by (2.8), X = (X(t̄), t̄ ∈ T̂ ) be a
separable stochastic process from an Orlicz space LU (Ω) with a function U(x) satisfying the g-condition, and

sup
ρ̂(t̄,s̄)≤h

∥X(t̄)−X(s̄)∥ ≤ σ(h), (2.10)

where σ = {σ(h), 0 ≤ h ≤ supt̄,s̄∈T̂ ρ̂(t̄, s̄)} is a monotonically increasing continuous function and σ(0) = 0.
Suppose that for some ε > 0 ∫ ε

0

U (−1)

( n∏
i=1

(
bi − ai

2σ(−1)(u)
+ 1

))
du < ∞. (2.11)

Then with probability 1 the random variable supt̄∈T̂ |X(t̄)| belongs to the space LU (Ω), and∥∥∥∥∥sup
t̄∈T̂

|X(t̄)|

∥∥∥∥∥
U

≤ ∥X(t̄0)∥U +
CU

θ(1− θ)

∫ ω̂0θ

0

U (−1)

( n∏
i=1

(
bi − ai

2σ(−1)(u)
+ 1

))
du =: R(t̄0), (2.12)

where t̄0 ∈ T̂ is an arbitrary point, ω̂0 = σ
(
supt̄∈T̂ ρ̂(t̄0, t̄)

)
, CU is given by (1.1), θ is an arbitrary point such that

0 < θ < min
(
1,

1

ω̂0
σ
(1
2

(∏n
i=1(bi − ai)

U(z0)

)1/n))
.

In addition, for any ε > 0 the following inequality holds:

P
{
sup
t̄∈T̂

|X(t̄)| > ε
}
≤
(
U
( ε

R(t̄0)

))−1

. (2.13)

and the process X is sample continuous on (T̂ , ρ̂) with probability 1.

3. Orlicz processes defined on non-compact metric spaces

In this section we consider the case of a space (T, ρ), where T is not compact, but is σ-compact, that is, T can
be represented as a countable union of compact subsets. As we have seen in the previous section, to state the
boundedness and continuity of Orlicz processes on compact sets we can apply the same conditions formulated
in terms of entropy integrals. For non-compact sets the situation is different. The study of continuity is a simpler
task: if T is a σ-compact, then almost sure continuity of the process on compact subsets of T (which holds under
finiteness of corresponding entropy integrals on these subsets) will entail almost sure continuity on the whole T
(see, e.g., [3, Section 1.3]). But the same arguments do not hold, if we want to state the boundedness of a process,
and some additional assumptions are needed. One possible way to solve this problem is presented in the next
theorem.

Theorem 3.1. Let (T, ρ) be a non-compact metric space and there exist compact sets (Tk, ρ), k ∈ Z, such that
(T, ρ) =

∪
k∈Z(Tk, ρ). Let Nρ(Tk, u), u > 0, be the metric massiveness of the compact set Tk with respect to the

pseudometric ρ, (χU (n), n ∈ N) be the M-characteristic of the Orlicz space LU (Ω). Suppose that X = {X(t); t ∈
T} is a separable stochastic process from an Orlicz space LU (Ω) and there exist monotonically increasing
continuous functions σk = {σk(h), 0 ≤ h ≤ maxt,s∈Tk

ρ(t, s)}, k ∈ Z, such that σk(0) = 0 and

sup
ρ(t,s)≤h, t,s∈Tk

∥X(t)−X(s)∥U ≤ σk(h). (3.1)

Suppose that for some ε > 0, for all k ∈ Z∫ ε

0

χU (Nρ(Tk, σ
(−1)
k (u)))du < ∞. (3.2)
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Let

Bt0k = ∥X(t0k)∥U +
1

θ(1− θ)

∫ ω0kθ

0

χU (Nρ(Tk, σ
(−1)
k (u)))du, (3.3)

where t0k ∈ Tk, ω0k = σk(supt∈Tk
ρ(t0k, t)), 0 < θ < 1. If for some t0k and 0 < θ < 1, for all ε > 0 the series

∑
k∈Z

(
U

(
ε

Bt0k

))−1

(3.4)

is convergent, then

P{sup
t∈T

|X(t)| > ε} ≤
∑
k∈Z

(
U

(
ε

B(t0k)

))−1

(3.5)

and with probability 1
sup
t∈T

|X(t)| < ∞,

and the process X is almost surely sample continuous on (T, ρ).

Proof
The proof of the theorem follows from Theorem 2.1 and from the fact, that for ε > 0

P{sup
t∈T

|X(t)| > ε} ≤
∑
k∈Z

P{ sup
t∈Tk

|X(t)| > ε}. (3.6)

Convergence of the series in the right hand side of (3.6) for all ε > 0 implies the boundedness of the process X on
T with probability 1.

Similarly, from Theorems 2.3 and 2.4 the next two theorems follow.

Theorem 3.2. Let (T, ρ) be a non-compact metric space, X = {X(t); t ∈ T} be a separable stochastic process
from an Orlicz space LU (Ω) with a function U satisfying the g-condition. Suppose that there exist compact sets
(Tk, ρ), k ∈ Z, such that (T, ρ) =

∪
k∈Z(Tk, ρ). Let Nρ(Tk, u), u > 0 be the metric massiveness of the compact

set Tk with respect to the pseudometric ρ. Suppose that there exist monotonically increasing continuous functions
σk = {σk(h), 0 ≤ h ≤ maxt,s∈Tk

ρ(t, s)}, k ∈ Z, such that σk(0) = 0 and

sup
ρ(t,s)≤h, t,s∈Tk

∥X(t)−X(s)∥U ≤ σk(h). (3.7)

Suppose that for some ε > 0, for all k ∈ Z∫ ε

0

U (−1)(Nρ(Tk, σ
(−1)
k (u)))du < ∞. (3.8)

Define for each k ∈ Z

D(t0k) = ∥X(t0k)∥U +
CU

θ(1− θ)

∫ ω0kθ

0

U (−1)
(
Nρ(Tk, σ

(−1)
k (u))

)
du, (3.9)

where t0k ∈ Tk, ω0k = σk(supt∈Tk
ρ(t0k, t)), CU is given by (1.1), θ is an arbitrary point such that 0 < θ <

min(1; θ̂k) for θ̂k = sup{θ > 0 : Nρ(Tk, σ
(−1)
k (ω0kθ)) ≥ U(z0)}.

If for some t0k and θ such that 0 < θ < mink∈Z(1, θ̂k), and for all ε > 0 the series

∑
k∈Z

(
U

(
ε

Dt0k

))−1

(3.10)
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is convergent, then

P{sup
t∈T

|X(t)| > ε} ≤
∑
k∈Z

(
U(

ε

D(t0k)
)

)−1

,

and with probability 1
sup
t∈T

|X(t)| < ∞,

and the process X is almost surely sample continuous on (T, ρ).

Corollary 3.3. Let under the conditions of Theorem 3.2, σk(h) = Z(Tk)σ(h), h ≥ 0, where Z(Tk) > 0, k ∈ Z, are
some constants depending only on Tk. Then we can replace the condition (3.8) by the following one:

Ik(ε) =

∫ ε

0

U (−1)(Nρ(Tk, σ
(−1)(u)))du < ∞,

and the expression for D(t0k) takes the form

D(t0k) = ∥X(t0k)∥U +
CU

θ(1− θ)
Z(Tk)Ik(ω0kθ), (3.11)

where ω0k = σ(supt∈Tk
ρ(t0k, t)), and θ is an arbitrary point such that 0 < θ < min(1, θ̂) with θ̂ = sup{θ > 0 :

Nρ(Tk, Z(Tk)σ
(−1)(ω0kθ)) ≥ U(z0)}.

If the series (3.10) with D(t0k) given by (3.11) is convergent, then the statements of Theorem 3.2 hold true.

Proof
Indeed, since σ

(−1)
k (u) = σ(−1)( u

Z(Tk)
), we obtain∫ ε

0

U (−1)(Nρ(Tk, σ
(−1)
k (u)))du = Z(Tk)

∫ ε/Z(Tk)

0

U (−1)(Nρ(Tk, σ
(−1)(u)))du < ∞,

and the expression for D(t0k) should be modified correspondingly.

We now specify the general results for the particular case of the space Rn, which will be convenient for
applications.

Theorem 3.4. Let X = {X(t̄); t̄ ∈ Rn} be a separable stochastic process belonging to an Orlicz space LU (Ω),
with the function U(x) satisfying the g-condition. Let T̂k, k ∈ Z, be of the form T̂k = {ak,i ≤ ti ≤ ak+1,i, i = 1, n},
for ak,i ∈ R, ak,i < ak+1,i, k ∈ Z, i = 1, n, and such that Rn =

∪
k∈Z T̂k. Choose on Rn the metric ρ̂(t̄, s̄) =

maxi=1,...,n |ti − si|, where t̄ = (t1, . . . , tn), s̄ = (s1, . . . , sn).
Suppose that there exist monotonically increasing continuous functions
σk = {σk(h), 0 ≤ h ≤ maxt̄,s̄∈B̂k

ρ(t̄, s̄)}, σk(0) = 0, such that for all k ∈ Z

sup
ρ(t̄,s̄)≤h,t̄,s̄∈T̂k

∥X(t̄)−X(s̄)∥U ≤ σk(h). (3.12)

Suppose that for some ε > 0 , for all k ∈ Z∫ ε

0

U (−1)

(
n∏

i=1

(
ak+1,i − ak,i

2σ
(−1)
k (u)

+ 1

))
du < ∞. (3.13)

Let

R(t̄0k) = ∥X(t̄0k)∥U +
1

θ(1− θ)

∫ ω0kθ

0

U (−1)

(
n∏

i=1

(
ak+1,i − ak,i

2σ
(−1)
k (u)

+ 1

))
du,
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where t̄0k ∈ T̂k is an arbitrary point, ω0k = σk(supt̄∈T̂k
ρ(t̄0k, t̄)), θ is an arbitrary point such that 0 < θ < 1.

If for some t̄0k, θ, such that 0 < θ < 1, and ε > 0 the series

∑
k∈Z

(
U

(
ε

R(t̄0k)

))−1

(3.14)

is convergent, then

P{ sup
t̄∈Rn

|X(t̄)| > ε} ≤
∑
k∈Z

(
U(

ε

R(t̄0k)
)

)−1

,

with probability 1
sup
t̄∈Rn

|X(t̄)| < ∞,

and the process X is almost surely sample continuous on Rn.

We state now the corollary from the above theorem for the processes from the space Lp(Ω), p ≥ 1, which is the
Orlicz space LU (Ω) with U(x) = |x|p, x ∈ R, p ≥ 1. This theorem will be used to construct examples in Section
5. In this case the conditions appear in the form, which is convenient for calculations.

Theorem 3.5. Let X = {X(t̄); t̄ ∈ Rn} be a separable stochastic process from the space Lp(Ω), p ≥ 1. Let B̂k, k ∈
Z, be sets of the form B̂k = {ak,i ≤ ti ≤ ak+1,i, i = 1, . . . , n} for ak,i ∈ R, ak,i < ak+1,i, k ∈ Z, i = 1, n, and
such that Rn =

∪
k∈Z B̂k. Let the metric be defined as ρ̂(t̄, s̄) = maxi=1,...,n |ti − si|, where t̄ = (t1, . . . , tn), s̄ =

(s1, . . . , sn).
Suppose that there exist monotonically increasing continuous functions
σk = {σk(h), 0 ≤ h ≤ maxt̄,s̄∈B̂k

ρ(t̄, s̄)}, σk(0) = 0 , such that on each set B̂k

sup
ρ(t̄,s̄)≤h,t̄,s̄∈B̂k

∥X(t̄)−X(s̄)∥Lp(Ω) = sup
ρ(t̄,s̄)≤h,t̄,s̄∈B̂k

(E|X(t̄)−X(s̄)|p)
1
p ≤ σk(h). (3.15)

Suppose that for some ε > 0 , for all k ∈ Z

∫ ε

0

∣∣∣∣∣
n∏

i=1

(
(ak+1,i − ak,i)

2σ
(−1)
k (u)

+ 1

)∣∣∣∣∣
1/p

du < ∞. (3.16)

Let

R(t̄0k) = (E|X(t̄0k)|p)1/p +
1

θ(1− θ)

∫ ω0kθ

0

∣∣∣∣∣
n∏

i=1

(
(ak+1,i − ak,i)

2σ
(−1)
k (u)

+ 1

)∣∣∣∣∣
1/p

du,

where t̄0k ∈ B̂k is an arbitrary point, ω0k = σk(supt̄∈B̂k
ρ(t̄0k, t̄)), θ is an arbitrary point, 0 < θ < 1.

If for some t̄0k, for every θ such that 0 < θ < 1, and ε > 0 the series∑
k∈Z

(R(t̄0k))
p (3.17)

is convergent, then

P{ sup
t̄∈Rn

|X(t̄)| > ε} ≤ 1

εp

∑
k∈Z

(R(t̄0k))
p
,

with probability 1
sup
t̄∈Rn

|X(t̄)| < ∞,

and the process X is almost surely sample continuous.
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Corollary 3.6. Let under the conditions of Theorem 3.5, σk(h) = r(B̂k)σ(h), h ≥ 0, where r(B̂k) ≥ 0, k ∈ Z, are
some constants depending only on B̂k. Then we can replace the condition (3.16) in Theorem 3.5 by the following
one:

Ik(ε) :=

∫ ε

0

∣∣∣∣∣
n∏

i=1

(
(ak+1,i − ak,i)

2σ
(−1)
k (u)

+ 1

)∣∣∣∣∣
1/p

du < ∞,

and the expression for R(t̄0k) takes the form

R(t̄0k) = (E|X(t̄0k)|p)1/p +
r(B̂k)

θ(1− θ)
Ik(ω0kθ), (3.18)

where t̄0k ∈ B̂k is an arbitrary point, ω0k = σ(supt̄∈B̂k
ρ(t̄0k, t̄)), θ is an arbitrary point, 0 < θ < 1. If the series

(3.17) with R(t̄0k) given by (3.18) is convergent, then the statements of Theorem 3.5 hold true.

In Section 5 we present examples of the processes for which conditions of the above theorems are satisfied.

4. Applications to solutions of Cauchy problems for partial differential equations with random initial
conditions

In this section we discuss some applications of the results of Section 3.
Let ξ(x), x ∈ Rn, be a sample bounded and sample continuous process with probability 1. In particular, we

assume that ξ is a process belonging to an Orlicz space LU (Ω) for which the conditions of Theorem 3.4 hold.
Consider the stochastic process u(t, x), t ≥ 0, x ∈ Rn, defined by the following integral

u(t, x) =

∫
Rn

p(t, y − x)ξ(y)dy, (4.19)

u(0, x) = ξ(x), (4.20)

where the kernel p(t, x), t > 0, x ∈ Rn, satisfies the conditions:
1) p(t, x) ≥ 0, t > 0, x ∈ Rn;
2) for all t > 0 ∫

Rn

p(t, x)dx = 1;

3) for any bounded continuous function f(x), x ∈ Rn,

lim
t→+0

∫
Rn

p(t, y − x)f(y)dy = f(x).

Theorems 3.4 and 3.5 give us the instruments to check whether a process ξ from an Orlicz space LU (Ω) is
sample bounded and sample continuous. Therefore, basing on such ξ, the processes introduced by (4.19)-(4.20)
will be well defined, and, moreover, their suprema can be estimated.

We get the following simple result.

Lemma 4.1. Let ξ(x), x ∈ Rn, be an almost surely sample bounded and sample continuous process, and let the
process u(t, x), t ≥ 0, x ∈ Rn, be defined by (4.19)-(4.20). Then with probability 1 the process u(t, x) is bounded
and

|u(t, x)| ≤ sup
x∈Rn

|ξ(x)|, sup
t≥0, x∈Rn

|u(t, x)| = sup
x∈Rn

|ξ(x)|. (4.21)

Proof
From the equality u(0, x) = ξ(x) we have immediately that

sup
x∈Rn

|u(0, x)| = sup
x∈Rn

|ξ(x)|. (4.22)
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On the other hand, in view of properties of the process ξ and the kernel function, we have for t > 0, x ∈ Rn

|u(t, x)| ≤
∫
Rn

|ξ(v)|p(t, v − x)dv ≤ sup
v∈Rn

|ξ(v)|
∫
Rn

p(t, v − x)dv = sup
v∈Rn

|ξ(v)|,

therefore,
sup

t>0, x∈Rn

|u(t, x)| ≤ sup
x∈Rn

|ξ(x)|. (4.23)

The relations (4.22) and (4.23) imply the second equality in (4.21).

With a particular choice of the kernel p, the formulas (4.19)-(4.20) give a (space-time) process defined on
{(t, x) : t ≥ 0, x ∈ Rn}, n ≥ 1, which can be treated as a solution to a Cauchy problem for a partial differential
equation with the random initial condition given by ξ. If the sample paths of the process ξ have properties with
probability 1, which coincide with those needed in the nonrandom case, then one can apply the standard results of
theory of partial differential equations. We present below some examples of such kernels.

Let p in (4.19) be the (multidimensional) heat kernel:

p(t, x) =
1

(2a
√
πt)n

exp

{
− |x|2

4a2t

}
, t > 0, x ∈ Rn.

Consider the Cauchy problem for the heat equation{
ut(t;x) = a∆u(t;x), t > 0, x ∈ Rn, a > 0
u(0;x) = f(x), x ∈ Rn.

(4.24)

where the function f is continuous and bounded on Rn.
We have the following classical result (see, for example, [23]).

Theorem 4.2. If the function f is continuous and bounded on Rn, then the Cauchy problem (4.24) has a unique
solution in the class of continuous and bounded functions, which is given by the formula

u(t, x) =

∫
Rn

f(v)
1

(2a
√
πt)n

exp

{
−|v − x|2

4a2t

}
dv, t > 0, x ∈ Rn, (4.25)

and for each x0 ∈ Rn lim
t→0,x→x0

u(t, x) = f(x0).

Note that in the literature the formula (4.25) is sometimes called the Poisson formula.
As a consequence, for the case of random initial condition we can state the next theorem.

Theorem 4.3. Let ξ = {ξ(x);x ∈ Rn} be an almost surely sample bounded and sample continuous process. Then
with probability 1 the process

u(t, x) =

∫
Rn

ξ(v)
1

(2a
√
πt)n

exp

{
−|v − x|2

4a2t

}
dv, t > 0, x ∈ Rn, (4.26)

is a bounded and continuous solution to the Cauchy problem (4.24)with the random initial condition u(0, x) =
ξ(x), x ∈ Rn.

From Theorem 4.3 and Lemma 4.1 we obtain the following theorem.

Theorem 4.4. Consider the Cauchy problem (4.24) with the random initial condition u(0, x) = ξ(x), x ∈ Rn,
where ξ is a stochastic process belonging to an Orlicz space LU (Ω) and satisfying the conditions of Theorem 3.4
(or Theorem 3.5, that is, U(x) = |x|p, x ∈ R, p ≥ 1). Then with probability 1, there exists the solution u(t, x) of the
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Cauchy problem (4.24), given by the formula (4.26), such that supt≥0,x∈R |u(t, x)| < ∞ with probability 1, and

P{ sup
t≥0,x∈R

|u(t, x)| > ε} ≤
∑
k∈Z

Zk(ε),

where Zk(ε) =
(
U( ε

R(t̄0k)
)
)−1

,as defined in (3.14) (or Zk(ε) =
(

R(t̄0k)
ε

)p
,as defined in (3.17), for the case

U(x) = |x|p, x ∈ R, p ≥ 1).

We should note that, in fact, due to the particular “good” properties of the heat kernel, the properties of the
solution to the Cauchy problem (4.24) can also be analyzed under the weaker conditions on the stochastic process
ξ, but we will not go further in this direction here.

Next we can consider kernels p coming from equations with fractional derivatives.
Consider the following fractional equation

∂νu

∂tν
= λ2 ∂

2u

∂x2
, x ∈ R, t > 0, 0 < ν ≤ 2, (4.27)

where the fractional derivative ∂νu
∂tν is understood in the Caputo sense. This equation is called the fractional diffusion

equation. For ν = 1 it reduces to the heat equation.
The fundamental solution to (4.27), with 0 < ν ≤ 1 and u(0, x) = δ(x) is given by (see, for example, [20]):

p(t, x) =
1

2λtν/2
W− ν

2 ,1−
ν
2

(
− |x|
λtν/2

)
, t > 0, x ∈ R,

where Wα,β is the Wright function

Wα,β =

∞∑
k=0

xk

k!Γ(αk + β)
, α > −1, β > 0, x ∈ R.

For ν = 1
2 the solution is

p1/2(t, x) =

∫ ∞

0

e−
x2

2s

√
2πs

e−
s2

2t

√
2πt

ds, (4.28)

which coincides with the probability density function of the composition of two independent Brownian motions
B1(|B2(t)|), t > 0 (see, [18]).

It was shown in [19] that for ν = 1
2n the solution to (4.27) for λ2 = 21/2

n−2 gives the probability density function
of the iterated process B1(|B2(|B3(· · · (|Bn+1(t)| · · · )|)|), t > 0, with Bj’s being independent Brownian motions,
and this solution is of the following form:

p1/2n(t, x) =

∫ ∞

0

· · ·
∫ ∞

0

e−
x2

2z1

√
2πz1

e−
z21
2z2

√
2πz2

· · · e
− z2n

2t

√
2πt

dz1 · · · dzn. (4.29)

We mention just one more interesting density function

pd(t, x1, x2, . . . , xd) = 2

∫ ∞

0

e−
w2

16λ4t√
2π(8λ4t)

d∏
k=1

e−
x2
k

2w

√
2πw

dw, (4.30)

which is the probability density function of the vector process (B1(|B(t)|), . . . , Bd(|B(t)|))′, and represents a
solution to the fractional equation

∂
1
2u

∂t
1
2

= λ2
d∑

j=1

∂2u

∂x2
j

, xj ∈ R, j = 1, ..., d, t > 0 (4.31)
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(see [19]).
One can observe the clear connection of the solutions (4.28)–(4.30) presented above with the Gaussian densities

giving the heat kernel for the case of non-fractional equation. Note that for the cases ν = 1
3 and ν = 2

3 situation is
different, and solutions to (4.27) are represented by means of the Airy functions.

By using (4.28), (4.29) or (4.30) as kernels in the integral (4.19) we obtain the models of processes, which can
be treated as solutions to equation (4.27) with ν = 1/2, ν = 1/(2n) or equation (4.31) correspondingly, with the
random initial condition given by an almost surely bounded and continuous process ξ.

In all the above situations, if we take as initial condition a stochastic process ξ from an Orlicz space LU (Ω), which
satisfies the conditions of Theorem 3.4 (or Theorem 3.5), then the corresponding process u, which represents the
solution, is bounded and the distribution of its supremum coincides with that of ξ, and therefore, can be estimated
by the expressions given in Theorem 3.4 (or in Theorem 3.5).

5. Examples

We present now several examples of processes satisfying the conditions of Theorem 3.5 and Corollary 3.6.

Example 5.1. Let X(t) = c(t)
∑∞

m=1 ξmϕm(t), t ∈ R, where ξm ∈ Lp(Ω), p ≥ 1, m ∈ N, are independent random
variables. Let Bk = [ak, ak+1], k ∈ Z, R =

∪
k∈Z Bk and functions (c(t), t ∈ R) and (ϕm(t), t ∈ R), m ≥ 1, satisfy

the following assumptions:
c(t) > 0, t ≥ 0, is a monotone function, c(t) = c(−t) and for k ∈ Z:

sup
t∈Bk

|c(t)| ≤ fk,

sup
t,s∈Bk,
|t−s|≤h

|c(t)− c(s)| ≤ Zkσ(h), h ≥ 0,

sup
t∈Bk

|ϕm(t)| ≤ dm,

sup
t,s∈Bk,
|t−s|≤h

|ϕm(t)− ϕm(s)| ≤ rmσ(h),m ≥ 1, h ≥ 0,

where (σ(h), h ≥ 0) is a monotonically increasing continuous function such that σ(0) = 0, (rm,m ∈ N), (dm,m ∈
N), (Zk, k ∈ Z) are some numerical sequences.

We have

sup
t∈Bk

∥X(t)∥p ≤ sup
t∈Bk

{
|c(t)|

∞∑
m=1

∥ξm∥p|ϕm(t)|
}
≤ fk

∞∑
m=1

∥ξm∥pdm = fkA1, (5.32)

where A1 =
∑∞

m=1 ∥ξm∥pdm.
Suppose that A1 < ∞. Then supt∈Bk

∥X(t)∥p ≤ fkA1 < ∞.
Next we evaluate the norm of the increments:

∥X(t)−X(s)∥p =
∥∥∥ ∞∑
m=1

ξm

(
c(t)ϕm(t)− c(s)ϕm(s)

)∥∥∥
p

≤
∞∑

m=1

∥ξm∥p
(
|c(t)||ϕm(t)− ϕm(s)|

)
+

∞∑
m=1

∥ξm∥p
(
|ϕm(s)∥c(t)− c(s)|

)
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and

sup
|t−s|≤h,t,s∈Bk

∥X(t)−X(s)∥p ≤
∞∑

m=1

∥ξm∥p [rmσ(h)fk + dmZkσ(h)] =

= σ(h)

[
fk

∞∑
m=1

∥ξm∥prm + Zk

∞∑
m=1

∥ξm∥pdm

]
≤ σ(h) [fkA2 + ZkA1] ,

where we suppose that A2 =
∑∞

m=1 ∥ξm∥prm < ∞. Therefore, in the conditions of Corollary 3.6, r(Bk) =
fkA2 + ZkA1.

Let for all ε > 0: ∫ ε

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/p du < ∞, (5.33)

then ∫ σ(supt∈Bk
|t0k−t|)

0

∣∣∣∣ak+1 − ak
2σ(−1)(u)

+ 1

∣∣∣∣1/p du
≤ max(|ak+1 − ak|, 1)

∫ σ(|ak+1−ak|)

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/p du. (5.34)

From (5.32) and (5.34) we obtain

R(t0k) ≤ A1fk +
fkA2 + ZkA1

θ(1− θ)
max(|ak+1 − ak|, 1)

∫ σ(|ak+1−ak|)

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/p du =: Rk. (5.35)

If ∑
k∈Z

Rp
k < ∞, (5.36)

then
P{sup

t∈R
|X(t)| > ε} ≤ 1

εp

∑
k∈Z

Rp
k. (5.37)

and the process X is almost surely sample bounded and continuous on R.

Example 5.2. Let in the conditions of Example 5.1, assume ϕm(t) = sinλmt, where 0 < λ1 < λ2 . . . , λm → ∞,
m → ∞.

Then |ϕm(t)| ≤ 1 = dm, and we suppose A1 =
∑∞

m=1 ∥ξm∥p < ∞.
We have:

|ϕm(t)− ϕm(s)| = | sinλmt− sinλms| ≤ 2
∣∣∣ sin λmt− λms

2

∣∣∣,
and by taking into account that | sinx| ≤ |x|α for 0 < α ≤ 1, we obtain that

2
∣∣∣ sin λmt− λms

2

∣∣∣ ≤ λα
m21−α|t− s|α.

Therefore, in the conditions of Example 5.1, rm = 21−αλα
m, σ(h) = hα, A2 = 21−α

∑∞
m=1 ∥ξm∥pλα

m,
and we suppose that A2 < ∞.
Now let a0 = 0, a1 = 1, a−k = −ak, and 0 < ak+1 − ak ≤ 1, k > 0, Bk = [ak, ak+1], k ∈ Z, and R =

∪
k∈Z Bk.

Let c(t) > 0, c(−t) = c(t), t ∈ R, and

c(t) =

{
1
tβ
, t > 1, β > 1,

1, 0 ≤ t ≤ 1.
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Then supt∈Bk
c(t) = 1

aβ
k

= fk, k > 0. Since σ(−1)(u) = u1/α, h ≥ 0, then we obtain∫ ε

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/p du =

∫ ε

0

∣∣∣∣ 1

2u1/α
+ 1

∣∣∣∣1/p du
≤
∫ ε

0

1

21/pu1/pα
du+ ε =

1

21/p
ε1−

1
pα

1− 1
pα

+ ε,

for 1
pα < 1, that is, for α > 1

p . We can evaluate∫ σ(ak+1−ak)

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/p du ≤ 1

21/p
(ak+1 − ak)

α− 1
p (1− 1

pα
)−1 + (ak+1 − ak)

α

≤ 1

21/p

(
1− 1

pα

)−1

+ 1.

Next, for 1 < t < s, k > 1, we obtain:

sup
t,s∈Bk,|t−s|≤h

(c(t)− c(s)) = sup
t,s∈Bk,|t−s|≤h

(
1

tβ
− 1

sβ

)
≤ sup

t,s∈Bk,|t−s|≤h

sβ − tβ

a2βk

= sup
t,s∈Bk,|t−s|≤h

1

a2βk

∫ s

t

1

β
uβ−1du ≤ sup

t,s∈Bk,|t−s|≤h

(s− t)
aβ−1
k+1

βa2βk

≤ h
aβ−1
k+1

βa2βk
≤ hα 1

β

(
1 +

1

ak

)β−1
1

aβ+1
k

≤ hα 2
β−1

β

1

aβ+1
k

.

Therefore, Zk = 2β−1

βaβ+1
k

, and we arrive at the following bound:

Rk ≤ A1
1

aβk
+ 4
[ 1

aβk
A2 +

1

βaβ+1
k

2β−1A1

]( 1

21/p

(
1− 1

pα

)−1

+ 1
)
=: R̂k,

since at θ = 1
2 we have the maximum of 1

θ(1−θ) . We have also R̂k = R̂−k. Now we find the condition for the
convergence ∑

k∈Z

R̂p
k < ∞.

We have the following estimate:

R̂k ≤ 1

aβk

(
A1 + 4A2

( 1

21/p
+ 1
))

+
1

βaβ+1
k

2β−1A1

( 1

21/p
+ 1
)
≤

≤ 1

aβk

(
A1 + 4A2(

1

21/p
+ 1) + 2β−1A1(

1

21/p
+ 1)

)
=: R̃k,

therefore, the convergence of the series
∑

k∈Z R̂
p
k is implied by the convergence of

∑
k∈Z

1

aβp
k

.

In the conditions of Corollary 3.6 and Example 5.1, r(Bk) = fkA2 + ZkA1 ≤ 4A2

aβ
k

( 12β + 1). With the imposed

condition on β, the series
∑

k∈Z
1

aβ
k

is convergent, as well as
∑

k∈Z
1

aβp
k

< ∞, since 1

aβ
k

≥ 1

aβp
k

.

Therefore, if
∑

k∈Z
1

aβ
k

< ∞, A1 < ∞, A2 < ∞, then the process X(t) = c(t)
∑∞

m=1 ξm sinλmt, t ∈ R, satisfies
the conditions of Theorem 4.3, hence, with probability 1 the process X is sample bounded and continuous and the
following estimate for the distribution of its supremum holds:

P{sup
t∈R

|X(t)| > ε} ≤ 1

εp

∑
k∈Z

R̃p
k.
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Example 5.3. Let X(t), t ∈ R, be a process from the space L2(Ω), EX(t) = 0, EX(t)X(s) =
∫
R f(v, t)f(v, s)dv,

where the function f(v, t), v, t ∈ R, is such that∫
R
f2(v, t)dv < ∞.

We have EX2(t) =
∫
R f2(v, t)dv and E|X(t)−X(s)|2 =

∫
R |f(v, t)− f(v, s)|2dv.

Let under the conditions of Corollary 3.6, Bk = [ak, ak+1], k ∈ Z, and R =
∪

k∈Z Bk, where a0 = 0, a−k =
−ak, ak < ak+1 for k ∈ N.

Suppose that the following conditions hold:

|f(v, t)| ≤ g(|ak|)f̂(v), t ∈ Bk, |f(v, t)− f(v, s)| ≤ σ(|t− s|)Z(|ak|)f̂(v), t, s ∈ Bk,

where σ(h), h > 0, is a monotonically increasing continuous function, σ(0) = 0, and for ε > 0∫ ε

0

∣∣∣ 1

2σ(−1)(u)
+ 1
∣∣∣1/2du < ∞;

Z(v), g(v), v > 0, are monotonically nondecreasing functions, and the function f̂(v) > 0, v ∈ R, is such that∫
R f̂2(v)dv < ∞.

Denote ∥f̂∥2 =
( ∫

R f̂2(v)dv
)1/2

.
We have (

E|X(t)−X(s)|2
)1/2

≤ σ(|t− s|)Z(|ak|)∥f̂∥2, t, s ∈ Bk,

therefore, in terms of Corollary 3.6, r(B̂k) = Z(|ak|)∥f̂∥2, and we obtain the bound:

R(t0k) ≤ R̂(t0k) := g(|ak|)∥f̂∥2 +
1

θ(1− θ)
Z(|ak|)∥f̂∥2

∫ σ(|ak+1−ak|)

0

∣∣∣ak+1 − ak
2σ(−1)(v)

+ 1
∣∣∣1/2dv.

If the series ∑
k∈Z

(R̂(t0k))
2

is convergent, then in view of Corollary 3.6, the process X is sample continuous with probability 1, supt∈R |X(t)| <
∞ and for ε > 0

P{sup
t∈R

|X(t)| > ε} ≤ 1

ε2

∑
k∈Z

(R̂(t0k))
2.

Thus, from Theorem 4.4, we have that the process

u(t, x) =

∫
R
X(v)

1

2a
√
πt

exp

{
− (v − x)2

4a2t

}
dv

is a bounded solution to the Cauchy problem (4.24) and the following inequality holds for ε > 0

P{ sup
x∈R,t>0

|u(t, x)| > ε} ≤ 1

ε2

∑
k∈Z

(R̂(t0k))
2.

Example 5.4. Let in the conditions of Example 5.3, f(v, t) = f(v) sin |v|
1+|t| , v, t ∈ R, where f(v) ≥ 0, v ∈ R, is a

symmetric function.
We have, similar to Example 5.3,

|f(v, t)| = |f(v)|| sin |v|
1 + |t|

| ≤ |v|α

(1 + |t|)α
f(v), for 0 < α ≤ 1,
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and

|f(v, t)− f(v, s)| = f(v)
∣∣∣ sin |v|

1 + |t|
− sin

|v|
1 + |s|

∣∣∣ ≤ 2f(v)
∣∣∣ sin |v|

2

|s− t|
(1 + |t|)(1 + |s|)

∣∣∣ ≤
≤ 2f(v)

|v|β

2β
|s− t|β

(1 + |t|)β(1 + |s|)β
, for 0 < β ≤ 1.

Then for Bk defined as in Example 5.3,

sup
t∈Bk

(∫
R
|f(v, t)|2dv

)1/2
≤ 1

(1 + |ak|)α
(∫

R
|v|2αf2(v)dv

)1/2
,

and

sup
t,s∈Bk,|t−s|≤h

(∫
R
|f(v, t)− f(v, s)|2dv

)1/2
≤ 21−βhβ

(1 + |ak|)2β
(∫

R
|v|2βf2(v)dv

)1/2
.

Therefore, in the notations of Example 5.3, σ(h) = hβ , g(|ak|) = 1
(1+|ak|)α , Z(|ak|) = 21−β

(1+|ak|)2β , and in the
conditions of Corollary 3.6, r(Bk) = Z(|ak|)f(v)|v|β .

If
∫
R |v|2αf2(v)dv < ∞ and

∫
R |v|2βf2(v)dv < ∞, then

∫ ε

0

∣∣∣∣ 1

2σ(−1)(u)
+ 1

∣∣∣∣1/2 du =

∫ ε

0

(
1

2u1/β
+ 1

)1/2

du ≤ 1√
2

ε1−
1
2β

1− 1
2β

+ ε,

∫ σ(|ak+1−ak)|

0

∣∣∣∣ 1

2u1/β
+ 1

∣∣∣∣1/2 du ≤
√
2β

2β − 1
(ak+1 − ak)

β−1/2 + (ak+1 − ak)
β < ∞

for β > 1
2 . We obtain:

R(t0k) ≤ Rk := g(|ak|)
(∫

R
|v|2αf2(v)dv

)1/2
+

+ 4Z(|ak|)
(∫

R
|v|2βf2(v)dv

)1/2( √
2β

2β − 1
(ak+1 − ak)

β−1/2 + (ak+1 − ak)
β
)
.

Let us suppose that α = β > 1
2 and

∫
R |v|2αf2(v)dv < ∞. We can always choose ak such that the series∑

k∈Z

R2
k

is convergent. For example, we can take ak = ek.
Then it follows from Corollary 3.6 that with probability 1 the process X is sample continuous, supt∈R |X(t)| <

∞ and for ε > 0

P{sup
t∈R

|X(t)| > ε} ≤ 1

ε2

∑
k∈Z

R2
k.

Therefore, for the process u(t, x) =
∫
R X(v) 1

2a
√
πt

exp
{
− (v−x)2

4a2t

}
dv we have the same bound for ε > 0:

P{ sup
x∈R,t>0

|u(t, x)| > ε} ≤ 1

ε2

∑
k∈Z

R2
k.
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