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generated by proposed Mann type iterative algorithms. Moreover, we consider an altering points problem associated with
a generalized system of variational-like inclusion problems. To calculate the approximate solution of our system, we
proposed a parallel S-iterative algorithm and study the convergence analysis of the sequences generated by proposed parallel
S-iterative algorithms by using the technique of altering points problem. The results presented in this paper may be viewed
as generalizations and refinements of the results existing in the literature.
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1. Introduction

The theory of variational inequality was introduced by Hartmann and Stampacchia [17] in 1966 as a tool to study
partial differential equations with applications. It has emerged as a powerful tool for wide class of unrelated
problems arises in various branches of physical, engineering, pure and applied sciences in a unified and general
framework, see; for example, [3, 4, 5, 8, 9, 10, 21]. Variational inequalities have been extended and generalized in
different directions by using novel and innovative techniques for their own sake as well as for their applications.
In 1989, Parida et al. [26] studied a generalized form of variational inequalities. They called it variational-like
inequality problem and established its relationship with mathematical programming problem. Variational-like
inequality problem has many important and novel applications in economics and optimizations, see; for example,
[7, 32, 35].

There are a substantial number of numerical methods including projection methods, Wiener-Hopf equations
techniques, auxiliary principle technique, descent, and Newton methods, see; for example [11, 12, 13, 14, 24, 25]
to solve variational and variational-like inequalities. Projection method and its variant forms represent important
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tools for finding the approximate solutions of various type of variational and variational-like inequalities. It is
worth mentioning that it is not possible to find the projection of the solution except in very simple cases. In
addition, there are classes of variational inequalities, see; for example, [12, 13, 24, 25] for which the projection
type methods cannot be applied to study the existence of the solution and to compute the approximate solution.
These facts motivated us to use resolvent operator and altering points techniques to solve them efficiently. By using
resolvent operators one may develop powerful and efficient iterative algorithms for several classes of variational
inequalities. In fact, proximal algorithms are well suited to the problems of substantial recent interests involving
large or higher dimensional data sets.

In this paper, we consider a generalized system of mixed variational-like inclusion problems involving αβ-
symmetric η-monotone mapping and a fixed point problem of nonlinear Lipschitz mapping in Hilbert spaces.
We use resolvent operator technique to calculate approximate common solution of generalized system of mixed
variational-like inclusion problems involving αβ-symmetric η-monotone mapping and a fixed point problem
for nonlinear Lipchitz mappings. We discuss the strong convergence analysis of the sequences generated by
proposed Mann type iterative algorithm under some mild conditions. Moreover, we consider an altering points
problem associated to generalized system of variational-like inclusion problems and propose a parallel S-iterative
algorithm. We establish the existence of solution for our considered system of variational inclusions by using the
technique of altering points problem. Finally, we prove convergence result for the proposed parallel S-iterative
algorithm. The results presented in this paper improve and extend the results existing in the literature, see; for
example, [1, 6, 18, 19, 27, 31, 33, 36].

Let H be a real Hilbert space equipped with inner product ⟨·, ·⟩ which induces norm ∥ · ∥ and d be the metric
induced by the norm ∥ · ∥. Let K be a nonempty closed and convex subset of H, CB(H) be the family of all
nonempty closed and bounded subsets of H and let D(·, ·) be the Hausdorff metric on CB(H) defined by

D(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)}, ∀X,Y ∈ CB(H)

where d(x, Y ) = inf
y∈Y

d(x, y) and d(X, y) = inf
x∈X

d(x, y).

Before presenting our main results, we collect relevant definitions and results which will be needed in our
subsequent discussion.

Definition 1.1. A nonlinear mapping T : H → H is said to be Lipchitz continuous if there exists a constant k > 0
such that

∥Tx− Ty∥ ≤ k∥x− y∥, ∀x, y ∈ H.

If k = 1, the mapping T is called nonexpansive. We denote the set of all fixed points of T by F (T ), that is,
F (T ) = {x ∈ H : Tx = x}.

Definition 1.2. Let η : H×H → H;A,B : H → H be the single-valued mappings and let M : H×H → H be a
nonlinear mapping. Then

(i) M(A, ·) is said to be α-strongly η-monotone with respect to A, if there exists a constant α > 0 such that

⟨M(Ax, u)−M(Ay, u), η(y, x)⟩ ≥ α∥x− y∥2, ∀x, y, u ∈ H;

(ii) M(·, B) is said to be β-relaxed η-monotone with respect to B, if there exists a constant β > 0 such that

⟨M(u,Bx)−M(u,By), η(y, x)⟩ ≥ (−β)∥x− y∥2, ∀x, y, u ∈ H;

(iii) M(A,B) is said to be αβ-symmetric η-monotone with respect to A and B, if M(A, ·) is α-strongly η-
monotone with respect to A and M(·, B) is β-relaxed η-monotone with respect to B;
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(iv) M(·, ·) is said to be ξ-mixed Lipschitz continuous with respect to A and B, if there exists a constant ξ > 0
satisfying

∥M(Ax,Bx)−M(Ay,By)∥ ≤ ξ∥x− y∥, ∀x, y ∈ H;

(v) η is said to be τ -Lipschitz continuous, if there exists a constant τ > 0 such that

∥η(x, y)∥ ≤ τ∥x− y∥, ∀x, y ∈ H.

Definition 1.3. Let A,B : H → H;M,N : H×H → H be the single-valued mappings and T, P : H → CB(H)
be the set-valued mappings. Then

(i) T is said to be D-Lipschitz continuous, if there exists a constant δT > 0 such that

D(T (x), T (y)) ≤ δT ∥x− y∥, ∀x, y ∈ H;

(ii) M is said to be mixed strongly monotone with respect to A and B, if there exists a constant k > 0 such that

⟨M(Ax,Bx)−M(Ay,By), x− y⟩ ≥ k∥x− y∥2, ∀x, y ∈ H;

(iii) P is said to be strongly monotone with respect to N in the first argument, if there exists a constant c > 0
such that

⟨N(u, ·)−N(v, ·), x− y⟩ ≥ c∥x− y∥2, ∀x, y ∈ H and for some u ∈ P (x), v ∈ P (y);

(iv) N is said to be γ-Lipschitz continuous in the first argument, if there exists a constant γ > 0 such that

∥N(u, ·)−N(v, ·)∥ ≤ γ∥u− v∥, ∀x ∈ H, u ∈ P (x), v ∈ P (y).

Similarly, one can define strong monotonicity of P in the second argument with respect to N and Lipschitz
continuity of N in the second argument.

Let H be a real Hilbert space with norm ∥ · ∥. Define the norm ∥ · ∥∗ on H×H by

∥(x, y)∥∗ = ∥x∥+ ∥y∥, ∀x, y ∈ H. (1)

Note that (H×H, ∥ · ∥∗) is a Banach space.

Definition 1.4. Let A and B be two nonempty subsets of a metric space X and let P : A → B and Q : B → A be
mappings. Then x ∈ A and y ∈ B are called altering points of the mappings P and Q, if{

P (x) = y,

Q(y) = x.

We denote the set of altering points of the mappings P : A → B and Q : B → A by

Alt(P,Q) = {(x, y) ∈ A×B : P (x) = y and Q(y) = x}.

Example 1.1. Let H = R and C = D = [0, k], k > 0. Define P,Q : H → H by P (x) = Q(x) = k − x. Then
QP : C → C is defined by QP (x) = Q(k − x) = x and PQ : D → D is defined by PQ(x) = P (k − x) = x. It
is easy to see that each point of C is a fixed point of QP and each point of D is a fixed point of PQ. Thus, altering
points x ∈ C and y ∈ D are given by

Alt (P,Q) = {(x, y) ∈ C ×D : x+ y = k}.

Example 1.2. Let H = R, C = [0, 2], and D = [2, 4]. Define P : C → D by P (x) = x+ 2, ∀x ∈ C and Q : D →
C by Q(x) = x2

8 , ∀x ∈ D. Note that, PQ(x) = x2

8 + 2, ∀x ∈ D and QP (x) = (x+2)2

8 , ∀x ∈ C. Then (2, 4) are
altering points of P and Q, i.e., (2, 4) ∈ Alt(P,Q).

Stat., Optim. Inf. Comput. Vol. 8, June 2020



552 ITERATIVE ALGORITHMS FOR A GENERALIZED SYSTEM OF INCLUSIONS

Definition 1.5. [38]. A functional f : H×H → R ∪ {+∞} is said to be 0-diagonally quasi-concave (in short,

0-DQCV ) in xi, if for any finite set {x1, x2, · · · , xn} ⊂ H and for any y =
n∑

i=1

λixi with λi ≥ 0 and
n∑

i=1

λi = 1,

min
1≤i≤n

f(xi, y) ≤ 0.

Definition 1.6. Let η : H×H → H be a single-valued mapping. A proper functional ϕ : H → R ∪ {+∞} is said
to be η-subdifferentiable at a point x ∈ H, if there exists a point f∗ ∈ H such that

ϕ(y)− ϕ(x) ≥ ⟨f∗, η(y, x)⟩, ∀y ∈ H;

where f∗ is called η-subdgradient of ϕ at x ∈ domϕ. The set of all η-subgradients of ϕ at x is denoted by ∂ηϕ(x).
The mapping ∂ηϕ : H → 2H defined by

∂ηϕ(x) =

{
f∗ ∈ H : ϕ(y)− ϕ(x) ≥ ⟨f∗, η(y, x)⟩, ∀y ∈ H, x ∈ domϕ

∅, x /∈ domϕ

is said to be η-subdifferential of ϕ at x.

Definition 1.7. Let η : H×H → H;A,B : H → H be the single-valued mappings. Let ϕ : H → R ∪ {+∞} be a
proper, lower semicontinuous and η-subdifferentiable (may not be convex) functional and let M : H×H → H be
a nonlinear mapping. If for any given point z ∈ H and ρ > 0, there exists a unique point x ∈ H satisfying

⟨M(Ax,Bx)− z, η(y, x)⟩+ ρϕ(y)− ρϕ(x) ≥ 0, ∀y ∈ H,

then the mapping z 7→ x, denoted by R
∂ηϕ

ρ,M(·,·)(z) is called resolvent operator of ϕ. Then, we have z −
M(Ax,Bx) ∈ ρ∂ηϕ(x) and it follows that R∂ηϕ

ρ,M(·,·)(z) = [M(A,B) + ρ∂ηϕ]
−1(z).

Lemma 1.1. [20]. Let H be a real Hilbert space. Let η : H×H → H be a continuous mapping such that
η(x, y) + η(y, x) = 0, ∀x, y ∈ H; let M : H×H → H be an αβ-symmetric η-monotone mapping with respect
to A and B; let for any z ∈ H, the function h(y, x) = ⟨z −M(Ax,Bx), η(y, x)⟩ be 0-DQCV in y and let
ϕ : H → R ∪ {+∞} be a proper, lower semicontinuous and η-subdifferentiable (may not be convex) functional.
Then for any given constant ρ > 0 and z ∈ H, there exists a unique x ∈ H such that

⟨M(Ax,Bx)− z, η(y, x)⟩ ≥ ρϕ(x)− ρϕ(y), ∀y ∈ H, (2)

that is, x = R
∂ηϕ

ρ,M(·,·)(z).

Lemma 1.2. [20]. Let η : H×H → H be τ -Lipschitz continuous such that η(x, y) + η(y, x) = 0, ∀x, y ∈ H; let
M : H×H → H be an αβ-symmetric η-monotone mapping with respect to A and B; let for any z ∈ H, the
function h(y, x) = ⟨z −M(Ax,Bx), η(y, x)⟩ be 0-DQCV in y and let ϕ : H → R ∪ {+∞} be a proper, lower
semicontinuous and η-subdifferentiable functional and let ρ > 0 be any given constant. Then the resolvent operator
R

∂ηϕ

ρ,M(·,·) of ϕ is τ
α−β -Lipschitz continuous, that is,

∥R∂ηϕ

ρ,M(·,·)(z1)−R
∂ηϕ

ρ,M(·,·)(z2)∥ ≤ τ

α− β
∥z1 − z2∥, ∀z1, z2 ∈ H.

Example 1.3. Let H = R, η : H×H → H be a mapping defined by η(y, x) =
x− y

c
, ∀x, y ∈ H, c > 0 be any real

number. Then, it is easy to verify that

(i) η(x, y) + η(y, x) = 0, ∀x, y ∈ R;
(ii) |η(x, y)| ≤ 1

c |x− y|, ∀x, y ∈ R; i.e., η is 1
c–Lipschitz continuous.
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Let M : H×H → H and A,B : H → H be the mappings defined by M(x, y) = x− y,A(x) = 3kx,B(x) = 2kx
for any x ∈ R and k > 0. Then

⟨M(Ax, u)−M(Ay, u), η(y, x)⟩ = ⟨A(x)−A(y), η(y, x)⟩
= ⟨3k(x− y),

x− y

c
⟩

≥ 3k

c
|x− y|2,∀x, y ∈ R,

i.e., M is
3k

c
–strongly η-monotone with respect to A.

⟨M(u,Bx)−M(u,By), η(y, x)⟩ = ⟨−(B(x)−B(y)), η(y, x)⟩
= ⟨−2k(x− y),

x− y

c
⟩

≥ −2k

c
|x− y|2,∀x, y ∈ R,

i.e., M is
2k

c
–relaxed η-monotone with respect to B. Hence, M(A,B) is αβ-symmetric η-monotone mapping with

respect to A and B.
Next, for any x, z ∈ R, the mapping

h(y, x) = ⟨z −M(Ax,Bx), η(y, x)⟩
= (z − kx)(x−y

c )

is 0-DQCV in y. If, it is false, then there exists a finite set {y1, y2, · · · , ym} and x0 =
m∑
i=1

tiyi with ti ≥ 0 and
m∑
i=1

ti = 1 such that for each i = 1, 2, · · · ,m,

0 < h(yi, x0) = ⟨z −M(Ax0, Bx0), η(yi, x0)⟩
= (z − kx0)(

x0−yi

c )

= (z − kx0)
( m∑

i=1

tiyi−yi

c

)
= 0,

which is not possible. Thus, for any x, z ∈ R, the mapping h(y, x) is is 0-DQCV in y.

Lemma 1.3. Let {an} and {bn} be two nonnegative real sequences satisfying the following conditions:

an+1 ≤ (1− λn)an + bn, ∀n ≥ n0

for some n0 ∈ N, {λn} ⊂ (0, 1) with
∞∑

n=0

λn = ∞, bn = o(λn). Then lim
n→∞

an = 0.

Lemma 1.4. Let {an} and {bn} be two nonnegative real sequences satisfying the following inequality:

an+1 ≤ kan + bn, ∀n ∈ N,

k ∈ (0, 1) with lim
n→∞

bn = 0. Then lim
n→∞

an = 0.

2. Formulation of the Problem and Existence Results

Let H be a real Hilbert space and assume that I = {1, 2} is an index set; for each i ∈ I , let Mi, Ni : H×H →
H; Ai, Bi, gi : H → H be the single-valued mappings and P,Q : H → CB(H) be the multi-valued mappings;
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ηi : H×H → H be a single-valued nonlinear mapping and ϕi : H×H → R ∪ {+∞} be mapping such that for
fixed x, y ∈ H, ϕ1(g1(·), x) and ϕ2(g2(·), y) be lower semi-continuous, η-subdifferential, proper functionals on
H satisfying g1(H)∩ dom(∂ηϕ(g1(·), x)) ̸= ∅ and g2(H)∩ dom(∂ηϕ(g2(·), y)) ̸= ∅. We consider the following
generalized system of multi-valued mixed variational-like inclusion problems (GSMV LIP ):

Find (x, y, u, v) such that x, y ∈ H, v ∈ P (x), u ∈ Q(y) and

GSMVLIP :


⟨N1(u, v) +M1(A1(x), B1(x))−M1(A1(y), B1(y)), η1(z1, g1(x))⟩

≥ ρ1[ϕ1(g1(x), x)− ϕ1(z1, x)], ∀z1 ∈ H,
⟨N2(v, u) +M2(A2(y), B2(y))−M2(A2(x), B2(x)), η2(z2, g2(y))⟩

≥ ρ2[ϕ2(g2(y), y)− ϕ2(z2, y)], ∀z2 ∈ H.

(3)

Some special cases of GSMV LIP (3) are listed below.

(i) If M1 = M2 ≡ 0, g1, g2, P,Q ≡ I , the identity mappings, then GSMV LIP (3) is equivalent to the problem
of finding (x1, x2) ∈ H1 ×H2 such that{

⟨M1(x1, x2), η1(y1, x1)⟩+ ϕ1(x1, y1)− ϕ1(x1, x1) ≥ 0, ∀y1 ∈ H1,

⟨M2(x1, x2), η2(y2, x2)⟩+ ϕ2(x2, y2)− ϕ2(x2, x2) ≥ 0, ∀y2 ∈ H2.
(4)

System (4) was studied by Kazmi and Khan [19].
(ii) If M1 = M2 ≡ 0, g1 = g2 ≡ I , the identity mappings, ηi(zi, ai) = zi − ai, N1(u, v) = S(x, v), N2(v, u) =

T (y, u) and ϕi(x, y) = f(x), then GSMV LIP (3) coincides with the problem of finding x, y ∈ K,u ∈ E(x)
and v ∈ F (y) such that {

⟨S(x, v)), z − x⟩+ f(z)− f(x) ≥ 0, ∀z ∈ K,

⟨T (y, u)), z − y⟩+ f(z)− f(y) ≥ 0, ∀z ∈ K.
(5)

Problem (5) was considered and studied by Li and Li [22].
(iii) If E = F ≡ I, the identity mapping, then Problem (5) reduces to the problem of finding x, y ∈ K such that{

⟨S(x, y)), z − x⟩+ f(z)− f(x) ≥ 0, ∀z ∈ K,

⟨T (y, x)), z − y⟩+ f(z)− f(y) ≥ 0, ∀z ∈ K.
(6)

(iv) If S(x, y) ≡ sA(y, x) + x− y and T (y, x) ≡ rA(x, y) + y − x, then System (6) is equivalent to the problem
of finding x, y ∈ H such that{

⟨sA(y, x)) + x− y, z − x⟩+ ϕ(z)− ϕ(x) ≥ 0, ∀z ∈ H, s > 0

⟨rA(x, y)) + y − x, z − y⟩+ ϕ(z)− ϕ(y) ≥ 0, ∀z ∈ H, r > 0.
(7)

System (7) was studied by Petrot [27].
(v) If K is a closed convex subsets of H and ϕ(x) = δK(x), ∀x ∈ K, where the indicator function δK is defined

by

δK =

{
0, if x ∈ K

+∞, otherwise,

then the system (7) reduces to the following problem of finding x, y ∈ K such that{
⟨sA(y, x)) + x− y, z − x⟩ ≥ 0, ∀z ∈ H, s > 0

⟨rA(x, y)) + y − x, z − y⟩ ≥ 0, ∀z ∈ H, r > 0.
(8)

A System of type (8) was studied by Chang et al. [6].
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In the following theorem, we establish the fixed point formulation of GSMV LIP (3) then we prove the existence
of common solution of GSMV LIP (3) for αβ-symmetric η-monotone mapping and a fixed point problem of
nonlinear Lipschitz mappings.

Theorem 2.1. Let H be a real Hilbert space. For each i ∈ {1, 2}; let Ai, Bi, gi : H → H;Ni : H×H → H
be the single-valued mappings and P,Q : H → CB(H) be the set-valued mappings. Let ηi : H×H → H be
a τ -Lipschitz continuous mapping such that ηi(xi, yi) + ηi(yi, xi) = 0, for all xi, yi ∈ H. Let Mi : H×H →
H be an αiβi-symmetric ηi-monotone mapping with respect to Ai and Bi; let for any zi ∈ H, the function
⟨zi −Mi(Aixi, Bixi), ηi(yi, xi⟩ be 0-DQCV in yi and let ϕi : H×H → R ∪ {+∞} be such that for fixed fixed
x, y ∈ H, ϕ1(g1(·), x) and ϕ2(g2(·), y) be lower semi-continuous, η-subdifferential, proper functionals on H
satisfying g1(H)∩ dom(∂ηϕ(g1(·), x)) ̸= ∅ and g2(H)∩ dom(∂ηϕ(g2(·), y)) ̸= ∅. Then (x, y, u, v), where x, y ∈
H, v ∈ P (x), u ∈ Q(y) is a solution of GSMV LIP (3), if and only if (x, y, u, v) satisfies the following relation:

x = R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)] ,

y = R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)] ,

(9)

where ρ1, ρ2 > 0 are constants and R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) = [M1(A1, B1) + ρ∂ηϕ(g1(·), x)]−1, R

∂ηϕ2(g2(·),y)
ρ2,M2(·,·) =

[M2(A2, B2) + ρ∂ηϕ(g2(·), y)]−1.

Proof
The conclusion follows directly from the definition of resolvent operators R

∂ηϕ1(g1(·),x)
ρ1,M1(·,·) and R

∂ηϕ2(g2(·),y)
ρ2,M2(·,·) of the

functionals ϕ1(g1(·), x) and ϕ2(g2(·), y), respectively.

Lemma 2.1. If all the assumptions of the Theorem 2.1 are same and T : H → H be a nonlinear Lipschitz mapping
such that {x, y} ∈ (GSMV LIP ) ∩ F (T ), then

x = T (x) = T [R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]] ,

y = T (y) = T [R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]] .

(10)

Based on Lemma 2.1, we suggest the following Mann-type iterative algorithm for finding a common element of
the solution set of GSMV LIP (3) involving αβ-symmetric η-monotone mapping and the set of fixed points F (T )
of a nonlinear Lipschitz mapping T .

Algorithm 2.1. For any x0, y0 ∈ H, v0 ∈ P (x0), u0 ∈ Q(y0); compute the sequences {xn}, {yn}, {un} and {vn}
by the following iterative scheme:{

xn+1 = (1− αn)xn + αnT [R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]] ,

yn = (1− βn)xn + βnT [R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]] ,
(11)

and
vn ∈ P (xn), ∥vn+1 − vn∥ ≤ D(P (xn+1), P (xn));

un ∈ Q(yn), ∥un+1 − un∥ ≤ D(Q(xn+1), Q(xn));

where n = 1, 2, 3, · · · , ρi > 0 are constants and {αn}, {βn} are sequences in [0, 1].

Theorem 2.2. Let H be a real Hilbert space. For each i ∈ {1, 2}; let Ai, Bi, gi : H → H be the single-valued
mappings. Let Mi : H×H → H be an αiβi-symmetric ηi-monotone mapping such that Mi be mixed Lipchitz
continuous with constant ti, mixed strongly monotone with constant ki with respect to Ai and Bi. Let Ni :
H×H → H be the single-valued mapping such that Ni(·, ·) be γi and γ

′

i-Lipschitz continuous in first and second
argument, respectively; P,Q : H → CB(H) be the set-valued mappings such that Q is D-Lipchitz continuous
with constant ξ1, strongly monotone with respect to N1 with constant c1 and P is D-Lipchitz continuous with
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constant ξ2, strongly monotone with respect to N2 with constant c2. Let ηi : H×H → H be Lipschitz continuous
mapping with constant τi such that ηi(xi, yi) = −ηi(yi, xi), ∀xi, yi ∈ H, and for any z ∈ H, the mapping
hi(yi, xi) = ⟨zi −Mi(Aixi, Bixi), ηi(zi, gi(·))⟩ be 0-DQCV in zi. Let ϕi : H×H → R ∪ {+∞} be such that for
each fixed x, y ∈ H, ϕ1(g1(·), x) and ϕ2(g2(·), y) be lower semicontinuous, ηi-subdifferentiable, proper functionals
on H satisfying g1(H)∩ dom(∂ηϕ(g1(·), x)) ̸= ∅ and g2(H)∩ dom(∂ηϕ(g2(·), y)) ̸= ∅. Suppose that there exist
constants ρi > 0, µi > 0 such that for each z ∈ H∥∥∥R∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) (z)−R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) (z)

∥∥∥ ≤ µ1∥xn − x∥; (12)∥∥∥R∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) (z)−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) (z)

∥∥∥ ≤ µ2∥yn − y∥. (13)

In addition, GSMV LIP (3) ∩ F (T ) ̸= ϕ and the following conditions are satisfied:

(i)
∞∑

n=0

αn = ∞;

(ii) lim
n→∞

βn = 1;
(iii) kΩ1Ω3 < Ω3 − kΩ2; where,

Ω1 = µ1 + L1γ
′

1ξ2,Ω2 = L1(θ1 + θ2)[(1− βn) + βnkL2(θ3 + θ4)],Ω3 = (1− βnkL2γ
′

2ξ1 − βnkµ2),

Li =
τi

αi − βi
, θ1 =

√
t21 − 2k1 + 1, θ2 =

√
γ2
1ξ

2
1 − 2c1 + 1, θ3 =

√
t22 − 2k2 + 1,

√
γ2
2ξ

2
2 − 2c2 + 1. Then the

iterative sequences {xn}, {yn}, {un} and {vn} generated by Algorithm 2.1 converges strongly to x, y, u and v,
respectively and (x, y, u, v) is the common solution of GSMV LIP (3) and F (T ).

Proof
By applying Lemma 1.2, Algorithm 2.1, Lipschitz continuity of T and condition (12), we have

∥xn+1 − x∥ = ∥(1− αn)xn + αnT [R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]]− x∥
≤ (1− αn)∥xn − x∥+ αn

∥∥∥T [
R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]
]

−T
[
R

∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]

] ∥∥∥
≤ (1− αn)∥xn − x∥+ αnk

∥∥∥R∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

−R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]
∥∥∥

+αnk
∥∥∥R∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]

−R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]

∥∥∥
≤ (1− αn)∥xn − x∥+ αnkL1∥ [M1(A1(yn), B1(yn))−N1(un, vn)]

− [M1(A1(y), B1(y))−N1(u, v)] ∥+ αnkµ1∥xn − x∥
≤ (1− αn)∥xn − x∥+ αnkL1∥M1(A1(yn), B1(yn))−M1(A1(y), B1(y))

−(yn − y)∥+ αnkL1∥N1(un, vn)−N1(u, v)− (yn − y)∥+ αnkµ1∥xn − x∥
≤ (1− αn)∥xn − x∥+ αnkL1∥M1(A1(yn), B1(yn))−M1(A1(y), B1(y))

−(yn − y)∥+ αnkL1∥N1(un, vn)−N1(u, vn)− (yn − y)∥
+αnkL1∥N1(u, vn)−N1(u, v)∥+ αnkµ1∥xn − x∥.

(14)

Now,

∥M1(A1(yn), B1(yn)) − M1(A1(y), B1(y))− (yn − y)∥2
= ∥M1(A1(yn), B1(yn))−M1(A1(y), B1(y))∥2

−2⟨M1(A1(yn), B1(yn))−M1(A1(y), B1(y)), yn − y⟩+ ∥yn − y∥2.

Since M1 is mixed Lipschitz continuous with constant t1 and mixed strongly monotone with constant k1 with
respect to A1 and B1, therefore

∥M1(A1(yn), B1(yn))−M1(A1(y), B1(y))− (yn − y)∥2 ≤ (t21 − 2k1 + 1)∥yn − y∥2
= θ21∥yn − y∥2. (15)
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Since Q is strongly monotone with respect to N1 with constant c1 and N1 is γ1-Lipschitz continuous in the first
argument and Q is D-Lipschitz continuous with constant ξ1, we get

∥N1(un, vn)−N1(u, vn)− (yn − y)∥2 = ∥N1(un, vn)−N1(u, vn)∥2
−2⟨N1(un, vn)−N1(u, vn), yn − y⟩+ ∥yn − y∥2

≤ (γ2
1ξ

2
1 − 2c1 + 1)∥yn − y∥2

= θ22∥yn − y∥2.

(16)

Since N1 is γ
′

1-Lipschitz continuous in the second argument and P is D-Lipschitz continuous with constant ξ2, we
have

∥N1(u, vn)−N1(u, v) ≤ γ
′

1∥vn − v∥ ≤ γ
′

1ξ2∥xn − x∥. (17)

It follows from (14), (15), (16) and (17) that

∥xn+1 − x∥ ≤
[
(1− αn) + αnkµ1 + αnkL1γ

′

1ξ2

]
∥xn − x∥+ αnkL1(θ1 + θ2)∥yn − y∥. (18)

Again employing Lemma 1.2, Algorithm 2.1, Lipschitz continuity of T and condition (13), we have

∥yn − y∥ = ∥(1− βn)xn + βnT [R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]]− y∥
≤ (1− βn)∥xn − y∥+ βn

∥∥∥T [
R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]
]

−T
[
R

∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]

] ∥∥∥
≤ (1− βn)∥xn − y∥+ βnk

∥∥∥R∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

−R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]
∥∥∥

+βnk
∥∥∥R∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]

−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]

∥∥∥
≤ (1− βn)∥xn − x∥+ (1− βn)∥x− y∥

+βnkL2∥ [M2(A2(xn), B2(xn))−N2(vn, un)]
− [M2(A2(x), B2(x))−N2(v, u)] ∥+ βnkµ2∥yn − y∥

≤ (1− βn)∥xn − x∥+ (1− βn)∥x− y∥+ βnkL2∥M2(A2(xn), B2(xn))
−M2(A2(x), B2(x))− (xn − x)∥
+βnkL2∥N2(vn, un)−N2(v, un)− (xn − x)∥
+βnkL2∥N2(v, un)−N2(v, u)∥+ βnkµ2∥yn − y∥.

(19)

Now,
∥M2(A2(xn), B2(xn)) − M2(A2(x), B2(x))− (xn − x)∥2

= ∥M2(A2(xn), B2(xn))−M2(A2(x), B2(x))∥2
−2⟨M2(A2(xn), B2(xn))−M2(A2(x), B2(x)), xn − x⟩
+∥xn − x∥2.

Since M2 is mixed Lipschitz continuous with constant t2 and mixed strongly monotone with constant k2 with
respect to A2 and B2, we have

∥M2(A2(xn), B2(xn))−M2(A2(x), B2(x))− (xn − x)∥2 ≤ (t22 − 2k2 + 1)∥xn − x∥2
= θ23∥xn − x∥2. (20)

Since P is strongly monotone with respect to N2 with constant c2 and N2 is γ2-Lipschitz continuous in the first
argument and P is D-Lipschitz continuous with constant ξ2, we get

∥N2(vn, un)−N2(v, un)− (xn − x)∥2 = ∥N2(vn, un)−N2(v, un)∥2 − 2⟨N2(vn, un)
−N2(v, un), xn − x⟩+ ∥xn − x∥2

≤ (γ2
2ξ

2
2 − 2c2 + 1)∥xn − x∥2

= θ24∥xn − x∥2.

(21)
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Since N2 is γ
′

2-Lipschitz continuous in the second argument and Q is D-Lipschitz continuous with constant ξ1, we
have

∥N2(v, un)−N2(v, u) ≤ γ
′

2∥un − u∥ ≤ γ
′

2ξ1∥yn − y∥. (22)

It follows from (19), (20), (21) and (22) that

∥yn − y∥ ≤ [(1− βn) + βnkL2(θ3 + θ4)] ∥xn − x∥+
[
βnkL2γ

′

2ξ1 + βnkµ2

]
∥yn − y∥+ (1− βn)∥x− y∥,

which implies that

∥yn − y∥ ≤ [(1− βn) + βnkL2(θ3 + θ4)] ∥xn − x∥+ (1− βn)∥x− y∥[
1− βnkL2γ

′
2ξ1 − βnkµ2

] . (23)

Thus, from (18) and (23), we have

∥xn+1 − x∥ ≤
[
(1− αn) + αnkµ1 + αnkL1γ

′

1ξ2

]
∥xn − x∥

+αnkL1(θ1 + θ2)

[
(1− βn) + βnkL2(θ3 + θ4)∥xn − x∥+ (1− βn)∥x− y∥

(1− βnkL2γ
′
2ξ1 − βnkµ2)

]
=

[
(1− αn) + αnkµ1 + αnkL1γ

′

1ξ2

]
∥xn − x∥

+αnkL1(θ1 + θ2)

[
(1− βn) + βnkL2(θ3 + θ4)

(1− βnkL2γ
′
2ξ1 − βnkµ2)

]
∥xn − x∥

+
αnkL1(θ1 + θ2)(1− βn)

(1− βnkL2γ
′
2ξ1 − βnkµ2)

∥x− y∥

= 1− αn

[
1− k

[ (
µ1 + L1γ

′

1ξ2

)
+ L1(θ1 + θ2)

(1− βn) + βnkL2(θ3 + θ4)

(1− βnkL2γ
′
2ξ1 − βnkµ2)

]]
∥xn − x∥

+
αnkL1(θ1 + θ2)(1− βn)

(1− βnkL2γ
′
2ξ1 − βnkµ2)

∥x− y∥

= 1− αn

[
1− k

(
Ω1 +

Ω2

Ω3

)]
+ bn.

(24)
Setting;

an = ∥xn − x∥, λn = αn

[
1− k

(
Ω1 +

Ω2

Ω3

)]
and bn =

αnkL1(θ1 + θ2)(1− βn)

(1− βnkL2γ
′
2ξ1 − βnkµ2)

∥x− y∥. It follows from

condition (iii) that λn ∈ (0, 1), ∀n ∈ N and condition (ii) implies that bn = o(λn). By using condition (iii), we

have λn > αn(1− Ω1), ∀n ∈ N. Hence, condition (i) implies that
∞∑

n=0

λn = ∞. Thus all the conditions of Lemma

1.3 are satisfied and so ∥xn − x∥ → 0 as n → ∞. Consequently, condition (ii) and (23) implies that yn → y as
n → ∞. Since the mappings P and Q are D-Lipschitz continuous and using Algorithm 2.1, it follows that {un}
and {vn} are Cauchy sequences in H such that un → u and vn → v as n → ∞.

Now, we show that u ∈ P (x) and v ∈ Q(y);

d(u, P (x)) = inf{∥u− y∥ : y ∈ P (x)}
≤ ∥u− un∥+ d(un, P (x))
≤ ∥u− un∥+D(P (xn), P (x))
≤ ∥u− un∥+ ξ1∥xn − x∥ → 0, as n → ∞,

(25)

which implies that d(u, P (x)) = 0. Since P (x) ∈ CB(H), it follows that u ∈ P (x). Similarly, we can verify
that v ∈ Q(y). Therefore, in view of Theorem 2.1 and Algorithm 2.1, we conclude that (x, y, u, v) such that
x, y ∈ H, u ∈ P (x) and v ∈ Q(y) is a common solution of GSMV LIP (3) and F (T ).
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3. Convergence Theorem via Altering Points Problem

In this section, we approximate the solution of GSMV LIP (3) by using the altering points problem. First, we
propose a parallel S-iterative algorithm for altering points problem associated to generalized system of mixed
variational-like inclusion problems involving αβ-symmetric η-monotone mappings and then we study strong
convergence analysis of GSMV LIP (3) by using proposed iterative algorithm.

Let C and D be nonempty closed convex subsets of a real Hilbert space H. Let S1 : C → D and S2 : D → C be
contraction mappings with Lipschitz constants τ1 and τ2, respectively. Since S2S1 : C → C is a contraction, there
exists a unique element (x, y) ∈ C ×D of the following altering points problem for operators S1 and S2.

Find (x, y) ∈ C ×D such that {
S1(x) = y,

S2(y) = x.
(26)

It is well known that the Picard iterative algorithm converges faster than the Mann iterative algorithm [23] for
contraction mappings, see; [2]. Sahu [28] has introduced Normal S-iteration Process, whose rate of convergence
similar to the Picard iteration process and faster than other fixed point iteration processes (see; [28], Theorem 3.6)
which is defined as follows: {

xn+1 = Tyn,

yn = (1− αn)xn + αnT (xn), ∀n ∈ N,
(27)

where T is a self mapping on a convex subset of a normed space X and αn ⊆ [0, 1] is a real sequence. Normal
S-iterative algorithm is independent of Mann algorithm and it has attracted the attention of many researchers, see;
for example, [34, 15, 30] due to fast convergence rate and its simplicity.

Very recently, Gursoy et al. [16] studied the following normal S-iterative algorithm:
p0 ∈ H,

pn+1 = S[qn − g(qn) + PH [g(qn)− σTqn]],

qn = (1− ξn)pn + ξnS[pn − g(pn) + PH [g(pn)− σTpn]],

(28)

where {ξn}∞n=0 ⊂ [0, 1]. They have approximated the solution of a generalized nonlinear variational inequalities
and studied convergence analysis.

For approximate calculation of altering points of contraction mappings S1 : C → D and S2 : D → C, motivated
by normal S-iteration process, Sahu [29] has introduced the following parallel S-iteration process:{

xn+1 = T2[(1− α)yn + αT1xn],

yn+1 = T1[(1− α)xn + αT2yn],
(29)

where α ∈ (0, 1). Further, Zhao et al. [37] generalized the parallel S-iteration process (29) and studied the following
parallel S-iteration process: {

xn+1 = T2[(1− αn)yn + αnT1(xn)],

yn+1 = T1[(1− βn)xn + βnT2yn],
(30)

where {αn} and {βn} are sequences in (0, 1). The parallel S-iteration process (30) is a natural generalization of
the parallel S-iteration process (29).

Based on Theorem 2.1 and Definition 1.4, we pose the following altering points problem associated to
GSMV LIP (3). {

S1[R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)]] = y,

S2[R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)]] = x,

(31)
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where S1 : C → D and S2 : D → C be contraction mappings with Lipschitz constants κ1 and κ2, respectively.

Now, we propose following parallel S-iterative algorithm to compute the approximate solution of GSMV LIP
(3).

Algorithm 3.1. For any (x0, y0) ∈ C ×D, compute the sequences {xn, yn} ∈ C ×D generated by the following
parallel S-iteration scheme.

xn+1 = S2

[
(1− αn)R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

+ αnS1

(
R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]
) ]

,

yn+1 = S1

[
(1− βn)R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

+ βnS2

(
R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]
) ]

,

(32)

and
vn ∈ P (xn), ∥vn+1 − vn∥ ≤ D(P (xn+1), P (xn));

un ∈ Q(yn), ∥un+1 − un∥ ≤ D(Q(xn+1), Q(xn));

where {αn, βn} is a sequence in (0, 1)× (0, 1).

Now we establish strong convergence of the sequences {xn}, {yn}, {un} and {vn} generated by parallel S-
iterative scheme.

Theorem 3.1. Let C and D be nonempty closed convex subsets of a real Hilbert space H. For each i ∈ {1, 2};
let Ai, Bi, gi : H → H be the single-valued mappings. Let Mi : H×H → H be αiβi-symmetric ηi-monotone
mappings such that Mi be mixed Lipchitz continuous with constant ti, mixed strongly monotone with constant
ki with respect to Ai and Bi. Let Ni : H×H → H be the single-valued mapping such that Ni(·, ·) be γi and γ

′

i-
Lipschitz continuous in first and second argument, respectively; P,Q : H → CB(H) be the set-valued mappings
such that Dom(P ) ⊆ D and Dom(Q) ⊆ C and Q is D-Lipchitz continuous with constant ξ1, strongly monotone
with respect to N1 with constant c1 and P is D-Lipchitz continuous with constant ξ2, strongly monotone with respect
to N2 with constant c2. Let S1 : C → H and S2 : D → H be contraction mappings with Lipschitz constant κ1 and
κ2, respectively. Let ηi : H×H → H be Lipschitz continuous mapping with constant τi such that ηi(xi, yi) =
−ηi(yi, xi), ∀xi, yi ∈ H, and for any z ∈ H, the mapping hi(yi, xi) = ⟨zi −Mi(Aixi, Bixi), ηi(zi, gi(·))⟩ be 0-
DQCV in zi. Let ϕi : H×H → R ∪ {+∞} be such that for each xi ∈ H, ϕ1(g1(·), x) and ϕ2(g2(·), y) be lower
semicontinuous, ηi-subdifferentiable, proper functionals. suppose that there exist constants ρi > 0, µi > 0 such
that for each z ∈ H ∥∥∥R∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) (z)−R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) (z)

∥∥∥ ≤ µ1∥xn − x∥. (33)∥∥∥R∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) (z)−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) (z)

∥∥∥ ≤ µ2∥yn − y∥. (34)

In addition, the following condition is satisfied:

Θ = max{Θ1,Θ2} ∈ [0, 1),

where, Θ1 = L2(θ3 + θ4)(κ2 + κ1κ2) + (L1γ
′

1ξ2 + µ1)(κ1 + κ1κ2),

Θ2 = L1(θ1 + θ2)(κ1 + κ1κ2) + (L2γ
′

2ζ2 + µ2)(κ2 + κ1κ2),

θ1 =
√

t21 − 2k1 + 1, θ2 =
√

γ2
1ξ

2
1 − 2c1 + 1,

θ3 =
√

t22 − 2k2 + 1, θ4 =
√

γ2
2ζ

2
1 − 2c2 + 1.

(35)

Then the iterative sequences {xn}, {yn}, {un} and {vn} generated by parallel S-iterative algorithm 3.1 converges
strongly to x, y, u and v, respectively.
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Proof
By Algorithm 3.1 and using the Lipschitz continuity of contraction mappings S1 and S2, we have

∥xn+1 − x∥ = ∥S2

[
(1− αn)R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

+αnS1

(
R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]
) ]

− S2(y)∥

≤ κ2∥(1− αn)R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

+αnS1(R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)])− y∥
≤ κ2

[
(1− αn)∥R

∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]− y∥

+αn∥S1(R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)])− S1(x)∥
]

≤ κ2

[
(1− αn)∥R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)] ∥

−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)] ∥

+αnκ1∥R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

−R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)] ∥

]
≤ κ2(1− αn)∥R

∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)] ∥
−R

∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)] ∥

+κ2αnκ1∥R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

−R
∂ηϕ1(g1(·),x)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)] ∥.

(36)

Following the same arguments as in (14)–(22), we have

∥xn+1 − x∥ ≤ κ2(1− αn)
[
L2

[
(θ3 + θ4)∥xn − x∥+ γ

′

2ξ1∥yn − y∥
]
+ µ2∥yn − y∥

]
+κ2αnκ1

[
L1

[
(θ1 + θ2)∥yn − y∥+ γ

′

1ξ2∥xn − x∥
]
+ µ1∥xn − x∥

]
.

(37)

Again using the Lipschitz continuity of contraction mappings S1 and S2 and by Algorithm 3.1, we have

∥yn+1 − y∥ = ∥S1

[
(1− βn)R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

+βnS2(R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)])
]
− S1(x)∥

≤ κ1∥(1− βn)R
∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]

+βnS2(R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)])− x∥
≤ κ1

[
(1− βn)∥R

∂ηϕ1(g1(·),xn)

ρ12,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)]− x∥

+βn∥S2(R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)])− S2(y)∥
]

≤ κ1

[
(1− βn)∥R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)] ∥

−R
∂ηϕ1(g1(·),y)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)] ∥

+βnκ2∥R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)] ∥

]
≤ κ1(1− βn)∥R

∂ηϕ1(g1(·),xn)

ρ1,M1(·,·) [M1(A1(yn), B1(yn))−N1(un, vn)] ∥
−R

∂ηϕ1(g1(·),y)
ρ1,M1(·,·) [M1(A1(y), B1(y))−N1(u, v)] ∥

+κ1βnκ2∥R
∂ηϕ2(g2(·),yn)

ρ2,M2(·,·) [M2(A2(xn), B2(xn))−N2(vn, un)]

−R
∂ηϕ2(g2(·),y)
ρ2,M2(·,·) [M2(A2(x), B2(x))−N2(v, u)] ∥

]
.

(38)
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Again following the same arguments as in (14)–(22), we have

∥yn+1 − y∥ ≤ κ1(1− βn)
[
L1

[
(θ1 + θ2)∥yn − y∥+ γ

′

1ξ2∥xn − x∥
]
+ µ1∥xn − x∥

]
+κ2βnκ1

[
L2

[
(θ3 + θ4)∥xn − x∥+ γ

′

2ξ1∥yn − y∥
]
+ µ2∥yn − y∥

]
.

(39)

Adding the inequalities (37) and (39), we have

∥xn+1 − x∥+ ∥yn+1 − y∥ ≤ κ2(1− αn)[L2[(θ3 + θ4)∥xn − x∥
+γ

′

2ξ1∥yn − y∥] + µ2∥yn − y∥] + κ2αnκ1[L1[(θ1 + θ2)∥yn − y∥]
+µ1∥xn − x∥+ κ1(1− βn)[L1[(θ1 + θ2)∥yn − y∥
+γ

′

1ξ2∥xn − x∥]] + µ1∥xn − x∥+ κ2βnκ1[L2[(θ3 + θ4)∥xn − x∥
+γ

′

2ξ1∥yn − y∥] + µ2∥yn − y∥]
≤ [L2(θ3 + θ4)(κ2 + κ1κ2) + (γ

′

1ξ2L1 + µ1)(κ1 + κ1κ2)]∥xn − x∥
+[L1(θ1 + θ2)(κ1 + κ1κ2) + (γ

′

2ξ1L2 + µ2)(κ2 + κ1κ2)]∥yn − y∥
= Θ1∥xn − x∥+Θ2∥yn − y∥
≤ Θ[∥xn − x∥+ ∥yn − y∥],

(40)

where
Θ = max{Θ1,Θ2}

and {
Θ1 = [L2(θ3 + θ4)(κ2 + κ1κ2) + (γ

′

1ξ2L1 + µ1)(κ1 + κ1κ2)]

Θ2 = [L1(θ1 + θ2)(κ1 + κ1κ2) + (γ
′

2ξ1L2 + µ2)(κ2 + κ1κ2)].
(41)

It follows from (1) and (40) that

∥(xn+1, yn+1)− (x, y)∥∗ ≤ Θ∥(xn, yn)− (x, y)∥∗.

Since Θ ∈ (0, 1) by condition (35), then from Lemma 1.4, we have

lim
n→∞

∥(xn, yn)− (x, y)∥∗ = 0.

Thus, we have
lim

n→∞
∥xn − x∥ = lim

n→∞
∥yn − y∥ = 0.

Therefore, {xn} and {yn} converges to x and y, respectively. Since the mappings P and Q are D-Lipschitz
continuous and using Algorithm 3.1, it follows that {un} and {vn} are Cauchy sequences in H such that un → u
and vn → v as n → ∞. It can be proved by using the same techniques as in Theorem 2.2 that u ∈ P (x) and
v ∈ Q(y). Note that S2S1 : C → C is a contraction mapping with Lipschitz constant κ1κ2. In view of Theorem
2.1 and (31), we conclude that (x, y, u, v) such that x, y ∈ H, u ∈ P (x) and v ∈ Q(y) is a unique solution of
GSMV LIP (3), where x and y are altering points of mappings S1 and S2. This completes the proof.

4. Concluding Remarks

In this paper, a generalized system of variational-like inclusion problem for αβ-symmetric η-monotone mapping
is considered. We apply Mann type iterative algorithm to analyze the common solution of a generalized system of
variational-like inclusion problem for αβ-symmetric η-monotone mapping and a fixed point problem of nonlinear
Lipschitz mapping in Hilbert spaces. Further, we considered altering point problem and proposed a parallel S-
iterative algorithm. We prove the existence of solution of our system by using altering point problem. The result
presented in this paper may be viewed as generalizations and refinements of the results existing in the literature.
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