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Abstract This paper examines the moments properties in frequency domain of the class of first order continuous-time
bilinear processes (COBL(1, 1) for short) driven by a stochastic differential equation defined by a linear drift and certain
diffusion processes with time-varying (resp. time-invariant) coefficients. So, we used the associated evolutionary (or time-
varying) transfer functions to study the structure of second-order of the process and its powers. In particular, for time-
invariant case, an expression of the moments of any order are given as well as some moments properties of special cases.
As a consequence, it is observed however, that for this class explicit statistical inference is feasible. So and based on these
results we are able to estimate the unknown parameters involved in model via the so-called generalized method of moments
(GMM). This method is robust to the misspecification of likelihood functions. However, it suffers from the ad hoc choice
of moment conditions and must presume the existence of arbitrary population moments, and the chisquare specification test
of the overidentifying restrictions is subject to severe overrejection bias. In end, the GMM method is illustrated by a Monte
Carlo study and applied to modelling two foreign exchange rates of Algerian Dinar against U.S.−Dollar (USD/DZD) and
against the single European currency Euro (EUR/DZD).
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1. Introduction

Stochastic differential equation (SDE) models play an interest role in a range of applications areas, including,
among others, biology, chemistry, epidemiology, mechanics, economics, and finance. This interest is due to the
fact that in many practical situations, the data generating the process, are often observed at discrete-time intervals
and irregularly spaced. This phenomenon happens for instance in physics, engineering problems, economy and
so on. Therefore, the resort to continuous-time (which can be interpreted as a solution of some SDE models) is
unavoidable. Some example we have in mind is in economics, since variables in most models are the result of
many large number of microeconomics decision at different points of time, which may be regarded as continuous
functions of time. So, during the past years, the theory and applications of stochastic differential equations have
been developed very quickly, see e.g. ∅ksendal [18] and it becomes increasingly important in modeling and
forecasting financial time series and continues to gain a growing interest of researchers whether in their statistics
inference or in their applications.

In this paper we consider the class of continuous-time bilinear processes (X(t))t∈R+
(COBL for short)

generated by the following time-varying SDE

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dW (t), X(0) = X0, (1)
= µt (X(t)) dt+ σt (X(t)) dW (t),
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where µt (x) = α(t)x+ µ(t) and σt (x) = γ(t)x+ β(t) represents the drift function and the volatility (or diffusion)
term respectively, (W (t))t≥0 is a standard Brownian motion in R defined on some basic filtered space

(Ω,A, (At)t≥0 , P ) with spectral representation W (t) =
∫
R
eitλ − 1

iλ
dZ(λ), where Z(λ) is an orthogonal complex-

valued stochastic measure on R with zero mean, E
{
|dZ(λ)|2

}
= dF (λ) =

dλ

2π
and uniquely determined by

Z([a, b[) =
1

2π

∫
R
e−iλa − e−iλb

iλ
dW (λ), for all −∞ < a < b < +∞, the initial state X(0) is a random variable,

defined on (Ω,A, P ) independent of W such that E {X(0)} = m1(0) and V ar {X(0)} = R1(0). Special cases
of this process are the Brownian motion with drift (α(t) = 0 and γ(t) = 0 ), the Gaussian Ornstein-Uhlenbeck
(GOU) process (γ(t) = 0 ) and the volatility of the COGARCH(1, 1) process defined by dX(t) = σ (t) dW1(t)
where dσ2 (t) =

(
µ (t)− α (t)σ2 (t)

)
dt+ γ (t)σ2 (t) dW2(t) in which µ (t) > 0, α(t), γ (t) ≥ 0 for all t ≥ 0 and

W1(t), W2(t) are independent Bm and independent of (X(0), σ (0)). The SDE (1) is called time-invariant if there
exists some constants α, µ, γ and β such that for all t, α(t) = α, µ(t) = µ, γ(t) = γ and β(t) = β. Note that in
time-invariant case, the correspondent SDE (1) may be rewritten as a Pearson diffusion process, i.e.,

dX(t) = −θ (X(t)− u) dt+
√

2θ (aX2(t) + bX(t) + c) dW (t), (2)

where θ > 0 and a, b, c are such that the square root is well defined and reduce to σ (X(t)). In literature of
diffusion processes, there is two functions associated to equation (2) which plays a fundamental role in studying
the stationary solution of such SDE (2) called scale and speed densities given respectively by

s(x) = exp
{∫ x

x0

y − u
ax2 + bx+ c

dy
}

and m(x) =
1

s(x) (ax2 + bx+ c)
,

where x0 is a fixed point such that ax2
0 + bx0 + c > 0. The main aim here is focused firstly on the conditions

ensuring the existence of the processes (X(t))t∈R+
and its powers (Xk(t))t∈R+

, k ≥ 2, using the evolutionary
transfer functions associated with the model. Secondly, we extend the generalized method of moments (GMM)
by Hansen [9] for a discretized time-invariant version of SDE (1) and hence estimates of the parameters involving
in the model and hence their asymptotic properties. To ensure the existence and uniqueness of the solution process
(X(t))t≥0 of equation (1) we assume that the parameters α(t), µ(t), γ(t) and β(t) are measurable deterministic
functions and subject to the following assumption:

Assumption 1
α(t), µ(t), γ(t) and β(t) are differentiable functions such that ∀T > 0,∫ T

0

|α(t)| dt <∞,
∫ T

0

|µ(t)| dt <∞,
∫ T

0

|γ(t)|2 dt <∞ and
∫ T

0

|β(t)|2 dt <∞.

In statistical inference of SDE, estimation methods have usually carried by some discretization schema and
hence various techniques are adapted. So, among others, the GMM which may be seen as a semi−parametric
approach and its implementation is defined by minimizing the weighted distance between the sample moments and
the corresponding population moments implied by the model structure, occupies an important place in statistical
inference. Indeed, Kallsen and Muhle-Karbe [12], and Haug et al. [8] have proposed an asymptotic inference of
moments method (MM) for a discretized continuous GARCH process. Bibi and Merahi [4] have proposed a
MM for estimating the parameters of continuous-time bilinear processes. Chan et al. [7] investigated an empirical
comparison of GMM for several discretized diffusions processes. Carrasco and Florens [6] have study the GMM
in cases where the implementation of this method requires simulations of random numbers. Bollerslev and Zhou
[5] have exploit the distributional information contained in high-frequency data in constructing a simple conditional
moment estimator for stochastic volatility diffusion. Hlouskova and Sögner [10] have investigates parameter
estimation of affine term structure models via GMM . In empirical finance, Zhou [20] perform a Monte Carlo
study on MLE, Quasi-MLE (QMLE), GMM , and on efficient method of moments (EMM) for a continuous-
time square-root process. He finds the following ranking by decreasing efficiency: MLE, QMLE, EMM , and

Stat., Optim. Inf. Comput. Vol. 9, December 2021



992 GMM ESTIMATION OF CONTINUOUS-TIME BILINEAR PROCESSES

GMM . All these studies focused on specific models and their conclusions may not carry to another model. For in
deep lecture we advised interested readers to see Kessler [14] and the reference therein and to monographs by Rao
[19] and Kutoyants [15].

The remainder of the paper is structured as follows. Section 2 outline the Wiener-Itô spectral representation
for SDE (1), and a recursive evolutionary transfer functions of SDE (1) are given so the associated spectral
representation of (X(t))t≥0 and its powers are showed. Section 3, investigated the moments properties of (X(t))t≥0

and its powers and an explicit formula for time-invariant version are derived. Section 4, is dedicated for the
estimate of time invariant SDE (1) via GMM estimation, so its consistency and asymptotic normality are studied.
Numerical illustrations via Monte Carlo simulation are given in Section 5 followed by an application to model
two foreign exchange rates of Algerian Dinar against U.S.-Dollar (USD/DZD) and against the single European
currency Euro (EUR/DZD).

2. Framework

The existence and uniqueness of the solution process of SDE (1) in time domain is ensured by the general results
on SDE and under the Assumption 1. Moreover, since the drift and the diffusion functions are Lipschitz with linear
growth, i.e., |µt (x)− µt (y)| ≤ sup

t
|α(t)| |x− y| and |σt (x)− σt (y)| ≤ sup

t
|γ(t)| |x− y|, then the Itô solution is

given by (see Le Breton and Musiela [16] and Bibi and Merahi [3])

X(t) = Φ(t)

{
X(0) +

∫ t

0

Φ−1(s) (µ(s)− γ (s)β (s)) ds+

∫ t

0

Φ−1(s)β (s) dW (s)

}
, a.e., (3)

where the process (Φ(t))t≥0 is given by Φ(t) = exp
{∫ t

0

(
α(s)− 1

2γ
2 (s)

)
ds+

∫ t
0
γ (s) dW (s)

}
its mean function

is Ψ(t) = exp
{∫ t

0
α(s)ds

}
. In time-invariant case (Φ(t))t≥0 reduces to Φ(t) = exp {−ξ(t)} where −ξ(t) =(

α− 1
2γ

2
)
t+ γW (t) and thus the solution process (3) reduces to

X(t) = e−ξ(t)

X(0) +

t∫
0

eξ(s)dη(s)

 , t ≥ 0, (4)

with η(t) = (µ− γβ) t+ βW (t), that is the solution process of the celebrated generalized Ornstein-Uhlenbeck
process. Hence, by Itô formula, we obtain dX(t) = −ξ(t)X(t)dt+ dη(t), t ≥ 0, X(0) = X0. So, the above
equation can be interpreted as a random coefficient time-continuous autoregressive version of SDE (1). Moreover,
the process given by (4) is Markovtan, unique, ergodic and constitute a weak solution to SDE (1) with values
in the interval ]r, l[ containing x0 if and only if

∫ l
x0
s(x)dx = +∞,

∫ x0

r
s(x)dx = +∞ and

∫ l
r
m(x)dx < +∞.

Additionally, since

dm(x)

dx
=

(2a+ 1)x− u+ b

ax2 + bx+ c
m(x),

we see that if SDE (1) admits a stationary solution, then its invariant distribution belong to the family

{signU−1
(
β
γ −

µ
α

)
− β

γ } where the random variable U has the gamma distribution Γ

(
1− 2α

γ2, ,
γ2

2|α|| βγ− µα |

)
(see

Lebreton and Musiela [16] for more details).
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Example 1
In following table, we give the scale and speed densities s(x) and m(x) for some specifications.

Specifications s(x) m(x)

Brownian motion with drift :
dX(t) = µdt+ dW (t)

exp {−2µx} 2 exp {2µx}

GOU process :
dX(t) = (αX(t) + µ) dt+ dW (t)

exp
{
−2µx+ αx2

}
−2α exp

{
2µx− αx2

}
Table(1) : Scale and speed densities for some specifications.

For the Brownian motion with drift there exists a unique ergodic solution for all µ ∈ R. In GOU process, for all
µ ∈ R, there exists a unique ergodic solution if and only if α < 0 and the invariant distribution is N (µ, 1).

2.1. Wiener-Itô representation

In the first part of this paper, we shall investigate in frequency domain, some probabilistic and statistical
properties of second-order solution process of equation (1) which are regular (or causal), i.e., X(t) is
σ {W (s), s ≤ t}−measurable. Such solution were given by Iglói and Terdik [11] for time-invariant version of
SDE (1). For this purpose, let = = =(W ) := σ(W (t), t ≥ 0) (resp. =t := σ(W (s) , s ≤ t)) be the σ-algebra
generated by (W (t))t≥0 (resp. by W (s) up to time t) and let L2(=) = L2(C,=, P ) be the Hilbert space of non-
linear L2−functional of (W (t))t≥0. It is well-known that any regular second-order process (X(t))t≥0 (i.e., X(t)
is =t−measurable) admits the so-called Wiener-Itô orthogonal (or also chaotic ) representation (see for instance
Major [17]), i.e.,

X(t) = gt(0) +
∑
r≥1

1

r!

∫
Rr

gt(λ(r))e
itλ(r)dZ(λ(r)), (5)

wherein gt(0) = E {X(t)}, λ(r) = (λ1, ..., λr) ∈ Rr, λ(r) =
r∑
i=1

λi with λ(0) = λ(0) = 0, and the integrals in (5)

are the multiple Wiener-Itô stochastic integrals with respect to the stochastic measure dZ
(
λ(r)

)
=

r∏
i=1

dZ(λi) and(
gt(λ(r))

)
r≥0

are referred as the r − th evolutionary transfer functions (see Bibi [2] for more details) uniquely

determined up to symmetrization and gt(λ(r)) ∈ L2 (F ) = L2 (Cn, BCn , F ) for all t ≥ 0, i.e.,
∑
r≥0

1
r! ‖gt‖

2
<∞ for

all t, where ‖gt‖2 =
∫
Rr

∣∣gt(λ(r))
∣∣2 dF (λ(r)) with dF (λ(r)) =

1

(2π)
r dλ(r) and dλ(r) =

r∏
i=1

dλi. As a consequence

of the representation (5) is that for any ft(λ(n)) and fs(λ(m)), we have

E

{∫
Rn
ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn
Sym

{
ft(λ(n))

}
Sym

{
fs(λ(n))

}
dF (λ(n)), (6)

where δmn is the delta function and Sym
{
ft(λ(n))

}
= 1
n!

∑
π∈Π(n)

ft
(
λπ(n)

)
where Π (n) denotes the group of all

permutation of the set {1, ..., n}. Another consequence linked with (5) is the diagram formula which state that∫
R
ft(λ)dZ(λ)

∫
Rn
gs
(
λ(n)

)
dZ(λ(n)) (7)

=

∫
Rn+1

gs
(
λ(n)

)
ft (λn+1) dZ(λ(n+1)) +

n∑
k=1

∫
Rn−1

∫
R
gs
(
λ(n)

)
ft (λk)dF (λk) dZ(λ(n\k)),

where dZ(λ(n\k)) =
n∏

i=1,i6=k
dZ (λi). The following theorem due to Bibi and Merahi [3], in which a recursive

evolutionary transfer functions associated to the second-order regular solution of SDE (1) is given.
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Theorem 1
Assume that everywhere

2α (t) + γ2 (t) < 0, (8)

then the process (X(t))t≥0 generated by the SDE (1) has a regular second-order solution given by the series
(5) where the evolutionary symmetrized transfer functions of this solution are given by the symmetrization of the
solution of the following first-order differential equation

g
[1](1)
t (λ(r)) =

{
α(t)g

[1]
t (0) + µ(t), if r = 0(

α(t)− iλ(r)

)
g

[1]
t (λ(r)) + r

(
γ(t)g

[1]
t (λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1,

(9)

where g[1]
t (0) = E {X(t)} and the superscript (j) denotes j−fold differentiation with respect to t.

Remark 1
The existence and uniqueness of the evolutionary transfer functions g[1]

t (λ(r)), (t, r) ∈ R×N of (9) are ensured
by general results on linear ordinary differential equations, so

g
[1]
t (λ(r)) =


ϕ1 (t)

(
g

[1]
0 (0) +

t∫
0

ϕ−1
1 (s)µ(s)ds

)
if r = 0,

ϕ1,t

(
λ(r)

)(
g

[1]
0 (λ(r)) + r

t∫
0

ϕ−1
1,s

(
λ(r)

) (
γ(s)g

[1]
s (λ(r−1)) + δ{r=1}β(s)

)
ds

)
if r ≥ 1,

(10)

where ϕ1,t

(
λ(r)

)
= exp

{
t∫

0

(
α(s)− iλ(r)

)
ds

}
and ϕ1 (t) = ϕ1,t (0).

In time-invariant case we shall assume through the paper that

α, µ, γ, β ∈ R, γ 6= 0, αβ 6= µγ, 2α+ γ2 < 0. (11)

Remark 2
The condition αβ 6= µγ is imposed otherwise the time-invariant version of (1) has only a degenerated solution

given by X(t) = −β
γ

= −µ
α

.

Example 2
In time-invariant version and under the condition (11), the transfer functions g[1](λ(r)) for all r ∈ N are given by

g[1](λ(r))) =

{
−µ
α
, r = 0,(

iλ(r) − α
)−1 (

rγg[1](λ(r−1)) + δ{r=1}β
)
, r ≥ 1,

or equivalently g[1](λ(r)) = γr−1r!
(
β − µ

α
γ
) r∏
j=1

(
iλ(j) − α

)−1
and the symmetrized version can be rewritten as

Sym
{
g[1](λ(r))

}
= (µγ − αβ) γr−1

+∞∫
0

exp {αλ}
r∏
j=1

1− exp {−iλλj}
iλj

dλ, so

m1 = −µ
α
, R1(τ) = Cov(X(t), X(t+ τ)) = R1(0)eα|τ |, (12)

where R1(0) =
|αβ − µγ|2

α2 |2α+ γ2|
. Hence, the second-order properties for time-invariant versions of the nested models

can be easily deduced.
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2.2. Wiener-Itô representation for
(
Xk(t)

)
t≥0

In this subsection, we examine the structure of the process
(
Xk(t)

)
t≥0

, ∀k ≥ 2 in which the condition

2α(t) + (2k − 1)γ2(t) < 0, a.e., for all t ≥ 0, (13)

is imposed. The following lemma give the Wiener-Itô representation of
(
Xk(t)

)
t≥0

.

Lemma 1
Suppose that the solution process of SDE (1) is regular. Then under the condition (13), the process

(
Xk(t)

)
t≥0

is regular and has a Wiener-Itô representation, i.e.,

Xk(t) = g
[k]
t (0) +

∑
r≥1

1

r!

∫
Rr
eitλ(r)g

[k]
t (λ(r))dZ(λ(r)),

where the evolutionary transfer functions g[k]
t (λ(r)), r ≥ 0 satisfying the following first-order differential equation

g
[k](1)
t (λ(r)) (14)

=


k
(
α (t) + 1

2γ
2(t)(k − 1)

)
g

[k]
t (0) + k (γ(t)β(t)(k − 1) + µ(t)) g

[k−1]
t (0) + 1

2β
2(t)k(k − 1)g

[k−2]
t (0) if r = 0,(

k
(
α (t) + 1

2γ
2(t)(k − 1)

)
− iλ(r)

)
g

[k]
t (λ(r)) + k (γ(t)β(t)(k − 1) + µ(t)) g

[k−1]
t

(
λ(r)

)
)

+ 1
2β

2(t)k(k − 1)g
[k−2]
t

(
λ(r)

)
+ kr

(
γ(t)g

[k]
t (λ(r−1)) + β(t)g

[k−1]
t (λ(r−1))

)
if r ≥ 1

Proof
The proof follows upon the observation that by applying the Itô’s formulae for f(x) = xk for any integer k ≥ 2,
then the process

(
Xk (t)

)
t≥0

satisfying the following stochastic differential equation

dXk(t) =

(
k

(
α(t) +

1

2
γ2(t)(k − 1)

)
Xk(t) + k (µ(t) + γ(t)β(t)(k − 1))Xk−1(t) +

1

2
β2(t)k(k − 1)Xk−2(t)

)
dt

+ k
(
γ(t)Xk(t) + β(t)Xk−1(t)

)
dW (t), a.e.,

so, using the diagram formula (7) the result follows.

Remark 3
The existence and uniqueness of the evolutionary symmetrized transfer functions g[2]

t (λ(r)), (t, r) ∈ R×N given
by (14) is ensured by general results on linear ordinary differential equations (see, e.g., [13], chap. 1) so, the
evolutionary transfer functions g[k]

t are given recursively by

g
[k]
t (λ(r)) =


ϕk,t (0)

(
g

[k]
0 (0) +

t∫
0

ϕ−1
k,s (0)µ

[k]
s (0)ds

)
if r = 0,

ϕk,t
(
λ(r)

)(
g

[k]
0 (λ(r)) +

t∫
0

ϕ−1
k,s

(
λ(r)

)
µ

[k]
s (λ(r))ds

)
if r ≥ 1,

(15)

in which ϕk,t
(
λ(r)

)
= exp

{
t∫

0

(
k
(
α (s) + 1

2γ
2(s)(k − 1)

)
− iλ(r)

)
ds

}
, g[k]

t (0) = mk(t) = E
{
Xk(t)

}
, t ≥ 0,

and

µ
[k]
t (λ(r)) =


2 (γ(t)β(t) + µ(t)) g

[1]
t

(
λ(r)

)
+ β2(t)δ{r=0} + 2r

(
γ(t)g

[2]
t (λ(r−1)) + β(t)g

[1]
t (λ(r−1))

)
, k = 2,

k ((k − 1)γ(t)β(t) + µ(t)) g
[k−1]
t

(
λ(r)

)
+ 1

2k(k − 1)β2(t)g
[k−2]
t

(
λ(r)

)
+kr

(
γ(t)g

[k]
t (λ(r−1)) + β(t)g

[k−1]
t (λ(r−1))

)
, k ≥ 3,

which reduces in time-invariant case to an elegant non recursive form and the moments of the process
(
Xk(t)

)
t≥0

may be evaluated in function of their transfer functions.
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3. Moments properties of
(
Xk (t)

)
t≥0

Since (1) is non linear with deterministic coefficients, the solution process (5) is non Gaussian in general, its first
and second moment however are insufficient for its identification and hence the resort to higher order moments for
the identifiability purpose is therefore necessary. In this section, we examine the moments properties of the process(
Xk(t)

)
t≥0

,∀k ≥ 2.

Theorem 2
Let (X(t))t≥0 be the solution process of SDE (1), then under the condition (13), the mean mk(t), variance Rk(t)

and covariance functions Rk(t, s) of
(
Xk(t)

)
t≥0

, k ≥ 2 are given respectively for all t ≥ s ≥ 0 by

mk(t) (16)

= ϕk(t)ϕ−1
k (s){mk(s) + k

∫ t

s

ϕk(s)ϕ−1
k (u)

(
(µ(u) + (k − 1)γ(u)β(u))mk−1(u) +

1

2
β2(u)(k − 1)mk−2(u)

)
du},

Rk(t)

= φk(t)φ−1
k (s)Rk(s) +

∫ t

s

φk(t)φ−1
k (u)[γ2(u)m2

k(u) + 2k (µ(u) + (2k − 1)γ(u)β(u))m2k−1(u) (17)

− 2k (µ(u) + (k − 1)γ(u)β(u))mk(u)mk−1(u) + k(2k − 1)β2(u)m2k−2(u)− k(k − 1)β2(u)mk(u)mk−2(u)]du,

Rk(t, s)

= ϕk(t)ϕ−1
k (s){Rk(s) + k

∫ t

s

ϕk(s)ϕ−1
k (u)((µ(u) + γ(u)β(u)(k − 1))Cov

(
Xk−1(u), Xk(s)

)
(18)

+
1

2
β2(u)(k − 1)Cov

(
(Xk−2(u), Xk(s)

)
)du},

where ϕk(t) = exp

{
k
∫ t

0

(
α(u) +

1

2
γ2(u)(k − 1)

)
du

}
and φk(t) = exp

{
k
∫ t

0

(
2α(u) + (2k − 1)γ2(u)

)
du
}

.

Proof
The fact that g[k]

t (0) = mk(t), then from (14) we can obtain the following ordinary differential equation

m
(1)
k (t) = k

(
α (t) +

1

2
γ2(t)(k − 1)

)
mk(t) + k (γ(t)β(t)(k − 1) + µ(t))mk−1(t) +

1

2
β2(t)k(k − 1)mk−2(t),

(19)
and the expression (16) is obtained by solving the above differential equation. To prove (17) we have
V ar

{
Xk(t)

}
= Rk(t) = E

{
X2k(t)

}
−
(
E
{
Xk(t)

})2
with E

{
Xk(t)

}
= mk(t) = g

[k]
t (0) and E

{
X2k(t)

}
=

m2k(t) = g
[2k]
t (0),∀t ≥ 0 which implies that Rk(t) = g

[2k]
t (0)−

(
g

[k]
t (0)

)2

. By differentiating with respect to t

and from the formula (14) in which we substitute respectively
dg

[k]
t (0)

dt
,
dg

[2k]
t (0)

dt
we get

dRk(t)

dt
=
dg

[2k]
t (0)

dt
− 2g

[k]
t (0)

dg
[k]
t (0)

dt

= k
(
2α(t) + γ2(t)(2k − 1)

)(
g

[2k]
t (0)−

(
g

[k]
t (0)

)2
)

+ 2k (γ(t)β(t)(2k − 1) + µ(t)) g
[2k−1]
t (0)

− 2k (γ(t)β(t)(k − 1) + µ(t)) g
[k]
t (0)g

[k−1]
t (0) + β2(t)k(2k − 1)g

[2k−2]
t (0)− β2(t)k(k − 1)g

[k]
t (0)g

[k−2]
t (0)

= k
(
2α(t) + γ2(t)(2k − 1)

)
Rk(t) + 2k (γ(t)β(t)(2k − 1) + µ(t))m2k−1(t)

− 2k (γ(t)β(t)(k − 1) + µ(t))mk(t)mk−1(t) + β2(t)k(2k − 1)m2k−2(t)− β2(t)k(k − 1)mk(t)mk−2(t).
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Therefore, the expression (17) is ensured by applying the general results on linear ordinary differential equations.
It remains to prove (18), then we have for all t ≥ s

Rk(t, s) = Cov(Xk(t), Xk(s)) =
∑
r≥1

1

(r!)2
E

{∫
Rr
g

[k]
t

(
λ(r)

)
eitλ(r)dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
.

By differentiating with respect to t and the use of the formula (14) we obtain

dRk(t, s)

dt

=
∑
r≥1

1

(r!)2
E


∫
Rr

d
(
g

[k]
t

(
λ(r)

)
eitλ(r)

)
dt

dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))


=
∑
r≥1

1

(r!)2
E

{∫
Rr

(
k
(
α(t) +

1

2
(k − 1)γ2(t)

)
g

[k]
t

(
λ(r)

)
+ µ

[k]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
,

Now apply the property of orthogonality (6) to get

dRk(t, s)

dt
=

= k
(
α(t) +

1

2
(k − 1)γ2(t)

)∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}

+ k ((k − 1)γ(t)β(t) + µ(t))
∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k−1]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}

+
1

2
k(k − 1)β2(t)

∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k−2]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr
g

[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
,

which implies

dRk(t, s)

dt

= k
(
α(t) +

1

2
(k − 1)γ2(t)

)
Rk(t, s) + k ((k − 1)γ(t)β(t) + µ(t))Cov(Xk−1(t), Xk(s))

+
1

2
k(k − 1)β2(t)Cov(Xk−2(t), Xk(s)), t ≥ s,

and the expression (17) is now obtained by solving the above ordinary differential equation.

In time-invariant case, we have

Theorem 3
Consider the time-invariant of SDE (1), then under the condition (13) the moments up to the order k of the process
solution are given by the following expressions

1. If β 6= 0, we have

m1 = −µ
α

, m2 =
2(γβ + µ)µ− αβ2

α(2α+ γ2)
,

m3 =
−2(γβ + µ)µ2 + β2µ(2α+ γ2)

α(α+ γ2)(2α+ γ2)
,

m4 = −2(3γβ + µ)

(2α+ 3γ2)
m3 −

3β2

(2α+ 3γ2)
m2.
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2. If β = 0, then mk = (−1)k
∏k
j=1

µ

α+ 1
2 (j − 1)γ2

for all k ≥ 0.

Proof

1. If β 6= 0, then since g[k]
t (0) = mk(t), for k ≥ 1, thus from (9) we obtain m

(1)
1 (t) = α(t)m1(t) + µ(t). In

time-invariant case and under the condition (13), the process X(t) is second order stationary, its moments
are independent of t, so m1(t) = m1 which implies αm1 + µ = 0 and m1 = −µ

α
. For the same raison and

from the expression (14) we can obtain a difference equation for all k ≥ 2 as follows(
α+

1

2
(k − 1)γ2

)
mk + ((k − 1)γβ + µ)mk−1 +

1

2
(k − 1)β2mk−2 = 0, (20)

hence, m2 = −2 (µ+ γβ)

2α+ γ2
m1 −

β2

2α+ γ2
. The expressions for m3 and m4 maybe obtained from (19).

2. If β = 0, then in time-invariant case we obtain the difference equation (20) becomes as(
α+ 1

2 (k − 1)γ2
)
mk + µmk−1 = 0 which implies mk = − µ(

α+ 1
2 (k − 1)γ2

)mk−1,∀k ≥ 1 with m0 = 1

and hence

mk = (−1)k
k∏
j=1

µ

α+ 1
2 (j − 1)γ2

,∀k ≥ 0,

and the proof of the theorem is complete.

Example 3
Table(2) illustrated some finite-order moments for the GOU process defined by dX(t) = (µ− αX(t)) dt+
βdW (t) with α > 0 and β 6= 0.

m1 m2 m3 m4 Kurtosis Skewness

µ

α

2µ2 + αβ2

2α2

µ
(
2µ2 + 3αβ2

)
2α3

4µ4 + 10αβ2µ2 + 3α2β4

4α4
−12

α

(
µ

β

)2

−
(

2

α

) 3
2
(
µ

β

)3

Table(2): First finite-order moment of GOU process.

Remark 4
By equations (12) and Table (2) the parameters µ, α, β and γ can be expressed as function of the finite moment of
the process. Indeed,

1. For GOU process, we have α = − log

(∣∣∣∣R1(1)

R1(0)

∣∣∣∣) , µ = m1α and β2 = − 12αm2
1

Kurtosis (X)
.

2. For COBL(1, 1) and when β = 0 we obtain α = log

(∣∣∣∣R1(1)

R1(0)

∣∣∣∣) , µ = −m1α and γ2 =
−2αV ar(X)

V ar(X) +m2
1

.

These relationships can be used for estimating the processes by the moment method (MM).

4. GMM estimation

In what follows, we focus on estimating of the unknown parameters of time-invariant version. For this purpose we
shall assume that β = 0 in SDE (1) i.e.,

dX(t) = (αX(t) + µ) dt+ γX(t) dW (t). (21)
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this assumption can be fulfilled by the transformation Y (t) =
µ

(γµ− αβ)
(β+ γX(t)). So, the parameters of

interest are gathered in the vector θ= (µ, α, γ)
′ ∈ R3, its true values denoted by θ0 = (µ0, α0, γ0)

′ belonging
to an Euclidean compact permissible parameter subspace Θ of R3. In statistical literature of continuous-time
models, several techniques of estimation were proposed (interested readers are advised to see the monographs
by Bergstrom [1], Rao [19] and Kutoyants [15].and the references therein). Since, in practice, data are observed at
discrete interval and the likelihood of X(t+ 1) conditional on X(t) does not have a simple expression. However,
in recent years, a number of diffusion processes which have a similar second-order properties as a continuous-
time autoregressive moving average (CARMA) processes have been estimated via some discretization schema
and hence adaptive methods related to discrete-time linear models are however applied. So, for the SDE (21), the
Euler-Maruyama scheme yields

X(t+ ∆) = X(t) +

t+∆∫
t

(αX(s) + µ) ds+ γ

t+∆∫
t

X(s) dW (s),

where ∆ is some small enough constant sampling interval, hence an approximation of discrete-time version of
SDE (21) is given by

X(t+ 1) = X(t) + (αX(t) + µ) ∆ + η (t+ 1) , (22)

in which (η (t+ 1))t≥0 is a some white noise with E {η (t+ 1) |It} = 0 and V ar {η (t+ 1) |It} = γ2X2(t)∆
and It denotes the information available up a time t, and hence (22) can be viewed as an AR(1) model with
heteroskedasticity. This finding leads us to estimate the vector θ0 of the process in discrete-time using GMM . For
this purpose, we use the orthogonality conditions given by the vector

g
t
(θ) =

 η (t+ 1)
η2 (t+ 1)− γ2X2(t)∆(

η2 (t+ 1)− γ2X2(t)∆
)
X(t)

 ,

with Eθ0

{
g
t
(θ0)

}
=O. A GMM estimator of θ0 is defined as any measurable solution θ̂n of θ̂n =

Argmin
θ∈Θ

{
Q̂n = ĝ′

n
(θ)Wnĝn (θ)

}
where ĝn (θ) = 1

n

n∑
t=1

g
t
(θ) andWn is a sequence of positive definite weighting

matrices. Under the condition (13) for each θ ∈ Θ, the process
(
g
t
(θ)
)
t∈Z

is stationary, ergodic and fulfilled∥∥∥Eθ0 {gt (θ)
}∥∥∥ < +∞ for any θ ∈ Θ and hence, almost surely ĝn (θ)→ Eθ0

{
g

0
(θ)
}

as n→ +∞. To analyze
the large sample properties of the proposed estimator, it is necessary to impose the following regularity conditions
on the process (X(t))t∈Z, on the matrix Wn and on the parameter space Θ.

A1. The sequence of matrices (Wn) converges in probability to a non-random positive definite matrix W .

A2. The matrix Eθ0

{
∂g′

t
(θ0)

∂θ

}
WEθ0

{
∂g

t
(θ0)

∂θ

}
is a finite non-singular matrix of constants.

A3. The parameter θ0 is in the interior of Θ.

We are now in a position to state the following results.

Theorem 4
Beside the assumption (13), under the conditions A1−A3, θ̃n converges in probability to θ0.

Proof
From the first-order conditions (organized as column vector) for the minimization of Q̂n(θ) we have

∂ĝ′
n
(θ̂n)

∂θ
Wnĝn(θ̂n) = O. (23)
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Taking the first-order Taylor-series expansion of the score vector ĝn (θ) around θ0, we obtain ĝn
(
θ̂n

)
= ĝ

n
(θ0)−

∂ĝ
n
(θ∗)

∂θ

(
θ̂n − θ0

)
where θ∗ is an intermediate point on the line segment joining θ̂n and θ0. Substituting for

ĝ
n

(
θ̂n

)
into (23) yields

∂ĝ′
n
(θ̂n)

∂θ
Wn

{
ĝ
n

(θ0)−
∂ĝ

n
(θ∗)

∂θ

(
θ̂n − θ0

)}
= O. Rearranging the above expression

gives almost surely

θ̃n − θ0 =

{
∂ĝ′

n
(θ̃n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ

}−1
∂ĝ′

n
(θn)

∂θ
Wnĝn (θ0) .

Since the process (X(t))t≥0 , is an ergodic process, then under the conditions A1.−A3., we have

p lim
n→∞

∂ĝ
n
(θ̂n)

∂θ
Wn = B = Eθ0

{
∂g(θ0)

∂θ

}
W ,

p lim
n→∞

∂ĝ′
n
(θ̂n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ
= A = Eθ0

{
∂g′

t
(θ0)

∂θ

}
WEθ0

{
∂g

t
(θ0)

∂θ

}
.

Hence, from Slutsky’s and the dominated convergence theorem, it follows that

p lim
n→∞

{
∂ĝ′

n
(θ̂n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ

}−1
∂ĝ′

n
(θ̂n)

∂θ
Wn = A−1B′,

is finite, and since p lim
n→∞

ĝ
n

(θ0) = O, the weak consistency of θ̃n follows.

Theorem 5
Under the conditions of theorem 4, we have

√
n
(
θ̂n − θ0

)
; N (O,Σ (θ0)) where

Σ (θ0) = A−1Eθ0

{
∂g′(θ0)

∂θ

}
WΣasWEθ0

{
∂g(θ0)

∂θ

}
A′−1,

with Σas = lim
n→+∞

V ar
{√

nĝ
n

(θ)
}

.

Proof
The proof rests classically on a Taylor-series expansion of the score vector ĝn (θ) around θ0. Thus, by the same
argument used in Theorem 4, we have{

∂ĝ′(θ̂n)

∂θ
Wn

∂ĝ(θ̂∗)

∂θ

}(
θ̂n − θ0

)
=
∂ĝ′(θ̂n)

∂θ
Wnĝn(θ0). (24)

On the other hand, for any λ∈ R3, the sequence
{
λ′ĝ

n
(θ) , It

}
t

is a square-integrable martingale difference. The

central limit theorem and the Wold-Cramer device show that ĝ
n

(θ) ; N(O,Σas). Moreover, by (24) and by

setting A = p lim
n→∞

∂ĝ′(θ̂n)

∂θ Wn
∂ĝ(θ̂∗)

∂θ and B = p lim
n→∞

∂ĝ′(θ̂n)

∂θ Wn , the result follows from Slutsky’s theorem.

4.1. Discussion

4.1.1. The major difference between GMM and MM methods
The GMM constitute a flexible alternative to the common quasi-maximum likelihood (QML) and semi-

parametric estimators. GMM has the advantage of being simple to compute compared with semi-parametric
estimator. As a competitor toQML estimator,GMM is locally robust, asymptotically efficient with the coefficient
of skewness and excess kurtosis being important for the goodness of fit of a statistical model. Moreover, as
suggested by a referee, we list the main difference between MM and GMM .
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MM This method use sample moments to estimate the parameters of interest.

GMM GMM extends the method MM in two important ways. The first treat the problem of conditions ensuring
the existence of two or more moments which have informations about unknown parameters. The second one
is that the quantities other than sample moments can be used to estimate the parameters.

MM The obtained estimators have explicit expressions of moments

GMM The GMM is obtained by minimizing a certain quadratic form based on the averages of some functions
calculated on the available data.

MM The MM method cannot incorporate more moments than parameters, i.e., we have the same number of
sample moment conditions as the number of parameters.

GMM The GMM combines the observed data with the information in population moment conditions to produce
estimates of the unknown parameters, i.e., we may have more sample moment conditions than the number of
parameters.

MM The MM estimator is consistent, and we use a demanding condition on the moments of order greater than 8
to prove their asymptotic normality.

GMM The GMM estimators are known to be consistent, asymptotically normal and asymptotically efficient in
the class of all estimators that don’t use any extra information aside from the data contained in the moment
conditions.

Beside the above differences, in this paper, theGMM estimator is obtained fromAR(1) model after a discretization
of SDE (21), and hence the reference by Bibi and Merahi [4] is entirely different from the present.

4.1.2. Optimal choice of weight matrix
We now discuss the optimal choice of weight matrix W which matters for asymptotic efficiency. Although the

choice does not affect the asymptotic properties of GMM , very little is known about the impacts in finite samples.
Indeed, it is clear that the asymptotic variance of θ̂n depends onWn viaW . Then, with an appropriate choice ofW ,
it is possible to minimize the asymptotic variance of θ̂n. Indeed, the minimum variance that can be achieved is when

W = Σ−1
as . In this particular case, the asymptotic variance of θ̂n is

{
Eθ0

{
∂g′

θ0

∂θ

}
Σ−1
as Eθ0

{
∂g

θ0

∂θ

}}−1

and nQ̂n

has an asymptotic chi-square distribution with an appropriate degrees of freedom. One can note that this choice
is only sufficient for efficiency. Hence, estimating the matrix Σas by a consistent estimator Σ̂as is crucial since: i)
it is the optimal weighting matrix of GMM ; ii) it is a part of the construction of θ̂n and its asymptotic variance
(needed to construct confidence intervals and to make statistical tests available based on θ̂n). In practice, the Newey-
West estimator can be used V̂n = Ω̂n(0) + 2

∑q
j=1K

(
j
q

)
Ω̂n(j) where Ω̂n(j) = n−1

∑n
t=j+1G(t)G(t− j) with

G(n) = 1
n

∑n
t=1 gt

(
θ̂n

)
. The truncated lag q needs to go to infinity at some appropriate rate with respect

to the sample, and the kernel K(.) is assumed to belong to {k : R→ [−1, 1] | k(0) = 1, k(x) = k(−x),∀x ∈
R,
∫
|k(x)|dx <∞, and k is continuous but at some countable points}. Examples of such kernel weights are

given in Table(3) below.

Names Expressions Names Expressions

Truncated kT (x) =

{
1 if | x| ≤ 1,
0 otherwise,

Parzen kP (x) =

 1− 6x2 + 6|x|3 if |x| ≤ 1/2,

2(1− |x|)3 if 1/2 < |x| ≤ 1,
0 otherwise

Bartlett kB(x) =

{
1− |x| if |x| ≤ 1,
0 otherwise,

Tukey-Hanning kH(x) =

{
(1 + cosπx)/2 if |x| ≤ 1,
0 otherwise,

Table(3): Example of kernel weights.

It can be shown that Bartlett and Parzen kernels all product positive semi-definite estimates of V while this is not necessarily
with truncated and Tukey-Hanning kernels.
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4.1.3. Computation the matrices W in Newey-West estimator
In practice, the construction of the weight matrix W is obtained by the following algorithm

Algorithm Matlab

1. Given kernel K (.), q : lags, N : number of observations
2. Input: Data {X(1), ...X(N)},

First step; (W = I)

for i = 0 : N
GU = G(1 + i : end, :)
GL = G(1 : end− i, :)
V (:, :, i+ 1) = GU ′ ∗GL/N
end
Second step: (HAC)

S = V (:, :, 1)
for i = 1 : q
Snext = 2 ∗ k(v) ∗ V (:, :, i+ 1)
S = S + Snext
end
W = inv(S)

5. Empirical evidence

5.1. Simulation study
This subsection, discusses a simulation study in order to clarify the theory investigated in the previous chapters by confirming
the consistency and asymptotic normality of the GMM estimator and by illustrating its performance compared with respect
to moment method using the equations in Table(2). In order to do so, we simulated n = 500 independent trajectories via
some specifications of COBL (1, 1) model with length N ∈ {1000, 2000} driven by a standard Bm distribution and vector
of parameters θ described in the bottom of each table below. The vector θ is chosen to satisfied the second order stationarity
and the existence of moments up to fourth order. For the purpose of illustration, we consider the following models

Model (1) : dX(t) = (αX(t) + µ) dt+ βdW (t),
Model (2) : dX(t) = (αX(t) + µ) dt+ βX(t)dW (t),

their vector of parameters θ= (µ, α, β)′ is estimated by the GMM algorithm noted θ̂g and as a parameter of configuration
we estimate θ by the moment method noted θ̂m. Both methods have been executed under the MATLAB′8 using
”fminsearch.m” as a minimizer function. In Tables below, the column “Mean” correspond to the average of the parameters
estimates over the n = 500 simulations. In order to show the performance of (G)MM , we have reported in each table the
root mean squared error (RMSE) (results between brackets). First, from theorem 3, Table(2) and under the condition (13),
the fourth-order moments for Model(1) and Model(2) are given by Table(4).

m1 m2 m3 m4

Model (1) −µ
α

2µ2 − αβ2

2α2

µ
(
3αβ2 − 2µ2

)
2α3

4µ4 − 10αβ2µ2 + 3α2β4

4α4

Model (2) −µ
α

−2µ

2α+ β2
m1

µ

α+ β2
m2

2µ

2α+ 3µ2
m3

Table(4). Fourth-order moment of Model(i), i = 1, 2.

The vectors g(i)
t

(θ), i = 1, 2, of orthogonality conditions associated to Model(i), i = 1, 2 are

g(1)
t

(θ) =

 X(t+ 1)− a∗X(t)− µ∗

(X(t+ 1)− a∗X(t)− µ∗)2 − γ∗2(
(X(t+ 1)− a∗X(t)− µ∗)2 − γ∗2

)
X(t)

 ,
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g(2)
t

(θ) =

 X(t+ 1)− a∗X(t)− µ∗

(X(t+ 1)− a∗X(t)− µ∗)2 − γ∗2X2(t)(
(X(t+ 1)− a∗X(t)− µ∗)2 − γ∗2X2(t)

)
X(t)

 ,

where µ∗ = µ∆, a∗ = 1 + a∆ and γ∗ = γ
√

∆. Based on relationships given in theorem 3, Table(4) and the vectors g(i)
t,

(θ),
i = 1, 2, we obtain

5.1.1. Model (1)
The results of estimating the Model(1) are summarized in Table(5).

N = 1000 N = 2000 N = 1000 N = 2000

θ̂
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM

µ̂
0.2556

(0.0352)
0.2538

(0.0402)
0.2516

(0.0183)
0.2569

(0.0271)
2.0475

(0.0374)
2.0042

(0.0271)
2.0031

(0.0344)
2.0200

(0.0331)

α̂
−1.5338
(0.0287)

−1.5391
(0.0302)

−1.5218
(0.0325)

−1.5310
(0.0210)

−0.5304
(0.0862)

−0.5151
(0.0672)

−0.5003
(0.0802)

−0.5031
(0.0770)

β̂
0.7462

(0.0101)
0.7493

(0.0213)
0.7450

(0.1022)
0.7492

(0.0151)
−1.4903
(0.0441)

−1.5359
(0.0451)

−1.4947
(0.0345)

−1.4947
(0.0345)

Design(1): θ = (0.25,−1.5, 0.75)′ Design(2): θ = (2.0,−0.5,−1.5)′

Table(5): (G)MM estimation of Model(1).

The plots of asymptotic density of each component of θ̂ according to two methods are summarized in the Figure 1.

-20 0 20
0

0.05

0.1

0.15

0.2

0.25

cµg
cµm

-40 -20 0 20
0

0.02

0.04

0.06

0.08

0.1

c�g
c�m

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

b�g
c�m

1 2

1.cµg, 2. cµm

0

0.2

0.4

0.6

1 2

1.c�g, 2. c�m

-2.5

-2

-1.5

1 2

1. b�g, 2.c�m

0.7

0.72

0.74

0.76

0.78

0.8

Figure 1. Top panels: the overlay of asymptotic distribution of
√
n(θ̂g(i)− θ(i)) (resp.

√
n(θ̂m(i)− θ(i))). Bottom panels:

Box plot summary of θ̂g(i) (resp, θ̂m(i)) i = 1, ..., 3, according to Design(1) of Table(5).
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5.1.2. Model (2)
For the second model, we report the results of its estimation in the Table(6).

N = 1000 N = 2000 N = 1000 N = 2000

θ̂
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM

µ̂
0.2520

(0.0192)
0.2532

(0.0187)
0.2501

(0.0172)
0.2506

(0.0162)
0.5026

(0.0171)
0.5060

(0.0191)
0.5038

(0.0143)
0.5021

(0.0201)

α̂
−1.4879
(0.0307)

−1.5352
(0.0452)

−1.5080
(0.0217)

−1.5064
(0.0251)

−1.5724
(0.0161)

−1.5307
(0.0142)

−1.5058
(0.0201)

−1.5072
(0.0162)

β̂
0.7537

(0.0121)
0.7449

(0.0157)
0.7449

(0.0157)
0.7512

(0.0609)
−0.50139
(0.0201)

−0.4946
(0.0211)

−0.4982
(0.0125)

−0.4920
(0.0302)

Design(1): θ = (0.25,−1.5, 0.75)′ Design(2): θ = (0.5,−1.5,−0.5)′

Table(6): (G)MM estimation of Model(2) .

The plots of asymptotic density of each parameter in θ̂ according to two methods are summarized in Figure 2.
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Figure 2. Top panels: the overlay of asymptotic distribution of
√
n(θ̂g(i)− θ(i)) (resp.

√
n(θ̂m(i)− θ(i))). Bottom panels:

Box plot summary of θ̂g(i) (resp, θ̂m(i)) i = 1, 2, 3, according to Design(1) of Table(6).
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Now, a few comments are in order. By inspecting Table(5), it is clear that the results of GMM and of MM methods are
reasonably close on each other and also for their RMSE with non significant deviation. These observations maybe seen
by regarding the plots of asymptotic distributions of their kernels estimates and their elementary statistics summarized in
box plots which represents a strong similarities. This finding is however violated in Table(6). Indeed, it is obvious that the
estimators θ̂m and θ̂g of the true values of unknown parameters, shows certain differences regarding the plots presented in
Figure 2. in particular, the asymptotic variances of θ̂g (i) are smaller than of θ̂g(i), i = 1, 2, 3 Moreover, it can be seen from
their box plots, that the elementary statistics of two methods represents a significant dissimilarities, in particular the GMM
displays more outliers than MM , this is not surprising due to robustness properties of GMM (if and only if the function
defining the orthogonality restrictions imposed on the underlying model is bounded) and hence its capability to detect the
outliers in large data.

5.2. Real data analysis
In this subsection, the proposed method is now investigated to real financial time series. So we apply the method to two
foreign exchange rates of Algerian Dinar against U.S.-Dollar (USD/DZD) and against the single European currency
Euro (EUR/DZD), noted respectively

(
yd (t)

)
and (ye(t)) collected from January 3, 2000 to September 29, 2011. After

removing the days when the market was closed (weekends, holidays,...), we provide 3055 observations of each series
Table(7) below provides descriptive statistics of such series.

Series means Std.Dev Median Skewness Kurtosis J. Bera
ye(t) 88.61 11.57 91.09 −0.51 2.13 232.46

yd(t) 73.45 4.24 73.12 −0.60 3.76 258.00

Table(7): Descriptive statistics of the series (ye(t))t≥1,
(
yd(t)

)
t≥1

.

As a first finding, it is seen from the Jarque-Bera (J.Bera) normality test that the series yd (t) and ye(t) are not normally
distributed, this excludes its modelling by a GOU model. Figure 3 displays a plot of the series

(
yd (t)

)
and (ye(t)).
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Figure 3. Top panel: trajectory of price of USD/DZD. Bottom panel: trajectory of price of EUR/DZD.
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A rapid examination shows that the series
(
yd (t)

)
and (ye(t)) exhibit nonlinear behavior. Moreover, the sample partial

autocorrelation function (PACF ) of prices series
(
yd (t)

)
and (ye(t)) are plotted in Figure 4.
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1
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Figure 4. The PACF of the prices series
(
yd (t)

)
and (ye(t)).

It can be observed that the decreasing towards zero of the empirical PACF computed for 30 lags with 95% confidence-limits
for two series is insignificant. More precisely, the PACF in Figure 4 appears to die out slowly, showing the possibility of
the processes

(
yd (t)

)
and (ye(t)) are mostly close to being non-stationary. Part of this non-stationarity is caused by some

outliers due to fall of the prices values of the series between March 19, 2010 and September 21, 2010, The PACF of
prices reveals also some mild serial correlation and illustrates significant degree of persistence in variance, which implies
that we need a AR(1) with first and second conditional moment restriction of residual subjected to E {η (t) |It−1} = 0 and
V ar {η (t) |It−1} = γ2X2(t− 1)∆. The results of (G)MM estimates followed by their RMSE (results between bracket)
of the series of prices (ye(t))t≥1 and

(
yd(t)

)
t≥1

noted hereafter (ŷe(t))t≥1 and
(
ŷd(t)

)
t≥1

via model(2) are given in

Table(8).

MM GMM

θ µ α β µ α β

ŷe(t)
17.2911
(0.0307)

−0.1952
(0.0101)

0.0807
(0.0812)

17.4418
(0.0725)

−0.2125
(0.0613)

0.0771
(0.0621)

ŷd(t)
25.3216
(0.0501)

−0.3447
(0.0817)

0.0479
(0.1002)

24.1221
(0.1320)

−1.0447
(0.1522)

0.0378
(0.0204)

Table(8): The (G)MM estimates of (ye(t))t≥1,
(
yd(t)

)
t≥1

.

The graphics of original series ye(t) and yd(t) stacked on their estimates series ŷe(t) and ŷd(t) by a MM method are shown
in Figure 5 and Figure 6 below.
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Figure 5. The MM fit of ye(t).
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Figure 6. The MM fit of yd(t).

It is clear, regarding each of the Figure 5 and Figure 6, that the plots of actual series ye(t) and yd(t) (dashed line) display
a very similar pattern with respect to their estimates ŷe(t) and ŷd(t) (continuous line) via MM method, so the resulting
models provide good estimates for the data, The second tentative is to fit the series ye(t) and yd(t) by a GMM method. The
following overlay in Figure 7 and Figure 8 show the trajectories of the original series compared with their estimates via a
GMM method.
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Figure 7. The GMM fit of ye(t).
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Figure 8. The GMM fit of yd(t).

As seen in the overlay plots for each series, there is no significant difference between the actual and the estimated values,
and hence, the goodness fit of the series ye(t) and yd(t) by GMM method is proved.
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6. Summary

In this paper, we have provided a probabilistic and statistical analysis followed by empirical evidence of time-continuous
bilinear models characterized by certain stochastic differential equation with time varying coefficients driven by a Bm.
The main aim of considering this class of models is twofold, the first is to give a solution in frequency domain based
on associated evolutionary transfer functions system which is pertinent to the continuation of the development of non-
linear SDE identification procedures. We have observed the second-order properties of solutions process as L2−functional
in Wiener space. Moreover, Wiener-Itô representation is given under the assumption of regularity, providing a natural
generalization of the stochastic spectral representation in time-discrete Gaussian case.

The second aim, we propose an empirical methodology motivated by the estimation of the discretized time-invariant
model via a GMM method. So, the consistency and the asymptotic normality are proved. This method is illustrated by a
Monte-Carlo study and in order to make our results comparable with the existing literature, we have preferred to compare
it with a MM method. The motivation of the investigation in this work is the application of diffusion models to model two
foreign exchange rates of Algerian Dinar against U.S.-Dollar (USD/DZ) and against the single European currency Euro
(EUR/DZ). The results of simulation and/or of the application shows the interest of the proposal methods whether their
asymptotic properties or in modelling the real data. Note at the end, that the results of such nature have never appeared in
the literature of diffusion models, although the area has been considered for a long time.

Acknowledgement

The authors would like to thank the editors and the anonymous referees for their valuable comments and suggestions to
improve the presentation of this paper.

REFERENCES

1. A. R. Bergstrom, Continuous Time Econometric Modelling, Advanced Texts In Econometrics, Oxford University Press, Oxford,
1990.

2. A. Bibi, Evolutionary Transfer Functions of Bilinear Processes with Time-Varying Coefficients, Computers and Mathematics with
Applications, vol. 52, pp. 331–338, 2006.

3. A. Bibi, and F. Merahi, A note on L2-structure of continuous-time bilinear processes with time-varying coefficients, International
Journal of Statistics and Probability, vol. 4, no. 3, pp. 150–160, 2015.

4. A. Bibi, and F. Merahi, Moment method estimation of first-order continuous-time bilinear processes, Communications in Statistics-
Simulation and Computation, vol. 48, no. 4, pp. 1070–1087, 2019.

5. T. Bollerslev, and H. Zhoub, Estimating stochastic volatility diffusion using conditional moments of integrated volatility, Journal of
Econometrics, vol. 109, pp. 33–65, 2002.

6. M. Carrasco, and J-P. Florens. Simulation-Based Method of Moments and Efficiency, Journal of Business & Economic Statistics,
vol. 20, no. 4, pp. 482–492, 2002.

7. K. C. Chan, G. A. Karolyi, F. A. Longstaff, and A. B. Sanders, An Empirical Comparison of Alternative Models of the Short-Term
Interest Rate, Journal of finance, vol. 47, no. 3, pp. 1209–1227, 1992.
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