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1. Introduction

In many real-world examples, known classical distributions do not provide a good fit to real data. Several
continuous univariate distributions have been extensively used in literature for modeling data in many areas
such as economics, engineering, biological studies and environmental sciences. However, applied areas such as
finance, lifetime analysis and insurance clearly require extended forms of these distributions. So, several classes of
distributions have been constructed by extending common families of continuous distributions. These generalized
distributions provide more exibility by adding one (or more) parameters to a baseline model.
The main aim of the paper is to propose a new family of distributions from the Topp and Leone’s distribution that
can have the bathtub shaped hazard rate to be used for lifetime modeling. Recently, several properties of the Topp
and Leone’s distribution have been studied by several authors. We mention some of them: moments Nadarajah and
Kotz [20], reliability measures and stochastic orderings Ghitany et al. [9], distributions of sums, products and ratios
Zhou et al. [31], behavior of kurtosis Kotz and Seier [17]; record values Zghoul [30], moments of order statistics
Genc [7], stress-strength modeling Genc [8] and Bayesian estimation under trimmed samples Sindhu [27].
The distribution Topp and Leone it is a one-parameter distribution with the cumulative distribution function (cdf)
specified by

Pro(e) = [1-(1-2)"]’,
where 0 < < 1 and b > 0. Having only one parameter and its domain restricted to (0,1), Topp and Leone’s
distribution is not very flexible.
Consider starting from a parent continuous distribution function G(z). A natural way of generating families of
distributions on some other support from a simple starting parent distribution with pdf g(z) = dG(x)/dx is to
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apply the quantile function to a family of distributions on the interval (0, 1).
Brito et. al., [5] combined the work of Topp and Leone [29] and cdf of the odd log-logistic distribution to construct
a new class of TLOLL generalized distributions. The cdf of the OLL-G family is given by

_ G(x;6)°
For-c) = G+ G e

for a > 0, G(z) is a baseline cdf and G(x) = 1 — G(z). From an arbitrary parent cdf G(z), the cdf F(x) of the
TLOLL-Gumble distribution is defined by

b
, B Glx;6)° ’
Flzia,0,€) = {1‘ [1‘ G(x;ﬁ)“+G(z;€)“} } ’ M

where a and b > 0 are shape parameters and £ is the vector of parameters of the baseline G distribution.
The probability density function (pdf) corresponding to (1) is given by

2abg(z; €)G(z; €)1 G(x; €)%
[G(x;€)e + Glz; €)7)

b—1
[ G ’
X{l : Gm@w+Gmaw}} | ?

We denote by X ~ TLOLL — G(a,b,€) a random variable having density function (2). The TLOLL-Gumbel
model is obtained by inserting the Gumbel distribution as a parent model in the Topp-Leone odd log-logistic
family.

Furthermore, the basic motivations for using the TLOLL-Gumble family in practice are the following:

f(z;a,0,6) =

to produce a skewness and kurtosis distribution;

to construct heavy-tailed distributions for modeling real data;

to generate distributions with symmetric, left-skewed, right-skewed or reversed-J shape;

to provide consistently better fits than other generated models under the same underlying distribution.

Simulating the TLOLL-Gumble random variable is straightforward. If U has a uniform distribution on the unit
interval (0, 1), the solution of the equation,

o [(1 _ ul/b)_l/2 _ 1}1/&
T =G {1+[(1_u1/b)1/2_1]1/a : 3)

This paper is organized as follows. In Section 2, we defined The Topp-Leone Odd Log-Logistic Gumbel family
of distributions. In Section 3, some of its mathematical properties are obtained including asymptotics, useful
expansions, moments, generating Function, Rényi entropy and order statistics. Inference for the model parameters
is performed in Section 4. A simulation study is presented in Section 5. Applications to two real data sets illustrate
the performance of the proposed models in Section 6. The paper is concluded in Section 7.

2. The Topp-Leone odd log-logistic Gumbel Distribution

Gumbel (1958) gave detailed results on extreme value theory in his book Statistics of Extremes. Furthermore,
Gumbel [10] has been referred to by Johnson et al. [13] as the first to bring attention to the possibility of using the
Gumbel distribution to model extreme values of random data. For more information on extreme value distributions,
see Johnson et al. [13], Gumbel [10], Kotz and Nadarajah [16] and Beirlant et al. [2].

The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. It
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is also known as the extreme value distribution of type I. Some of its recent application areas in engineering include
flood frequency analysis, network engineering, nuclear engineering, offshore engineering, risk-based engineering,
space engineering, software reliability engineering, structural engineering, and wind engineering.

In this section we introduce the new distribution. The Gumble distribution pdf has,

& Zﬁx—,u

G(a; p,0) = exp (—e %) =—

)

and it’s cdf is, )
9(@;p,0) = —exp [~ (z+e77)],

and G(z;pu,0) =1 — G(x;u,0). wherez € R, p € Rand o > 0.
The cdf of TLOLL-Gumbel distribution is,

b
‘a o) = _ (1 _exp(_e_z>)a ’
F(x;a,b,p,0) = ll ([exp (—e=2)]" +[1 — exp (—ez)]a> 1 ’

where ¢ > 0 and b > 0.
The pdf of TLOLL-Gumbel distribution is,

2abexp (— (z+e %)) exp(—(a—1)e™*) (1 —exp (—e‘z))Qa_1

o {[exp (—e=*)]* + [1 — exp (—e=%)]*}’
b—1

- (1—exp(—e=))" ’
" ll (o S en ey 1 | @

The special cases of the proposed family is:
Taking a = 1 in TLOLL-Gumbel family, we obtain TL-Gumbel distributions with the following pdf.

f(z;a,b,p,0) =

frbno) = 2 o[- (4 e )] (1o (- {1 [1-ew ()}

Some shapes of the TLOLL-Gumble pdf are displayed in Figures 1. This Figures shows the plots of pdf TLOLL-
Gumble for selected parameter values. Different skewed density functions including mild and high skewed ones
(positive and negative) for selected parameter values. The TLOLL-Gumble family contains the very flexible skewed
density function (unimodal and bimodal) that is useful in fitting real data sets (see Section 6).

3. Some mathematical properties

In this section, we obtain some statistical properties such as : asymptotics, useful expansions, moments, generating
function, Rényi entropy and order statistic Brito et al., [5] and Andrade et al., [1]. In addition, plots of the skewness,
kurtosis and entropy are presented.

3.1. Asymptotics

Corollary 1
The asymptotics of F(x), f(z) and 7(z) as # — —oo are given by

F(x) ~ (2a)’ exp (—be %) as T — —00,

f(z) ~ b(2a)’zexp [— (2 +be™?)] as T — —00,

and

T(x) ~ bze™? as x — —o0.
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Figure 1. The sample curves of density function of TLOLL-Gumbel.

Corollary 2
The asymptotics of F'(x), f(x) and 7(z) as  — oo are given by
1 — F(z) ~ be~2%* as T — 00,
f(z) ~ 2abze 2% as T — 00,
and
T(z) ~ 20z as T — o0.

3.2. Useful expansions
First the binomial epansions,
- =S (4)w )
§j=0

holds for —1 < u < 1 and any a > 0 any real non-integer.
Second, using the generalized binomial expansion (5) we can rewrite (4),

—z\\a 2)°
e i =
, 0“”@ e e

7

) S/ (] () -

F(x)

(]

i=0j {lexp (—e=)]" + [1 — exp (—e=*)|"}’
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Third, we can expand G(x)’® = exp (—jae™?) as,

o

exp (—jae_z) = Za;w‘ exp (—ke_z) ,
k=0
where
> N (1
s =20 (V) ()
1=k
and
{exp (ae™®) + [1—exp (=e7*)]"} = 3 by jexp 2,
where
bk] - hk(a ])
is defined in Appendix A.
Fourth, we can write,
exp (—jae™ %) Zk 0 k,j €xp ( B Z o exp Z)
2J )

{lexp (—e)]" + [L—exp (—e )"} Lo brjexp(

where ¢ ; = ag,;/bo,; and, for k > 1, we have,

k
1 1
Chj=7— | kj— 77— E b,jCh—r,j | -
j boj =

bO,J

Then, the cdf of the TLOLL-Gumbel distribution can be expressed as,

CEEr () Fane o

i,k=0 j=0

where IIj(z) = exp (—ke™) and, dy = o OZ o(=1)7 () (2;)0;” The corresponding TLOLL-Gumbel
density function follows by differentiating equation (7)

= Zwk+1ﬂ'k+1(1’). (8)
k=0

where 7141 () is given by

(k+1)

Thy1(2) = exp{—[z+ (k+ 1) exp (=2)[}.

In Table 1, for matching the power series expansion in equation (8) with the density f(x), we produced a table for
multiple values of parameters and different values of x to compare the sum to the density. As shown in the Table
1, with increasing the value of the b parameter the accuracy of the density function estimation is increased. This is
due to the fact that in the combination ( ) of F(z) in equation (6), more sentences are considered together and, as
a result, accuracy increases.
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Table 1. Real and Estimated Values of f(x;a, b, u, o) for some values of (z;a, b, u, o)

(z;0,0,0,1) [ f f ] (%0,6,2,3) | f f
(1;1,5) 0.6561102 0.6263780 (5:1,5) 0.2187034 0.1954593
(1;1,10) 0.6499662 0.6400196 (5;1,10) 0.2166554 0.2133399
(1;2,5) 0.5101664 0.4870044 (5:2,5) 0.1700555 0.1623348
(1;2,10) 0.8484403 0.8483221 (5;2,10) 0.2828134 0.282774
(1;3,5) 0.2111149 0.2096979 (5;3,5) 0.07037165 0.06989931
(1;3,10) 0.4058773 0.4058771 (5:3,10) 0.1352924 0.1352924

3.3. Moments

It is hardly necessary to emphasize the importance of calculating the moments of a random variable in statistical
analysis, particularly in applied work. Some key features of a distribution such as skewness and kurtosis can be
studied through its moments. The nth moment of X can be determined from (7) as,

M;I:E(Xn) = / x”Zwk_,_lﬂ'k_,_l(x)dx
k=0

Ll < T — U T — W
= ;;(k—i— 1)wk+1/_oox exp{— [T + (k+1)exp <— . )}}dm,
which, on setting © = exp [—(z — u)/o], it reduces to,
BOC) = Y (k4 D | (= 0 log(u)" exp {—u(k + 1)} do
k=0 0

Using the binomial expansion for (@ — o log(z))™, E(X™) can be expressed as,

oo oo

B = Y30+ 1) () (o [ Boutufexp [-ulh + 1] ©
k=0 i=0 0
Using a result by Nadarajah (2006), I(i, k) = fooo log(u)]" exp [~u(k + 1)] du reduces to,

I(i,k) = (i) [(k+1)7T(a)] |a=1. (10)

By combining (9) and (10), the nth moment of X becomes,

p0e) = 334 1 (M) oy () [+ 0701 @] oo

k=0 i=0
The measures of skewness and kurtosis of the TLOLL-Gumbel distribution can be obtained as,
p5 — 3unpt +2(p)?
3
(15 — (p1)%)?

Skewness(X) =

and
iy — Ap e+ 62w — 3(14)*
(1o — (11)?) ’
respectively. Plots of skewness and kurtosis of the TLOLL-Gumbel distribution are displayed in Figure 2. As shown

in this figure, when o increases, skewness and kurtosis decreases. Also, When p increases, skewnessandkurtosis
does not change and for a and b values, there is no fixed pattern either.

Kurtosis(X) =
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Figure 2. Skewness and Kurtosis for TLOLL-Gumbel.

3.4. Generating Function

The moment generating function (mgf) of X is computed as follows,

oo o]
M(t) = Zwk+1/ ey (x)d,
k=0 >

o0 o)

(e D [ e ep {- [T 4 k+ Dewp (<22 fa,

k=0 b

1
o

Setting u = exp [—(x — p) /o], M(t) reduces to,

o0

M(t) = % Z(k + Dwg41 /OO ™ exp[—(k + 1)u]du.
k=0 0

Using a result by Cordeiro et al. [6]), we have,
I(k) = / u” " exp[—(k + 1)u|du = T'(1 — 20)(k + 1)*.
0

and then

M(t) = " T(1 = to) > (k+1)" w1,
k=0
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3.5. Rényi entropy

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The Rényi entropy
is defined by,

Ii(X)=(1-0)"" log/C>o f@)’hxz, 6>0 and §#1.

Then we have,

ey = Gy S Sy (MY () (100D o ey

i,k=0 j=0 J
exp(—(0(a—1)+aj+ k)e ) |
{[exp (—e=#)]" + [1 — exp (—e=2)]*}Y "

but,

exp(—(6(a—1)+aj + k)e™? P , e?) >
7((}(( ) 7). )aj+2* lobijk =67, p(exp(—1
{exp[—e=#)]" 4+ [1 — exp (—e—?right)]"} Zz 09,5, . (ex ( =0

where,

. o~ i1 (Oa—1) +aj+ k(i 5,5,k
apjr = Z(l)ﬁl( ; 1) 00,5,k = b*ijv

1=0 0,5,k

and b;"A’M = hy(a, j + 2) is deffined in appendix, and for [ > 1,

or 1 b
ikl = b* _]kl 7.k, 7,/@1 r| -
lJv r=0

7,k,0
Then
5 00 2%
I5(X) = T log(2af) + (1= 0)""log | D > wi;,l(3.0)]
i,k,1=0 j=0
where,
. ii [0(b—1 20\ (6(2a— 1)\ ., .
Wy gk = (=1) +J< ( i )>< >< ( I )>5z,j,k(075717], k),
J
and

.7(5,1):/00 %exp{— [0z +e % (0+1)]} da,

which, on setting © = exp (—z), it reduces to,

0,61
1(6,1) = /0 . exp{—u(d+1)}dr= a(g(—f)l)‘s'

In Figure 3 one can see some curves of the entropy function of the TLOLL-Gumbel distribution for some
parameters.
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Figure 3. Plots of Rényi entropy of TLOLL-Gumbel distribution for parameters.

3.6. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, ..., X, is a random sample from any TLOLL-Gumbel distribution. Let X;.,, denote the ith order
statistic. The pdf of X;.,, can be expressed as,

1

fin@ = pn /@@ L FE@
B ;n—i_ j n—1 r xj+i_1
- B(i,n—i+1)j:0( 1) ( j >f( ) F () :

We use the result 0.314 of Gradshteyn and Ryzhik [11] for a power series raised to a positive integer n (for n > 1),

o0 n o0
a; u = Cnil,

i=0 i=0
where the coefficients ¢, ; (fori = 1,2, ...) are determined from the recurrence equation (with ¢, o = ag),
i
Cni = (iag) ™" Y [m(n+1) = i am cn i m.-
m=1

We can demonstrate that the density function of the ith order statistic of any TLOLL-Gumbel distribution can
be expressed as,

Fin(@) = D Mk Trha (1) = ) mnkw

r,k=0 r,k=0

exp{—[z+ (r+k+1)exp(—2)]},
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where,
Mg = nl(r+1) (-1l nz_:z (—1)j‘fj+z:—1,.k7
(r+k+1) = (n—1i—j)y!

where c, is given by (7) and the quantities f; ;1 can be determined given that f; ;1,0 = b{f’i’_l and recursively
we have:

k
fiviciw = (kdo) ™" Z[m (J+1) — Kkl dm fjri-1k—m, kb > 1.

m=1

4. Inference

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method
is the most commonly employed. The maximum likelihood estimators (MLEs) enjoy desirable properties and can
be used when constructing confidence intervals and also in test statistics.

The normal approximation for these estimators in large sample theory is easily handled either analytically or
numerically. So, we consider the estimation of the unknown parameters from complete samples only by maximum
likelihood.

Let © be the (p x 1) parameter vector. Under standard regularity conditions when n — oo, the distribution of 6
can be approximated by a multivariate normal N, (0, J (@)_1) distribution to construct approximate confidence

intervals for the parameters. Here, J (é) is the total observed information matrix evaluated at ©.

4.1. Likelihood of the TLOLL-Gumbel family

Let z1,...,x, be the observed values from the TLOLL-Gumbel distribution with parameters a, b, 4 and o. Let
O = (o, 3,\,0) " be the r x 1 parameter vector. Then, the log-likelihood function for the vector of parameters
O = (a,b, u,0), say L(©), is given by To simplify, assume that the distribution and density of Gumbel function is
as follows:

— Ty — W
t; = G iy s = —e F i = )
(zis p,0) = exp (—e ) & z .
and
i _,
9(w;p,0) = —e™ 7,
g
Then, the log-likelihood function can be written as follows:
L(O) =1log[L(O)] = nlog2+nloga+nlogb—nlogo — Zzz —ay e*
=0 i=0

+(2a—1) Zlog (1—1t;)— 3Zlogw(zi) +((b-1) Zlogp,», an
i=0 i=0 i=0

where w(z;) = [exp (—e~)]" + [1 — exp (—e~*)]" and p; = 1 — (15)?

The log-likelihood function (11) can be maximized either directly by using the SAS (PROC NLMIXED) or the Ox
program (sub-routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (11).

, , T
The score vector components, say U, (0) = 8% = (%{;, dgg, %ﬁj, 88@;) = (U,,Uy,Up,U,) T are given by,
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n n no (@ n o (a)
Ug=24+> e +2%" log(l—t)—3Y v + (b—1) P};l =0
i=1 i=1 i=1
Up=73 + ?_Ologpl =0
" a n s n n w n p,(.“)
Up=3—92i0e " —QRa-1)3 " =3 i ouiy t(0—-1) ; =0
. N o e @ no (o)
Up=—24 L5 2+ 2370 jzie7 —(2a—1)> ", tt— 3> vy T (b—1) ; P;i =0
where,
tE“) = g—ﬁ =—Lexp(—z —e %)
tgg) = % = —% exXp (_ZZ — e_zi)
i = G = (1= )" In (L~ t;) — exp (—2 — ae™*)
wit) = %—“: ==t [e:z:p (—zi —ae™ ) (1 —t;)* " — exp (—2; — ae™ %)
wEU) = % = =%k [emp(fzi —ae %) —exp(—z —e ) (1 — ti)a_l

(@) _ dps _ _ o2 (1—t,) ln(l—t,;)—emp(—zi—a67 1)
by = 34 = 2exp( 2e ) (exp(ae*ﬂ)#*(lfti)a)g

) _ op _ ((exp(e™)+a—1)(1—t;)"exp(ae™) + (1 —a)exp(e”*) +a—1)

b, = = a
n o(exp(e=#)—1)((1 —exp(e%))" exp (ae™%) + 1)3
x2exp (—z; + 2(a — 1)e™*)
©) _ om (eefz’: - 1) (exp(e™®)+a—1)—(a—1exp(e®)+a—1
pi = % = 2

o2 ((exp (e=#) — 1)* + 1)3 (exp(e7#) —1)
e~ "i((0z:)e* ~2(a=1)o)

x2 (0z;)exp | —

Setting the nonlinear system of equations U, = U, = U, = U,, and solving them simultaneously yields the M LE
of © = (a,b, p,0)7, i.e. © = (a,b, i, 5) 7. These equations cannot be solved analytically and statistical software
can be used to solve them numerically using iterative methods such as the Newton-Raphson type algorithms.

For interval estimation of (a,b,u,c) and hypothesis tests on these parameters, we obtain the observed
information matrix since the expected information matrix is very complicated and requires numerical integration.
The 4 x 4 observed information matrix J(©), becomes as follows:

Jaa Jab Jau JG.U
o Joo Jop Joo
J(0) = Jup Juo ’
J

[exen

whose elements are given in Appendix B.

Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary,
the asymptotic distribution of (© — ©) is Ny(0,1(©)~!), where I(©) is the expected information matrix. The
multivariate normal N4(0, J(©)~!) distribution, where I(©) is replaced by .J(©), i.c., the observed information
matrix evaluated at ©, can be used to construct approximate confidence intervals for the individual parameters.

5. Simulation study
In this section, the Maximum likelihood estimators of parameters of purpose density function has been assessed
by simulating: (a, b, i, 0) = (2,0.5,2,1). To examine the performance of the M LEs for the TLOLL-Gumbel

distribution, similar to karamikabir et al. [15], we perform a simulation study:
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1. Generate r samples of size n from (4) using (3).

2. Compute the M LEs for the » samples, say (@, b, i, g)fori=1,2,...,r.

3. Compute the standard errors of the M LEs for r samples, say (sa, 5j, 54, 55) fori = 1,2,...,r. The standard
errors are computed by inverting the observed information matrices.

4. Compute the biases and mean squared errors given by,

Biasg(n) = E Z (éz - 0,),

r

for 0 = (a,b, u,0).

We repeat these steps for » = 1000 and n = 15,16,...90 with different values of (a,b,u, o), so computing
Biasg(n) and M SEg(n).

Figure 4, reveals how the four biases and mean squared errors vary with respect to n. The biases and mean squared
errors for the estimates decrease to zero when n — oo (n > 50), as expected. The reported observations are for
only one choice for (a, b, u, o) , namely that (a,b, u,0) = (2,0.5,2,1).

Figure 4, shows how the four biases and mean squared errors vary with respect to for (a, b, i, o) = (2,0.5,2,1).
The biases and MSEs for each parameter similar to the previous state decrease to zero when n — co.

Finally figure 4 same as before shows how the four biases and MSEs with (a,b, 1, 0) = (2,0.5,2,1) decrease to
Zero.

The reported observations are for only above cases for (a, b, i1, o), but the results are similar for a wide range of
other choices for (a, b, u, o).

6. Empirical illustration

In this section we illustrate the flexibility of the TLOLL-Gumbel model using three data sets. Similar investigations
could be performed for other distributions. The computations are performed using the R software version 3.3.2
(package AdequacyModel). The R codes are in Appendix C. The maximization is performed by the BFGS method.
The algorithm used to estimate the model parameters has achieved convergence for all current models.

In addition, we present three applications by fitting the TLOLL-Gumbel model and some famous models. The
Akaike information criterion (AIC), Bayesian information criterion (BIC), Cramér—von Mises (W*), Anderson-
Darling (A*) and KolmogorovCSmirnov (K.S), have been chosen for comparison of models for the first three
examples.

The Lomax-Gumbel Distribution (LGu), Gupta et al. [12], The McDonald Gumbel model (McGu), de Brito [4],
Marshall-Olkin Gumbel distribution (MOGu), Jose [14], The beta Gumbel distribution (BGu), Nadarajah and Kotz
[21], The Beta Exponentiated Gumbel Distribution (BEGu), Ownuk [25], The Kumaraswamy Gumbel distribution
(KwGu), Cordeiro et al., [6], The Exponentiated Gumbel Type Distributions (EGu) Nadarajah and Kotz [23], The
Zografos-Balakrishnan Gumbel Family of Distributions (ZBGu), Nadarajah et al. [24], The Topp-Leone Gumbel
(TLGu) and The odd log-logistic Gumbel (OLLGu) have been selected for comparison in the three examples. The
parameters of models have been estimated by the MLE method.

6.1. The Survival times data

This sub-section is related to study of the 72 survival times of guinea pigs injected with difierent doses of
tubercle bacilli by Kundu et al. [18] and Leiva et al. [19]. The data represent the survival times of guinea pigs
injected with different doses of tubercle bacilli. It is known that guinea pigs have high susceptibility to human
tuberculosis and that is why they were used in this study. Here, we are primarily concerned with the animals in
the same cage that were under the same regimen. The regimen number is the common logarithm of the number of
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Figure 4. Biases and MSE’s of @, b, i, & versus n when (a, b, 1, \) = (2,0.5,2,1).

bacillary units in 0.5 ml of challenge solution; i.e., regimen 6.6 corresponds to 4.0 x 106 bacillary units per 0.5 ml
(log(4.0 x 10%) = 6.6). Corresponding to regimen 6.6, there were 72 observations listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62,
63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131,
143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

In the Tables 2 and 3, a summary of the fitted information criteria and estimated MLE’s for this data with different
models have come, respectively. Models have been sorted from the lowest to the highest value of AIC. As you see,
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the TLOLL-Gumbel is selected as the best model with all criteria. The histogram of the Survival times data and
the plots of fitted pdf are displayed in Figure 5.

TLOLL-Gumbel
BGu
EGu
LGu

Density
0.000 0.002 0.004 0.006 0.008 0.010 0.012
|

Survival times

Figure 5. Histogram for Survival times data.

Table 2. Information criteria for the Survival times data.

Model AIC BIC w* AT K-S
TLOLL-Gumbel 781.56 790.67 0.05 0.31  0.08
BGu 783.03 792.14 0.06 036 0.09
EGu 787.51 79434 0.19 101 0.11
LGu 788.85 79796 0.15 0.83 0.08
KwGu 789.52 798.62 0.19 101 0.11
BEGu 789.92 799.03 420 21.04 0.85
OLLGu 79095 79778 023 123  0.15
MOGu 791.22 798.05 021 1.17 0.09
McGu 791.42 802.80 0.15 0.84 0.29
Gumbel 800.22 804.77 042 236 0.15
ZBGu 802.98 809.81 0.14 0.88 0.25
TLGu 811.25 8&18.07 0.58 3.28 0.18

6.2. The strengths of 1.5 cm glass fibers data

This sub-section is related to study of 63 strengths of 1.5 cm glass fibers, measured at the National Physical
Laboratory, England. It is obtained from Smith and Naylor [28] and also analysed by Barreto-Souza et al. [3]. The
sample are experimental data of the strength of glass fibres of two lengths, 1.5 cm, from the National Physical
Laboratory in England. The data set are the following:

0.55,0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2 ,0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61,
1.66, 1.68,1.76, 1.82,2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84,2.24,0.81, 1.13, 1.29,
1.48,1.5,1.55,1.61,1.62,1.66,1.7,1.77, 1.84,0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.
In the Tables 4 and 5, a summary of the fitted information criteria and estimated MLE’s for this data with different
models have come, respectively. Models have been sorted from the lowest to the highest value of AIC. As you see,
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Table 3. Estimated MLE’s and Standard errors for the Survival times data.

Model

MLE

Standard errors

TLOLL-Gumbel (a, b, p, o)

0.24,0.64, 135.07, 34.46)

(0.06,0.23,17.24, 4.36)

BGu(a, b, 1, o) 0.057,0.24,129.71, 26.49) 0.03,0.07,22.94, 3.80)
EGu(a, 11, o) 0.21, 30.87, 14.69) 0.05,6.31,2.38)
LGu(a, b, j1, o) 0.22,0.01, 154.24, 69.27) 0.21,0.01,30.73,11.62)

KwGu(a, b, i, o)
BEGu(a, b, i, o)
OLLGu(a, i, o)
MOGu(a, i, o)
OLLGu(a, u, o)
McGu(a, b, c, i1, 0)

(
(
(
(
(
(
(
(
(
(
(
(
(
(

6.55,0.20, 3.61, 14.30)
39.75,0.01, 26.78, 18.16)
0.41,76.15,25.33)

0.09, 141.91, 72.99)
0.09,141.91, 72.99)
10.25,0.19,0.21, 15.33, 13.65)

(

(

(

(1.07,0.03,0.48, 0.87)
(28.83,0.003, 11.19, 9.60)
(0.09, 6.36, 3.88)

(0.08, 33.00, 14.70)
(0.08,33.00, 14.70)
(11.28,0.02,0.23,0.12,0.24)
(
(
(
(

MOGu(a, i, o) 0.09, 141.91, 72.99) 0.08, 33.00, 14.70)
Gumbel(u, ) 67.87,46.95) 5.74, 4.76)
ZBGu(a, 1, o) 0.74,87.44, 50.48) 0.51,4.75,7.68)
TLGu(a, 11, 7) 2.60, 54.60, 85.06) 1.10, 43.40, 9.69)
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- BGu

15
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Figure 6. Histogram for the strengths of 1.5 cm glass fibers data.

the TLOLL-Gumbel is selected as the best model with all criteria. The histogram of the strengths of 1.5 cm glass
fibers data. and the plots of fitted pdf are displayed in Figure 8.

6.3. The logarithm of the ratio of received light data

This sub-section is related to study of the logarithm of the ratio of received light (logratio) in LIDAR (light detection
and ranging) data set presented by Ruppert et al. [26] that include 221 observations. The technique known as
LIDAR (light detection and ranging) uses the reflection of laser-emitted light to detect chemical compounds in
the atmosphere. The LIDAR technique has proven to be an efficient tool for monitoring the distribution of several
atmospheric pollutants of importance

Similar to previous sub-section, in the Tables 6 and 7, a summary of the fitted information criteria and estimated
MLE’s for this data with different models have come, respectively. As you see, the TLOLL-Gumbel is selected as
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Table 4. Information criteria for the strengths of 1.5 cm glass fibers data.

Model AIC BIC W* A" K-S
TLOLL-Gumbel 32.76 4133 0.10 0.57 0.11
LGu 3647 45.04 0.18 1.01 0.14
EGu 36.73 43.16 025 136 0.16
BGu 36.83 4540 0.19 1.07 0.15
KwGu 3747 46.04 021 1.18 O0.15
BEGu 38.17 46.75 024 130 0.16
MOGu 38.18 44.61 0.28 1.53 0.13
OLLGu 3826 4469 026 145 0.13
McGu 38.77 4949 0.19 1.04 0.17
TLGu 56.03 6246 0.59 325 0.22
ZBGu 61.57 68.00 138 7.34 0.76
Gumbel 65.04 6932 0.75 4.12 0.22

Table 5. Estimated MLE’s and Standard errors for the Sstrengths of 1.5 cm glass fibers data.

Model MLE Standard errors

TLOLL-Gumbel (a, b, 1, 0)  (10.02,0.47,1.12,1.91) (24.24,0.27, 1.81, 4.80)
LGu(a, b, y1, o) (55.66,0.02, 6.05, 2.13) (147.04,0.03, 2.25,0.75)
EGu(a, u, o) (74.24,3.44,1.24) (60.45,0.55,0.23)
BGu(a, b, i, o) (0.53,175.02, 3.65, 1.13) (0.35,263.87,0.96,0.47)
KwGu(a, b, i1, @) (1.72,230.54, 3.39, 1.52) (32.21,291.87, 28.61, 0.35)
BEGu(a, b, 11, ) (0.61,83.04,3.09, 0.97) (0.43,69.14,0.61, 0.38)
MOGu(a, p, o) (217.94,0.60,0.17) (272.65,0.20,0.02)
OLLGu(a, 11, 0) (80.54, —5.48,19.14) (171.97,14.96, 40.83)
McGu(a, b, ¢, i, o) (0.54,200.51,1.07,3.66,1.16)  (0.36,320.97,14.95,16.31,0.51)
TLGu(a, 11, o) (0.49,1.79,0.45) (0.39,0.23, 0.06)
ZBGu(a, i, o) (0.23,1.96,0.40) (0.03,0.01,0.02)

( (

Gumbel(u, o) 1.33,0.38) 0.05,0.03)

the best model with all criteria. The histogram of the logarithm of the ratio of received light data and the plots of
fitted pdf are displayed in Figure 7.

Table 6. Information criteria for the logarithm of the ratio of received light data.

Model AIC BIC w* AT K-S
TLOLL-Gumbel -49.05 -3546 194 10.57 0.22
BGu 4.01 17.60 230 12.65 0.28
McGu 5.29 2228 222 12.16 0.46
BEGu 31.63 4522 249 1379 0.26
LGu 4692 60.51 265 1473 0.24
EGu 52.66 62.86 268 14.89 0.24
KwGu 52770  66.29 2.67 14.85 0.24
MOGu 88.48 98.68 282 1569 0.22
OLLGu 9279 10298 2.89 16.15 0.22
ZBGu 99.74 10994 371 2036 1

TLGu 100.83 111.03 2779 15.50 0.25
Gumbel 125.12 13191 2.88 16.03 0.24
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Figure 7. Histogram for the logarithm of the ratio of received light data.

Table 7. Estimated MLE’s and Standard errors for the logarithm of the ratio of received light data.

Model MLE Standard errors
TLOLL-Gumbel (a, b, 4, 0)  (18.40,0.10,—0.30,0.88) (0.01,0.01, 0.003,0.003)
BGu(a, b, y, o) 0.11,700.05, 1.02, 0.50) 0.02, 338.38,0.11,0.05)

McGu(a, b, c, i1, 0)
BEGu(a, b, i1, 0)
LGu(a, b, u, o)
EGu(a, u, o)
KwGu(a, b, u, o)
MOGu(a, , o)
OLLGu(a, u, o)
ZBGu(a, p, o)
TLGu(a, p, o)
Gumbel(u, o)

(
(
(
(
(
(
(
(
(
(
(
(=

0.11,773.54,4.19,0.30,0.51)
0.19, 256.97,0.77,0.51)
59.32,0.01,3.92,1.92)
202.85, 1.98, 1.30)
1.89,320.03, 1.37, 1.39)
24.47,-0.84,0.18)
62.31, —5.68,14.77)
12.57, —1.43,0.09)
0.23,0.11,0.33)

0.44,0.29)

(
(0.02,377.25,47.12,5.70,0.05)
(0.02,77.04,0.03,0.02)
(37.26,0.01,0.54,0.18)
(116.09, 0.35,0.13)
(10.49,197.82, 7.70, 0.14)
(16.73,0.09,0.01)
(76.70,6.65, 18.15)
(3.96,0.16, 0.02)
(0.10,0.10, 0.02)
(0.02,0.01)

7. Conclusions

In this article, we introduce the Topp-Leone odd log-logistic Gumbel distributions. Some of its various properties
including explicit expansions, moment, entropies, order statistics and maximum likelihood estimator, are provided.
The TLOLL-Gumbel is applied to fit three real data sets. Three applications to real data demonstrate the importance
of the TLOLL-Gumbel family. These applications show that the TLOLL-Gumbel has the ability to fit skewed (left
or right) and heavy-tailed data due to its flexibility. We can conclude that the TLOLL-Gumbel distribution is
a very suitable model to the current data and it was always one of the best models. The results of tables and
figures illustrate the importance of the new distribution to analyze of real data. Therefore, using of TLOLL-Gumbel

distribution in the real examples is suggested.
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Figure 8. Histogram for the strengths of 1.5 cm glass fibers data.
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Appendix A: Two useful power series

We present two power series required for the algebraic developments in Section 2.
First, expanding z* in Taylor series, we can write,

A= - DR =D i
— i=0

k=0

where

and (A)r, = A(A = 1)... (A — k + 1) denotes the descending factorial.
Second, we obtain an expansion for [G(z)* + G(z)?]° as,

(Gla)* +G)] = 3 t; Gla),
7=0

where t; = t;(a) = a;(a) + (=1)7 (§). Then, using (12) , we have,

(G@) + G = Y (Z t G(m)f) ,
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where f; = f;(c).

Finally, we obtain,

[G(@)" + G(@)] =Y hyla,c) Gla),

§=0
where hj(a,c) = Z;ﬁo fi m; ; and (fOI’i > 0) mi; = (] to)_l zn:l[m(j + 1) — j} tm My j—m (fOI‘j > 1) and
mio = té.
Appendix B

The elements of the observed information matrix .J () for the parameters (a, b, i, o) are given by the following:
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Appendix C: R code

The program is developed in R to obtain the value of CDF function:

F = function (x,par) {

a <-par[l];b<-par[2];mu<-par[3];sigma<-par[4]
z = (x-mu)/sigma

G = exp(-exp(-2))

Gbar = 1-G

D = Gbar"a/ (G a+Gbar"a)

A = (1-D"2)"b

return (A) }

PDF function:

f = function (x,par) {

a <-par[l];b<-par[2];mu<-par[3];sigma<-par[4]

z = (x-mu)/sigma

g = (1/sigma) * exp(-(z+texp(-2z)))

G = exp(-exp(-2z))

Gbar = 1-G
2xaxbxg*x (G” (a-1)) * (Gbar” (2xa-1))
= (G atGbar”a) "3
(Gbar~a/ (G a+Gbar a))
= (1-D"2) " (b-1)
= (N/M)*0
return (A) }

> O UR =
It

The program is developed in R to obtain the value of skewness:

library (moments)
a=seq(0.1,2,.1)

1) (e
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b=seq(0.1,2,.1)

G_skew <- function(a, b) {

x <- seq (0, 10, 1le=2x10"4)

U= f(x,c(a,b,1,2))

Skew=skewness (U)

return (Skew)

}

G_skew <- Vectorize (G_skew, c(’a’, '"b"))
Skew <- outer (a,b,G_skew)

The program is developed in R to generate of TLOLL-G distribution (for example TLOLL-G(2,0.5,2,1):

r=5000
n=seq(30,90,1)
p_a=2; p_b=0.5; p_mu=2; p_sigma=1

sim = c(p_a,p_b,p_mu,p_sigma)

F_x = function(x) F(x,sim)

inverse = function (u, lower, upper) {

uniroot ( (function (x) F_x(x)—- u), lower = lower, upper = upper)Sroot}

X_generator <- function(n, lower, upper) {
U <- runif(n,0,1)

X <= c()

for (i in 1:n)
X[i]=inverse (U
return (X) }

{
[

i], lower, upper)}

The program is developed in R to obtain the value of likelihood function:
LikFun_f <- function (x,par) {
]

)
a <- par[l];b <= par[2];mu <- par[3];sigma <- par[4]

z <— (x-mu)/sigma
g = (1/sigma) =* exp(-(z+exp(-z)))
G = exp(-exp(-2z))
Gbar = 1-G
N = 2xa*xbxgxG” (a—-1) *Gbar” (2xa-1)
M (G"a+Gbar”a) "3
D = (Gbar“a/ (G a+Gbar“a))
@) (1-D"2) " (b-1)
A = prod((N/M) *«0)
return (A) }

The program is developed in R to compute the value of Bias and MSE with r iterate and sample size n (for example
for a parameter):

for (k in l:length(n)) {

for (j in 1:r){
X = X_generator(n[k],-500,500)
MLE = optim(par = sim, fn=LikFun_f, x=X)
a_mle[j]= MLESpar[1]
biasl_a[j] = a_mle[jl-p_a
MSEl_al[jl=(biasl_al[j]) "2}

bias_al[k]= mean (biasl_a)

MSE_alk]= mean (MSEl_a)}
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