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Abstract This paper presents a Wei-Yao-Liu conjugate gradient algorithm for nonsmooth convex optimization problem.
The proposed algorithm makes use of approximate function and gradient values of the Moreau-Yosida regularization function
instead of the corresponding exact values. Under suitable conditions, the global convergence property could be established
for the proposed conjugate gradient method. Finally, some numerical results are reported to show the efficiency of our
algorithm.
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1. Introduction

We consider the unconstrained minimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a nonsmooth convex function. The following problem

min
x∈Rn

F (x) (2)

is the so-called Moreau-Yosida regularization of f [10], which is defined by

F (x) = min
z∈Rn

{f(z) + 1

2λ
∥z − x∥2}, (3)

where λ is a positive parameter and ∥ · ∥ denotes the Euclidean norm. It is well known that problems (1) and (2)
are equivalent in the sense that the solution sets of the two problems coincidentally are the same. The function F
has some good properties: it is a differentiable convex function, it has a Lipschitz continuous gradient even when
the function f is nondifferentiable, and although F is not twice differentiable in general, but the gradient function
of F can be proved to be semismooth under some reasonable conditions [8, 21]. Based on these features, some
algorithms have been proposed for solving (2), see [2, 8, 21, 24]. The proximal methods have been proved to be
effective in dealing with evaluating the function value of F (x) and its gradient ∇F (x) exactly at a given point x
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[1, 3, 6, 23]. Lukšan [15] and Monjezi [19] proposed the bundle method, which can handle convex and nonconvex
f . And many trust region algorithms of minimizing a nonsmooth objective function have been presented, see
[5, 13, 27, 30, 33]. Recently, Yuan et al. [28, 29, 32] and Li [16, 17] have extended the spectral gradient method
and conjugate gradient-type method to solve nonsmooth optimization problem, respectively.

Conjugate gradient techniques have been developed for solving large-scale optimization problems recently (see
[9, 12, 29, 31] etc.). Motivated by these techniques as well as the Moreau-Yosida regulation (smoothing) approach,
we will propose the Wei-Yao-Liu conjugate gradient algorithm for solving a nonsmooth unconstrained convex
minimization problem in this paper. The Wei-Yao-Liu (WYL) conjugate gradient method with formula (21) has
not only excellent numerical results but also some good properties. First, the βWYL

k always retains nonnegativity
while gk ̸= 0. Second, the WYL method has a nice property which was introduced by Gilbert and Nocedal [9].
This property pertains to the PRP method and ensures that the small steplength would not be too much long so
that it is helpful for the global convergence, see [25] for details. Even more, the βWYL

k , like βPRP
k , βHS

k and βLS
k

whose numerators share the common gTk (gk − gk−1), which can avoid jamming automatically. Further research
of the WYL method can be found in [11, 12, 18, 25, 26]. The purpose of this paper is to extend Wei-Yao-Liu
conjugate gradient algorithm to solve the nonsmooth optimization problem (1). The presented algorithm has the
following main attributes: (1) A WYL conjugate gradient algorithm is introduced for nonsmooth problem (1) and
smooth problem (2); (2) The search direction satisfies the sufficient descent property; (3) This algorithm possesses
the global convergence; (4) Numerical results show that this algorithm is efficient.

This paper is organized as follows. In Section 2, we briefly review some basic results in convex analysis
and nonsmooth analysis. In Section 3, we present a WYL conjugate gradient algorithm for (1), prove its global
convergence, and then present some numerical results in Section 4. Finally, we have a conclusion section.

2. Preliminaries

In this section, we review some important and useful results in convex analysis and nonsmooth analysis. The
following proposition ([10], Chapter XV, Theorem 4.1.4) shows some basic properties of the Moreau-Yosida
regularization function F .

Proposition 2.1
The function F is finite-valued, convex, and everywhere differentiable with gradient

g(x) = ∇F (x) =
x− p(x)

λ
, (4)

where p(x) is the unique minimizer in (3), that is

p(x) = arg min
z∈Rn

{f(z) + 1

2λ
∥z − x∥2}. (5)

Moreover, the gradient mapping g : Rn → Rn is globally Lipschitz continuous with modulus 1
λ for all x, y ∈ Rn,

i.e.,

∥g(x)− g(y)∥ ≤ 1

λ
∥x− y∥. (6)

The generalized Jacobian of ∇F (x) and the property of BD-regularity can be found in [4, 13, 20].

Proposition 2.2
By the Rademacher theorem and the Lipschitzian property of ∇F (x), for each x ∈ ℜn, the set of generalized
Jacobian matrices

∂Bg(x) = {V ∈ ℜn×n : V = lim
xk→x

∇g(xk), xk ∈ Dg},

is nonempty and compact, where Dg = {x ∈ ℜn : g is differentiable at x}.
(i) Since g is a gradient mapping of the convex function F , every V ∈ ∂Bg(x) is a symmetric positive semidefinite
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matrix for each x ∈ ℜn.
(ii) If g is BD-regular at x, which means all matrices V ∈ ∂Bg(x) are nonsingular, then there exist constants µ1 > 0,
µ2 > 0 and a neighborhood Ω of x such that for all y ∈ Ω

dTV d ≥ µ1∥d∥2, ∥V −1∥ ≤ µ2, ∀d ∈ ℜn, V ∈ ∂Bg(y).

The next proposition ([10], Chapter XV, Theorem 4.1.7) formally states the equivalence between problems (1.1)
and (1.2).

Proposition 2.3
The following statements are equivalent:
(i) x minimizes f on Rn;
(ii) x = p(x);
(iii) g(x) = 0;
(iv) x minimizes F on Rn.

It is obvious that F (x) and g(x) can be obtained through the optimal solution of (3), but p(x) is difficult and
sometimes impossible to be solved precisely, so we often use the approximate values of F (x) and g(x) in the real
computation. Suppose that for each x ∈ Rn and any ε > 0, there exists an approximation vector pa(x, ε) ∈ Rn of
the unique minimizer p(x) in (3) such that

f(pa(x, ε)) +
1

2λ
∥pa(x, ε)− x∥2 ≤ F (x) + ε. (7)

An implementable procedure for finding such an approximate minimizer may be found, for example, in [7]. The
existence and computation theorem of pa(x, ε) are presented as following.

Proposition 2.4
[Lemma 2.1 in [6]] Let {xk} be constructed according to the formula

xk+1 = xk − αkυk, for k = 1, 2, · · · , (8)

where αk > 0 is a stepsize and υk is an approximate subgradient at xk, i.e.,

υk ∈ ∂εkf(xk) = {υ|f(xk)− ⟨υ, xk⟩ ≤ f(xk) + εk}, for k = 1, 2, · · · . (9)

(i) If υk satisfies
υk ∈ ∂f(xk+1), for k = 1, 2, · · · , (10)

then (9) holds with
εk = f(xk)− f(xk+1)− αk∥υk∥2 ≥ 0. (11)

(ii) Conversely, if (9) holds with εk given by (11), then (10) holds: xk+1 = pa(xk, εk).

We can use pa(x, ε) to define approximations of F (x) and g(x) by

F a(x, ε) = fa(x, ε) +
1

2λ
∥pa(x, ε)− x∥2, (12)

and
ga(x, ε) =

1

λ
(x− pa(x, ε)), (13)

respectively, where

pa(x, ε) = arg min
z∈Rn

{f(z) + 1

2λ
∥z + ε− x∥2}. (14)

The next proposition (see [8]) states that we can compute the approximations F a(x, ε) and ga(x, ε) by choosing
the parameter ε to be sufficiently small such that the approximations remain as close as possible to F (x) and g(x).
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Proposition 2.5
Let pa(x, ε) be a vector that satisfies (14), and let F a(x, ε) and ga(x, ε) be defined by (12) and (13), respectively.
Then, we obtain
(i) F (x) ≤ F a(x, ε) ≤ F (x) + ε ;
(ii) ∥pa(x, ε)− p(x)∥ ≤

√
2λε ;

(iii) ∥ga(x, ε)− g(x)∥ ≤
√

2ε/λ;

A remarkable property of ga(x, ε) is given as follows.

Proposition 2.6
[Lemma 4.3 in [22]] There exist positive constants l and L, and a positive integer k0 such that

⟨ga(xk+1, εk+1)− ga(xk, εk), xk+1 − xk⟩
∥xk+1 − xk∥2

≥ l, (15)

and
∥ga(xk+1, εk+1)− ga(xk, εk)∥2

⟨xk+1 − xk, ga(xk+1, εk+1)− ga(xk, εk)⟩
≤ L, (16)

for all k ≥ k0.

By (15) and (16), it is easy to deduce that

∥ga(xk+1, εk+1)− ga(xk, εk)∥ ≤ L∥xk+1 − xk∥. (17)

3. Algorithm

By using the Moreau-Yosida regularization (smoothing) approach and a nonmonotone line search technique, we
propose a Wei-Yao-Liu conjugate gradient algorithm for solving a nonsmooth unconstrained convex minimization
problem in this section. First we use the tool of the Moreau-Yosida regularization to smooth the function, then
make using of the approximate values of the function F and its gradient g instead of their exact values in WYL
conjugate gradient algorithm.

We first recall the Wei-Yao-Liu conjugate gradient method for unconstrained optimization problem:

min{f(x)|x ∈ Rn}, (18)

where f : Rn → R is continuously differentiable and its gradient g is available. The Wei-Yao-Liu conjugate
gradient method [25] is defined by

xk+1 = xk + αkdk, (19)

where xk is the current iteration point, αk > 0 is the steplength, and dk is the search direction determined by

dk+1 =

{
−gk+1, if k = 0,
−gk+1 + βWYL

k+1 dk, if k ≥ 1,
(20)

where gk+1 = ∇f(xk+1) is the gradient vector of f(x) at the point xk+1, and

βWYL
k+1 =

gTk+1(gk+1 − ∥gk+1∥
∥gk∥ gk)

gTk gk
. (21)

Now we state the steps of the algorithm as follows.

Algorithm 3.1. Wei-Yao-Liu Conjugate Gradient (WYLCG) Algorithm.
Step 0: Given x0 ∈ Rn, σ ∈ (0, 1), λ > 0, ρ ∈ [0, 1], ξ ∈ (0, 1), E0 = 1 and a strictly decreasing positive sequence
{τk} such that τ0 ≤ 1 and limk→0 τk = 0.
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Step 1: Set k = 0. Let ε0 = τ0. Compute pa(x0, ε0), F a(x0, ε0) and ga(x0, ε0) by (14), (12) and (13), respectively.
Let J0 = F a(x0, ε0) and d0 = −ga(x0, ε0).
Step 2: If ∥ga(xk, εk)∥ = 0, stop. Otherwise, go to Step 3.
Step 3: Choose a scalar εk+1 satisfying 0 < εk+1 ≤ min{τk, τk∥ga(xk, εk)∥2}, and compute the step size αk by
the following nonmonotone Armijo-type line search:

F a(xk + αkdk, εk+1)− Jk ≤ σαkg
a(xk, εk)

T dk, (22)

where αk = sk2
−ik , sk = 1−ξ

2L
∥ga(xk,εk)∥2

∥dk∥2 and ik is the smallest nonnegative integer such that (22) holds.
Step 4: Let xk+1 = xk + αkdk. Stop if ∥ga(xk+1, εk+1)∥ = 0.
Step 5: Update Jk+1 by the following formula

Ek+1 = ρEk + 1, Jk+1 =
ρEkJk + F a(xk + αkdk, εk+1)

Ek+1
. (23)

Step 6: Compute the search direction dk+1 by (20) with gk and gk+1 replaced by ga(xk, εk) and ga(xk+1, εk+1),
respectively.
Step 7: Set k := k + 1 and go to Step 2.

Remarks.
(i) The definition of 0 < εk+1 ≤ min{τk, τk∥ga(xk, εk)∥2} in Algorithm 3.1, together with (13) and (14) deduce
that

εk+1 = o(∥ga(xk, εk)∥2) = o(∥xk − pa(xk, εk)∥2) = o(∥xk − xk+1∥2) = o(α2
k∥dk∥2), (24)

then with the decreasing property of εk+1, the assumed condition εk = o(α2
k∥dk∥2) in Lemma 3.4 holds.

(ii)The line search technique (22) is motivated by Zhang and Hager [34]. It is not difficult to see that Jk+1

is a convex combination of Jk and F a(xk+1, εk+1). Noticing J0 = F a(x0, ε0), it follows that Jk is a convex
combination of the function values F a(x0, ε0), F a(x1, ε1), · · · , F a(xk, εk). The choice of ρ controls the degree of
nonmonotonicity. If ρ = 0, then the line search is the usual monotone Armijo line search. If ρ = 1, then Jk = Ck,
where

Ck =
1

k + 1

k∑
i=0

F a(xi, εi)

is the average function value.
(iii)Realizing the parameter sk = 1−ξ

2L
∥ga(xk,εk)∥2

∥dk∥2 is not a difficulty in practice, despite the fact that the constant L

is not known. For example, we can set L ≃ ∥ga(xk,εk)−ga(xk−1,εk−1)∥
∥xk−xk−1∥ .

We need the following assumptions which are given in papers [13, 29, 30, 32].

Assumption A. (i) The sequence {Vk} is bounded, i.e., there exists a positive constant M such that

∥Vk∥ ≤ M, ∀k. (25)

where the matrix Vk ∈ ∂Bg(xk).
(ii) F is bounded from below.

The following lemma shows that Algorithm 3.1 satisfy the sufficient descent property.

Lemma 3.1
(Corollary 2.1. [18]) Let Assumption A holds and the sequence {xk, dk} be generated by Algorithm 3.1. Then we
have

dTk g
a(xk, εk) ≤ −ξ∥ga(xk, εk)∥2, (26)

Lemma 3.2
Let Assumption A holds and the sequence {xk, dk} be generated by Algorithm 3.1. Then

∥dk∥ ≤ (2− ξ)∥ga(xk, εk)∥. (27)
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Proof
When k = 0, (27) is true since d0 = −ga(x0, ε0) and ξ ∈ (0, 1). Suppose that (27) holds for a certain k ≥ 0. By the
definition of dk+1, Assumption A and αk ≤ 1−ξ

2L
∥ga(xk,εk)∥2

∥dk∥2 , we have

∥dk+1∥ − ∥ga(xk+1, εk+1)∥
≤ ∥dk+1 + ga(xk+1, εk+1)∥ = ∥βk+1dk∥

≤
∥ga(xk+1, εk+1)∥∥ga(xk+1, εk+1)− ga(xk, εk) + ga(xk, εk)− ∥ga(xk+1,εk+1)∥

∥ga(xk,εk)∥ ga(xk, εk)∥
∥ga(xk, εk)∥2

∥dk∥

≤ 2∥ga(xk+1, εk+1)∥∥dk∥∥ga(xk+1, εk+1)− ga(xk, εk)∥
∥ga(xk, εk)∥2

≤ 2∥ga(xk+1, εk+1)∥∥dk∥Lαk∥dk∥
∥ga(xk, εk)∥2

≤
2∥ga(xk+1, εk+1)∥∥dk∥L 1−ξ

2L
∥ga(xk,εk)∥2

∥dk∥2 ∥dk∥
∥ga(xk, εk)∥2

= (1− ξ)∥ga(xk+1, εk+1)∥,

we further obtain ∥dk+1∥ ≤ (2− ξ)∥ga(xk+1, εk+1)∥. Thus (27) holds for all k ≥ 0.

Using (26), (27) and Assumption A, similar to Lemma 1.1 in [34], it shows that Algorithm 3.1 is well-defined in
the following lemma. For the proof is essentially the same as Lemma 1.1 in [34], we omit its proof here.

Lemma 3.3
Suppose that Assumption A holds. Then, for the iteration generated by Algorithm 3.1, we have F a(xk, εk) ≤ Jk ≤
Ck for each k, where Ck = 1

k+1

∑k
i=0 F

a(xi, εi). Moreover, there exists αk satisfying Armijo conditions of the
line search update.

Lemma 3.4
Suppose that Assumption A holds. Let {(xk, εk)} be the sequence generated by Algorithm 3.1. Suppose that
εk = o(α2

k∥dk∥2) holds. Then, there exists a constant m0 > 0 such that

αk ≥ m0. (28)

Proof
Let αk satisfies the nonmonotone Armijo-type line search (22). We proceed by the method of contradiction and
suppose that lim infk→∞ αk = 0. By passing to a subsequence if necessary, we may assume that αk → 0. Then, by
the line search, α′

k = αk/2 satisfies

σα′
kg

a(xk, εk)
T dk < F a(xk + α′

kdk, εk+1)− Jk.

Combining this with F a(xk, εk) ≤ Jk ≤ Ck in Lemma 3.3, Proposition 2.5 and Taylor’s formula, we have

σα′
kg

a(xk, εk)
T dk < F a(xk + α′

kdk, εk+1)− F a(xk, εk)

≤ F (xk + α′
kdk)− F (xk) + εk+1

= α′
kd

T
k g(xk) +

1

2
(α′

k)
2dTk V (uk)dk + εk+1

≤ α′
kd

T
k g(xk) +

M

2
(α′

k)
2∥dk∥2 + εk+1, (29)
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where uk ∈ (xk, xk+1). It follows from (29) that

αk

2
= α′

k > [
(ga(xk, εk)− g(xk))

T dk − (1− σ)ga(xk, εk)
T dk − εk+1/α

′
k

∥dk∥2
]
2

M

≥ [
ξ(1− σ)∥ga(xk, εk)∥2 −

√
2εk/λ∥dk∥ − εk/α

′
k

∥dk∥2
]
2

M

= [
ξ(1− σ)∥ga(xk, εk)∥2

∥dk∥2
− o(αk)/

√
λ− o(αk)]

2

M

≥ [
ξ(1− σ)

(2− ξ)2
− o(αk)/

√
λ− o(αk)]

2

M
, (30)

where the equality follows from εk = o(α2
k∥dk∥2), the second inequality follows from (26), Proposition 2.5(iii)

and εk+1 ≤ εk, and the last inequality follows (27). Dividing both sides by αk and passing to limit, we see that

1

2
≥ lim

k→∞
(
2ξ(1− σ)

(2− ξ)2M
)
1

αk
= +∞,

which is impossible, so the conclusion is obtained.

The following theorem establishes the global convergence of Algorithm 3.1.

Theorem 3.1
Let {xk} be generated by Algorithm 3.1 and suppose that the conditions in Lemma 3.4 hold. Then,
limk→∞ ∥g(xk)∥ = 0, and any accumulation point of {xk} is an optimal solution of (1).

Proof
In order to complete this proof, we first show that

lim
k→∞

∥gα(xk, εk)∥ = 0. (31)

Suppose that (31) is not true, then there exists constants ϵ0 > 0 and k0 > 0 such that

∥gα(xk, εk)∥ ≥ ϵ0, ∀ k > k0. (32)

Since F is bounded from below by Assumption A(ii) and F (xk) ≤ F a(xk, εk) for all k by Proposition 2.5, we see
that F a(xk, εk) is bounded from below. Together with F a(xk, εk) ≤ Jk for all k by Lemma 3.3, it shows that Jk is
also bounded from below, and ∑

k>k0

(Jk − Jk+1) < ∞. (33)

On the other hand, by (22), (26) and (28), we have

Jk − F a(xk+1, εk+1) ≥ −σαkg
a(xk, εk)

T dk = σαk∥ga(xk, εk)∥2

≥ σm0ϵ0, ∀k > k0.

Therefore, it follows from the above inequality and (23) that∑
k>k0

(Jk − Jk+1) =
∑
k>k0

Ek+1Jk − ρEkJk − F a(xk+1, εk+1)

Ek+1

=
∑
k>k0

Jk − F a(xk+1, εk+1)

1 + ρ+ · · ·+ ρk+1

≥
∑
k>k0

σm0ϵ0
k + 2

= +∞,
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this is a contradiction with (33). Thus, (31) holds. By Proposition 2.5(iii), we obtain

∥gα(xk, εk)− g(xk)∥ ≤
√

2εk
λ

.

Since εk → 0 by the construction of Algorithm 3.1, thus

lim
k→∞

∥g(xk)∥ = 0. (34)

Let x∗ be an accumulation point of {xk}, without loss of generality, there exists a subsequence {xk}K satisfying

lim
k∈K, k→∞

xk = x∗. (35)

From properties of F (x), we have g(xk) = (xk − p(xk))/λ. Then, by (34) and (35), x∗ = p(x∗) holds. Therefore
x∗ is an optimal solution of (1). The proof is complete.

4. Numerical Results

In this section, we perform numerical experiments to test the performance of the given algorithm, then compare
it with the MPRP gradient method in [29] and the proximal bundle method (PBL) in [15]. All the nonsmooth
problems of Table 1 can be found in [14]. Table 1 contains problem names and optimum function values. The
codes were written in MATLAB R2010a and run on a personal computer with an Intel Core 2 Duo CPU at 2.8
GHz and 2 GB of memory. We set ρ = 0.75, σ = 0.9 and adopt the termination condition ∥ga(x, ε)∥ ≤ 10−5. The
quality of the objective function value at termination f̄ is measured by the relative error to fops, i.e.,

RelErr =
|f̄ − fops|
|fops|

.

The subproblem (14) involves the finding of a vector pa(xk, εk) for given xk and εk. We use the Nelder-Mead
simplex program solver fminsearch.m from the Matlab optimization toolbox to perform the subproblem (14), this
subalgorithm stops if the maximum coordinate difference between the current best point and the other points in the
simplex is less than or equal to 10−3, and the corresponding difference in function values is less than or equal to
10−3. The subalgorithm will also stop if the maximum number of iterations or function evaluations is larger than
two hundred.

Table 1. Test problems.
Nr. Problems fops(x) Nr. Problems fops(x)
1 Rosenbrock 0 6 QL 7.20
2 Crescent 0 7 LQ -1.4142136
3 CB2 1.9522245 8 Mifflin 1 -1.0
4 CB3 2.0 9 Mifflin 2 -1.0
5 DEM -3 10 Wolfe -8.0

Firstly, we give some insight into the behavior of WYL conjugate gradient algorithm with different
approximation parameter ε. In this test, we fixed λ = 5. The results are listed in Table 2, which contains the
number of the iterations (NI), the number of the function evaluations (NF) and the relative error (RelErr). Viewing
from the table, we conclude that the proposed algorithm works reasonably well for all the test cases. This table also
illustrates that the effectiveness of the algorithm is improved while approximation parameter ε is small.

Table 2. Results on Problems 1-10 with different ε.
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Problems τk = 1
(k+2)2

τk = 1
3(k+2)3

τk = 1
4(k+2)4

τk = 1
5(k+2)5

Nr. NI/NF RelErr NI/NF RelErr NI/NF RelErr NI/NF RelErr
1 10/13 3.8999e-10 10/13 2.6751e-10 10/13 5.0712e-10 11/14 1.1132e-10
2 7/10 3.3677e-06 17/20 3.1140e-06 19/22 3.5430e-06 14/17 3.4125e-06
3 8/11 5.1223e-09 9/12 7.1713e-09 4/7 9.4763e-08 6/9 1.1781e-08
4 3/5 2.2614e-05 3/5 1.0623e-05 3/5 1.0623e-05 3/5 1.0623e-05
5 4/7 5.3045e-05 4/7 1.9484e-05 4/7 1.9484e-05 4/7 1.9484e-05
6 6/9 1.6666e-09 6/9 1.8056e-09 7/10 8.3333e-10 6/9 8.3333e-10
7 7/10 3.2526e-08 6/9 1.3081e-07 4/7 6.7882e-08 4/7 6.7882e-08
8 4/10 8.1831e-05 6/8 2.9520e-06 5/7 8.9700e-07 6/8 6.7160e-06
9 7/10 4.5090e-06 6/9 6.8229e-06 5/8 4.5530e-06 6/9 6.8330e-06

10 5/8 6.5374e-08 4/7 1.2148e-06 4/7 1.5201e-06 4/7 4.2737e-07

Secondly, to specifically illustrate the performance of WYL conjugate gradient algorithm, we present two
test results on Problems 1-10 in terms of number of iterations and the optimum function values error as the
regularization parameter λ varies from 1 to 10 in Figure 1. In this test, we fixed τk = 1

(k+2)2 . From Figure 1,
we can see that Problems 2, 3 and 8 are more sensitive to the regularization parameter.
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Figure 1. Convergence performance of WYL algorithm: number of iterations (left)
and relative error (right) versus the regularization parameter λ values.

Finally, we compared the performance of the proposed algorithm to the algorithm MPRP and PBL. In the
test, we fixed τk = 1

5(k+2)5 . As we can see from Figure 1 that Problems 1-10 have different sensitiveness on the
regularization parameter, we set λ = 7 for Problem 3 and 5, λ = 2 for Problems 7 and 9, λ = 1 for Problems 4
and 10, λ = 10 for other Problems. We present three comparison results in terms of number of iteration, number
of function evaluations and the final objective function value (f(x)) in Table 3. From the numerical results in
Table 3, we can conclude that these three methods are effective for nonsmooth optimization problems, and WYL
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conjugate gradient algorithm performs best of all the methods in term of the iteration number, the number of
function evaluations and the final objective function value.

Table 3. Numerical results for WYL/MPRP/PBL on Problems 1-10.
Problems WYL MPRP PBL

Nr. NI/NF f(x) NI/NF f(x) NI/NF f(x)
1 8/11 4.5570e-11 46/48 7.0918e-7 42/45 0.381e-6
2 4/7 4.9390e-6 11/13 6.7351e-5 18/20 0.679e-6
3 5/8 1.9522245 12/14 1.952225 32/34 1.9522245
4 3/5 2.000020 2/6 2.000098 14/16 2.0000000
5 4/7 -2.999952 4/6 -2.999866 17/19 -3.0000000
6 5/8 7.2000000 10/12 7.200011 13/15 7.2000015
7 6/8 -1.4142136 2/3 -1.414214 11/12 -1.4142136
8 4/7 -0.9999972 4/6 -0.9919815 66/68 -0.9999994
9 7/9 -0.9999983 20/23 -0.9999925 13/15 -1.0000000

10 8/10 -7.9999999 - - 43/46 -8.0000000

5. Conclusions

By making use of the Moreau-Yosida regularization, a nonmonotone line search technique of [34] and a new
formula in [25] developed by the authors earlier, we presented a Wei-Yao-Liu conjugate gradient algorithm for
solving nonsmooth convex optimization problems. Our algorithm satisfies the sufficiently descent property, and
the corresponding search direction belongs to a trust region automatically. The global convergence of the given
algorithm was established under suitable conditions and the effectiveness of the algorithm can be observed from
the result of numerical experiments.
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21. L. Qi and J. Sun, A nonsmooth version of Newtonś method, Mathematical Programming, vol. 58, pp. 353-367, 1993.
22. A.I. Rauf and M. Fukushima, Globally convergent BFGS method for nonsmooth convex optimization, Journal of Optimization

Theory and Applications, vol. 104, pp. 539-558, 2000.
23. Z. Wei and L. Qi, Convergence analysis of a proximal Newton method, Numerical Functional Analysis and Optimization, vol. 17,

pp. 463-472, 1996.
24. Z. Wei, L. Qi and J.R. Birge, A new methods for nonsmooth convex optimization, Journal of Inequalities and Applications, vol. 2,

pp. 157-179, 1998.
25. Z. Wei, S. Yao and L. Liu, The convergence properties of some new conjugate gradient methods, Applied Mathematics and

Computation, vol. 183, pp. 1341-1350, 2006.
26. S. Yao, Z Wei and H. Huang, A note about WYLs conjugate gradient method and its applications, Applied Mathematics and

Computation, vol. 191, pp. 381-388, 2007.
27. Z. Sheng and G. Yuan, An effective adaptive trust region algorithm for nonsmooth minimization, Computational Optimization and

Applications, vol. 71, pp. 251-271, 2018.
28. G. Yuan, Z. Meng and Y. Li, A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations

and nonlinear equations, Journal of Optimization Theory and Applications, vol. 168, pp. 129-152, 2016.
29. G. Yuan, Z. Wei and G. Li, A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs, Journal

of Computational and Applied Mathematics, vol. 255, pp. 86-96, 2014.
30. G. Yuan, Z. Wei and Z. Wang, Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex

minimization, Computational Optimization and Applications, vol. 54, pp. 45-64, 2013.
31. G. Yuan and M. Zhang, A modified Hestens-Stiefel conjugate gradient algorithm for large-scale optimization, Numerical Functional

Analysis and Optimization, vol. 34, pp. 914-937, 2013.
32. G. Yuan and Z. Wei, The Barzilai and Borwein Gradient Method with Nonmonotone Line Search for Nonsmooth Convex Optimization

Problems, Mathematical Modelling and Analysis, vol. 17, pp. 203-216, 2012.
33. L. Zhang, A new trust region algorithm for nonsmooth convex minimization, Applied Mathematics and Computation, vol. 193, pp.

135-142, 2007.
34. H. Zhang and W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on

Optimization, vol. 14, pp. 1043-1056, 2004.

Stat., Optim. Inf. Comput. Vol. 8, June 2020


