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Abstract In this paper, we consider a special class of conic optimization problems, consisting of set-semidefinite (or K-
semidefinite) programming problems, where the set K is a polyhedral convex cone. For these problems, we introduce the
concept of immobile indices and study the properties of the set of normalized immobile indices and the feasible set. This
study provides the main result of the paper, which is to formulate and prove the new first-order optimality conditions in
the form of a criterion. The optimality conditions are explicit and do not use any constraint qualifications. For the case of a
linear cost function, we reformulate the K-semidefinite problem in a regularized form and construct its dual. We show that
the pair of the primal and dual regularized problems satisfies the strong duality relation which means that the duality gap is
vanishing.
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1. Introduction

Convex optimization is a subfield of mathematical optimization where the problems of minimizing convex
functions over convex sets are solved. Convex optimization has applications in a wide range of disciplines, such
as automatic control systems, estimation and signal processing, communications and networks, electronic circuit
design, data analysis and modeling, statistics, optimal experimental design, and structural optimization, where the
approximation concept has proven to be efficient ( see [7, 8] and the references therein). With recent advancements
in computing and optimization algorithms, convex programming is indispensable in emerging methods of data
mining, analytics, machine learning, as well as management, economics, and finance (e.g.[23, 27, 31, 32]).

Conic optimization studies problems of minimizing a convex function over the intersection of an affine subspace
and a convex cone. Conic models are efficiently used in dynamic processes, biomedical and chemical engineering,
biology, credit risk optimization, etc. (see [3, 32, 35], and others). According to F. Glineur ([13]), conic optimization
is an elegant framework for convex optimization, due to the fact that conic formulations present various advantages
over the traditional formulations: the standard primal-dual pair of conic problems does feature a great deal of
symmetry, the dual problem and the associated weak and strong duality properties can be derived in a ”seamless
manner” once the dual cone has been computed, and the conic formulations are helpful when designing and
analyzing numerical algorithms.
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In this paper, we consider a special class of conic optimization problems, consisting of set-semidefinite (or K-
semidefinite) programming problems, where the set K is a polyhedral convex cone. The interest in such problems
is due to the fact that they have a wide range of applications in such important areas as systems and management
theory, robust and combinatorial optimization. Among the most important subclasses of conic problems under
consideration, there are semidefinite programming (SDP) and copositive problems which have many applications
in robust optimization, graph theory, computational biology, systems and control theory, sensor network location,
and data analysis, among others [2, 9, 22, 24]. Semidefinite and copositive programming are recognized in
combinatorial optimization as valuable techniques for modeling and obtaining bounds on solutions of NP - hard
problems (for the references see [5, 10, 14, 33]). New numerical scheme based on semidefinite programming to
compute approximately and sometimes exactly the Nash equilibria, the min–max of any finite game, and the values
and the optimal strategies of any polynomial 2-player zero-sum game are presented in [21, 34] et. al.

One of the main difficulties faced in solving conic optimization problems is that many of the problems in
this class are characterized by a violation of regularity (and/or so-called CQ – constraint qualifications). This
makes it impossible to apply the known results from the general theory of optimization, entails a violation of strict
duality relations which in turn leads to significant difficulties in justifying and implementing numerical methods for
solving such problems. In this regard, it is relevant to study the problems of conic optimization without additional
assumptions about regularity.

The purpose of this work is to formulate and prove new optimality conditions which do not use any CQs (are
CQ-free) and obtain new dual formulations which satisfy the strong duality relations and therefore may form the
basis of efficient numerical methods.

The paper is organized as follows. Section 1 hosts Introduction. The problem’s settings and basic notations are
introduced in section 2. The new optimality conditions for a set-semidefinite problem with a polyhedral set are
formulated in section 3. In section 4, we explore the properties of the set of immobile indices and the feasible set
of the problem under study and use them to prove, in section 5, the main result of the paper, which is the new
first-order CQ-free optimality conditions for the set-semidefinite programming (Theorem 1). In section 6, for a
linear case, we deduce a regularized pair of primal and dual K-semidefinite problems and show that for this pair
the strong duality property holds. The final section 7 contains some conclusions.

2. Problem’s settings and basic notation

In what follows, we will use the following notation. Given integers p and k, let Rp and Rk×p denote the set of
all real-valued p - vectors and k × p - matrices, respectively. Denote by Rp

+⊂ Rp the subset of all p - vectors with
non-negative components and by S(p) the space of symmetric p× p matrices with the trace inner product:

A •B := trace(AB), for A,B ∈ S(p).

For an arbitrary nonempty set K ⊂ Rp, consider the set

CK := {D ∈ S(p) : t⊤Dt ≥ 0 ∀t ∈ K}, (1)

called a cone of K - semidefinite (set-semidefinite) matrices, or simply, the K - semidefinite cone, see e.g. [11, 12].
It worth mentioning that the cone CK is a generalization of a well-known and well-studied in literature cone of
positive semidefinite matrices

S+(p) := {D ∈ S(p) : t⊤Dt ≥ 0 ∀t ∈ Rp},

and a less studied cone of copositive matrices

COP(p) := {D ∈ S(p) : t⊤Dt ≥ 0 ∀t ∈ Rp
+},

see e.g. [1, 4, 5, 6] and the references therein. Indeed, for K = Rp, we have CK = S+(p) and for K = Rp
+, we have

CK = COP(p).
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Some properties of the cone of K-semidefinite matrices are studied in [12]. Notice, in particular, that this cone
is convex for any set K.

Let A : Rn → S(p) and c : Rn → R be some given continuous maps. A problem

minimize c(x), subject to x ∈ Rn, A(x) ∈ CK , (2)

is called a set-semidefinite (or K-semidefinite) optimization problem. This problem can be considered as a particular
case of conic optimization problems.

In this paper, we consider problem (2) under assumptions that the map A : Rn → S(p) is affine, the function
c : Rn → R is convex and the set K ⊂ Rp is a polyhedral convex cone. Namely, we consider the following
optimization problem:

minimize c(x),

subject to x ∈ Rn, t⊤A(x)t ≥ 0 ∀t ∈ K := {t ∈ Rp : At = 0, Bt ≥ 0},
(3)

where A(x) :=
n∑

k=1

Akxk +A0, Ak ∈ S(p), k = 0, 1, ..., n, A ∈ Rm0×p, B ∈ Rm∗×p, are given matrices.

Problem (3) is a generalization of semidefinite and copositive programming problems since in the case K = Rp,
it is a problem of SDP, and in the case K = Rp

+, a copositive problem.
The main purpose of this paper is to prove the optimality conditions and to obtain strong duality results for

the set-semidefinite problem (3) that do not require any regularity conditions (constraint qualifications or, shortly,
CQ). We will use here the approach developed in our previous papers (see e.g. [16, 18, 20]) for different classes of
convex problems.

2.1. Some other formulations

It is evident that problem (3) can be considered as a special case of Semi-Infinite Programming (SIP) problems [7].
On the other hand, some more general than (3) problems can be reduced to it. In fact, consider a SIP problem in
the form

minimize c(x), subject to x ∈ Rn, f(x, t) ≥ 0 ∀t ∈ M, (4)

where the decision variable x = (x1, ..., xn) is an n−vector, the index variable t = (t1, . . . , tp) is a p-vector, and
M ⊂ Rp is a given index set.

Suppose that in (4), the constraint function f(x, t) is linear w.r.t. x and linear- quadratic w.r.t. t, the cost function
c(x), x ∈ Rn, is convex, and the index set M is a convex polyhedron:

M := {t ∈ Rp : At = a, Bt ≥ b}, (5)

with given matrices A ∈ Rm0×p, B ∈ Rm∗×p and vectors a ∈ Rm0 , b ∈ Rm∗ .
Problem (4) with the index set in the form (5) is a special case of polinomial SIP problems.

Let us show that problem (4) with the index set in the form (5) and with the constraints function f(x, t) described
above, can be reduced to problem (3).

Indeed, it is evident that problem (4) can be rewritten as follows:

minimize c(x),

subject to x ∈ Rn, t⊤Ā(x)t+ 2t⊤(Dx+ d0) + q⊤x+ q0 ≥ 0 ∀t ∈ M,
(6)

where the matrix function Ā(x) has the form Ā(x) :=

n∑
k=1

Ākxk + Ā0, and the problem’s data is set:

matrices Āk ∈ S(p), k = 0, 1, . . . , n, D ∈ Rp×n, vectors d0 ∈ Rp, q ∈ Rn, and the number q0 ∈ R.
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Let X1 be the set of feasible solutions of problem (6):

X1 = {x ∈ Rn : t⊤Ā(x)t+ 2t⊤(Dx+ d0) + q⊤x+ q0 ≥ 0 ∀t ∈ M}.

Denote by d·k ∈ Rp, k = 1, . . . , n, the columns of the matrix D ∈ Rp×n: D = (d·1 . . . d·n), and let
q = (q1, . . . , qn)

⊤. Introduce the following notation:

Bk :=

(
qk d⊤·k
d·k Āk

)
∈ S(p+ 1), k = 0, 1, ..., n; B(x) :=

n∑
k=1

Bkxk +B0,

τ̄ := (τ0, τ
⊤)⊤, where τ0 ∈ R, τ = (τ1, ..., τp)

⊤ ∈ Rp,

K := {τ̄ ∈ Rp+1 : (−a,A)τ̄ = 0, (−b,B)τ̄ ≥ 0, τ0 ≥ 0},

and consider the set
X2 := {x ∈ Rn : τ̄⊤B(x)τ̄ ≥ 0 ∀τ̄ ∈ K}. (7)

One can easily prove the following lemma.

Lemma 1
Given the feasible set X1 of problem (6) and the set X2 defined in (7), the equality X1 = X2 holds.

Note that the set X2 can be considered as the feasible set of the problem in the form (3) with function A(x)
replaced by B(x) and the index set K substituted by K.

It follows from Lemma 1, that the study of the special SIP problem in the form (6) with the index set (5) is
equivalent to the study of the conic (set-semidefinite) problem in the form (3).

2.2. Normalized set of immobile indices

In accordance with the generally accepted definition (see, e.g., [7, 13]), problem (3) satisfies the Slater condition
if for some x̄ ∈ Rn it holds: t⊤A(x̄)t > 0 ∀t ∈ K \ {0}. Notice that from the very beginning, we do not make
assumptions that the constraints of problem (3) satisfy the Slater condition or some other conditions.

Since the set K is a cone, problem (3) has an unbounded index set. It is easy to show that this problem is
equivalent to the following SIP problem with a compact index set:

minimize c(x),

subject to x ∈ Rn, t⊤A(x)t ≥ 0 ∀t ∈ T := {t ∈ K : ||t||∞ = 1},
(8)

where ||t||∞ = max
k∈P

|tk|. The index set T is normalized in this problem.

In our papers [15, 16, 19], and others, we introduced for convex SIP problems the concept of immobile indices
(the indices of constraints which are active for all feasible solutions) and showed that these indices play a special
role in formulating the optimality conditions which do not need the fulfillment of the Slater condition. Here, we
will show how our approach can be applied to the conic problem under consideration.

Denote by X the set of feasible solutions in the SIP problem (8) and in the equivalent K- semidefinite problem
(3):

X = {x ∈ Rn : t⊤A(x)t ≥ 0 ∀t ∈ T},

and by Tim the set of (normalized) immobile indices in problem (8):

Tim := {t ∈ T : t⊤A(x)t = 0 ∀x ∈ X}.

It can be proved (see [15]) that the Slater condition for problem (8) is equivalent to the condition Tim = ∅.
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It will be shown (see Lemma 3 below) that the set Tim is either empty or a union of a finite number of convex
bounded polyhedra. Then, evidently, the set conv Tim is either empty or a convex polyhedron. Here conv D stays
for the convex hull of a set D.

In what follows, we will use the vertices of the set conv Tim. Denote the set of these vertices by

{t∗(j) ∈ Tim, j ∈ J, |J | < ∞}. (9)

In the case Tim = ∅, we set J = ∅.

3. CQ-free optimality criteria

The main aim of this paper is to prove necessary and sufficient optimality conditions for the conic optimization
problem (3) and the equivalent problem (8). In this section, we formulate two theorems which have the form of
criteria. These theorems do not demand that the feasible set of the problem satisfies any constraints qualifications
and therefore, we refer to them as to CQ-free optimality conditions. The main concepts that allow us to formulate
and prove these optimality conditions are the set of immobile indices and the vertices of its convex hull.

Theorem 1
A vector x0 ∈ X is an optimal solution of the set-semidefinite problem (3) (and the equivalent SIP problem (8)) iff
there exist vectors

λ(j) ∈ K, j ∈ J ; τ(i) ∈ K, i ∈ I, |I| ≤ n, (10)

such that

(U + V ) •Ak =
∂c(x0)

∂xk
, k = 1, ..., n; (U + V ) • A(x0) = 0, (11)

where matrices U and V are defined as follows:

U :=
∑
i∈I

τ(i)(τ(i))⊤, V :=
∑
j∈J

(λ(j)(t∗(j))⊤ + t∗(j)(λ(j))⊤), (12)

and t∗(j), j ∈ J, are vertices of the polyhedron conv Tim.

We will prove this theorem in section 5.

For applications, it may be useful to reformulate Theorem 1 in a different way.

Set m̄ := |J | and denote by Rp×m̄(K) the set of p× m̄ matrices Λ = (λ(j), j ∈ J) with λ(j) ∈ K, j ∈ J.
Having introduced the matrix T := (t∗(j), j ∈ J) ∈ Rp×m̄ and the sets of matrices

V(K) := {V ∈ S(p) : V = ΛT ⊤ + T Λ⊤, Λ ∈ Rp×m̄(K)}, (13)

(CK)∗ := conv {tt⊤ : t ∈ K},

we can reformulate Theorem 1 as follows.

Theorem 2
A vector x0 ∈ X is an optimal solution of problem (3) iff there exist matrices U0 ∈ (CK)∗ and V 0 ∈ V(K) such
that

(U0 + V 0) •Ak =
∂c(x0)

∂xk
, k = 1, 2, ..., n; (U0 + V 0) • A(x0) = 0. (14)

At the end of this section, we would like to make several remarks.

Remark 1
It can be shown that the cone (CK)∗ is dual to the cone CK .
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Remark 2
Theorem 1 can be easily generalized for the case when the set K is an union of the finite number of polyhedra.

It was mentioned above that the conic problem (3) can be considered as a special case of SIP problems. Therefore,
to study the optimality in this problem, one can use the optimality conditions known from the theory of SIP. Notice
that almost all known optimality conditions for SIP problems require the fulfillment of some additional conditions.
As a rule, these conditions are either of the Slater type (see [7, 26, 28, 29] and the references therein) or include
some weaker assumptions (see, e.g. [15, 16, 19]).

It worth to be mentioned that there is a small number of publications in the literature, where optimality conditions
for set-semidefinite problems are formulated. These optimality conditions were also obtained under assumptions
that in the case of problem (3), are equivalent to the Slater condition.

In [12], for a set-semidefinite problem in Banach and finite dimensional spaces, optimality conditions in a non-
degenerate form were proved under a so-called Kurcyusz-Robinson-Zowe (KRZ) regularity condition (see (16)
from [12]). For the problem in the form (3), this condition takes the form

Ξ + cone(CK − {A(x̄)}) = S(p), (15)

where x̄ ∈ X , Ξ := {Z ∈ S(p) : Z =
n∑

k=1

Akhk, ∀hk ∈ R, k = 1, ..., n}, and coneD stays for the conic hull of a

set D.
Let us prove that, for an affine matrix function A(x), condition (15) implies the Slater condition.
Suppose that condition (15) fulfills and let S̄ ∈ S(p) be such that t⊤S̄t < 0 for all t ∈ Rp, t ̸= 0. It follows from

(15) that there exist h = (hk ∈ R, k = 1, ..., n)⊤, αi ≥ 0, Di ∈ CK , i ∈ I, such that
n∑

k=1

Akhk +
∑
i∈I

αi(Di −A(x̄)) = S̄ ⇔
n∑

k=1

Akhk + (D̃ − αA(x̄)) = S̄ (16)

with D̃ =
∑
i∈I

αiDi ∈ CK , α =
∑
i∈I

αi ≥ 0.

Suppose that α > 0. Then αA(x̄− h/α) = D̃ − S̄ and αt⊤A(x̄− h/α)t = t⊤D̃t− t⊤S̄t > 0 ∀t ∈ K, t ̸= 0.
It follows from these relations that, for problem (3), the Slater condition holds true with (x̄− h/α) ∈ X .

Now suppose that α = 0 in (16). Then
n∑

k=1

Akhk = S̄ and A(x̄− h) = A(x̄)− S̄. Hence

t⊤A(x̄− h)t = t⊤A(x̄)t− t⊤S̄t > 0 ∀t ∈ K, t ̸= 0.

This implies that for problem (3), the Slater condition holds true with (x̄− h) ∈ X .

The main contribution of this paper consists of new optimality criteria formulated in Theorems 1 and 2. These
criteria are CQ-free since they do not need any additional assumptions, whether it is the KRZ condition, or the
Slater condition or any other CQ. This means that the scope of these optimality conditions is much wider than of
other known conditions. This result was possible due to the application of the approach based on the concept of
immobility. In section 6, we will show how the obtained results can be used to produce strong dual formulations
for problem (3) with a linear cost function.

4. The properties of problem (8)

To prove Theorem 1 we need some auxiliary results which will be considered in this section.

4.1. A parametric representation of the cone K.

First, consider the cone introduced in the previous section and used to identify the index sets of the equivalent
problems (3) and (8):

K = {t ∈ Rp : At = 0, Bt ≥ 0}. (17)
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Consider a subspace of Rp in the form

H: = {t ∈ Rp : At = 0, Bt = 0} (18)

and denote by bs ∈ Rp, s ∈ S, |S| ≤ p, the vectors of an orthogonal basis of this subspace.
Consider the set

H∗ := {t ∈ Rp : At = 0, Bt ≥ 0, t⊤bs = 0, s ∈ S}. (19)

By construction, H∗ is a polyhedral convex cone. Let us show that H∗ is a pointed cone, i.e.

t ̸= 0, t ∈ H∗ ⇒ −t ̸∈ H∗.

In fact, suppose that, on the contrary, there exists t̄ ̸= 0 such that t̄ ∈ H∗ and −t̄ ∈ H∗. Then At̄ = 0,Bt̄ = 0,
and, consequently, t̄ ∈ H . Thus we can conclude that t̄ =

∑
s∈S

βsbs for some scalars βs, s ∈ S. As t̄ ∈ H∗, the

following equalities should be satisfied:

0 = t̄⊤bi =
∑
s∈S

βsb
⊤
s bi = βi, i ∈ S.

These equalities contradict the assumption that 0 ̸= t̄ =
∑
s∈S

βsbs. The obtained contradiction proves that the convex

polyhedral cone H∗ is pointed.

Denote by as, s ∈ S∗, |S∗| < ∞, the extreme directions in the cone H∗. Recall that by the definition, the extreme
directions in a polyhedral cone are its faces of dimension one.

The following lemma formulates the known result about representation of polyhedral cones.

Lemma 2
The cone K defined in (17), can be written as follows:

K = {t ∈ Rp : t =
∑
s∈S

βsbs +
∑
s∈S∗

αsas, αs ≥ 0, s ∈ S∗}.

Note that the formula above is well consistent with the well-known fact that any nonempty convex set C admits
representation in the form C = linC + (C ∩ (linC)⊥), where linC is the largest subspace contained in the recession
cone of C, the so-called lineality space of C (see e.g. [25], p.65). Notice that for the polyhedral cone K in the form
(17), it holds linK = H and K ∩ (linK)⊥ = H∗, where H and H∗ are defined in (18),(19).

4.2. The properties of the set of immobile indices of problem (8)

Here, as above, we consider a general case when the set of immobile indices of problem (8) may be nonempty.

Proposition 1
Suppose that for problem (8) it is satisfied: X ̸= ∅ and Tim ̸= ∅. Then for any x ∈ X and any t ∈ Tim ⊂ K, the
following relations hold true:

a⊤s A(x)t ≥ 0, s ∈ S∗; b
⊤
s A(x)t = 0, s ∈ S, (20)

where {bs ∈ Rp, s ∈ S, |S| ≤ p} is the orthogonal basis of the subspace H defined in (18) and {as, s ∈ S∗,
|S∗| < ∞} is the set of extreme directions in the pointed cone H∗ defined in (19).

Proof. Suppose that, on the contrary, there exist x̄ ∈ X and t̄ ∈ Tim, such that one of two situations occurs:

1. ∃s0 ∈ S∗ such that a⊤s0A(x̄)t̄ < 0 or 2. ∃ s0 ∈ S such that b⊤s0A(x̄)t̄ ̸= 0.

Let us assume, first, that situation 1 has happened. By construction, the vector as0 is a recession direction for t̄ in
the cone K: t(θ) := t̄+ θas0 ∈ K ∀θ ≥ 0.
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Let us compute (t(θ))⊤A(x̄)t(θ) = 2θa⊤s0A(x̄)t̄+ θ2a⊤s0A(x̄)as0 . Taking into account that a⊤s0A(x̄)t̄ < 0, one
can conclude from the latter equality that there exists θ̄ > 0 such that (t(θ̄))⊤A(x̄)t(θ̄) < 0. The latter inequality
implies the inequality

t̃⊤A(x̄)t̃ < 0, where t̃ := t(θ̄)/||t(θ̄)||∞ ∈ T, (21)

that contradicts the condition x̄ ∈ X .
Now suppose that the situation 2 has occurred. Set γ := b⊤s0A(x̄)t̄. By construction, the direction −γbs0 is

feasible for t̄ in K: t(θ) := t̄− θγbs0 ∈ K ∀θ ≥ 0. By simple computations, we get

(t(θ))⊤A(x̄)t(θ) = −2θγb⊤s0A(x̄)t̄+ θ2γ2b⊤s0A(x̄)bs0 = −2θγ2 + θ2γ2b⊤s0A(x̄)bs0 ,

and taking into account the inequality γ ̸= 0, one can conclude that there exists θ̄ > 0 such that t⊤(θ̄)A(x̄)t(θ̄) < 0.
But this inequality implies relations (21) and hence contradicts the condition x̄ ∈ X . The proposition is proved. 2

Lemma 3
Given convex SIP problem (8), the immobile index set Tim is either empty or can be represented as a union of a
finite number of convex closed bounded polyhedra.

Proof. If Tim = ∅, the lemma is evident.
Suppose that Tim ̸= ∅. Consider any t ∈ Tim ⊂ K. It follows from Lemma 2 that t admits the representation

t =
∑
s∈S

βsbs +
∑
s∈S∗

αsas, αs ≥ 0, s ∈ S∗.

For t ∈ Tim, denote
S+
∗ (t) := {s ∈ S∗ : αs > 0}.

Set
Z := {Z ⊂ S∗ : ∃ t ∈ Tim, Z = S+

∗ (t)}.

From the definition of the set Z , it follows that it is finite: |Z| ≤ 2|S∗|, where 2|S∗| < ∞ is the number of all subsets
of the finite set S∗.

For any Z ∈ Z , consider the corresponding set

T̃ (Z) := cl{t ∈ Tim : S+
∗ (t) = Z},

where cl(D) stays for the closure of a set D ⊂ Rp.
It is evident that

Tim =
∪
Z∈Z

T̃ (Z). (22)

By construction, for any t̄ ∈ T̃ (Z), we have t̄ ∈ Tim, S+
∗ (t̄) ⊂ Z, and

t̄ = lim
ω→∞

t(ω), where t(ω) ∈ Tim, S+
∗ (t(ω)) = Z. (23)

Let us show that for any t̄ ∈ T̃ (Z), we have

a⊤s A(x)t̄ = 0 ∀s ∈ Z ∀x ∈ X. (24)

Suppose the contrary. Then for some t̄ ∈ T̃ (Z), taking into account Proposition 1, there exist s0 ∈ Z and x̄ ∈ X ,
such that a⊤s0A(x̄)t̄ > 0. From the latter inequality and relations (23), we conclude that there exists t(ω) ∈ Tim

such that S+
∗ (t(ω)) = Z and

a⊤s0A(x̄)t(ω) > 0. (25)

Since S+
∗ (t(ω)) = Z and s0 ∈ Z, the direction −as0 is feasible for t(ω) in K, i.e. there exists θ0 > 0 such that

t(θ) := t(ω)− θas0 ∈ K ∀θ ∈ [0, θ0].
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Compute
(t(θ))⊤A(x̄)t(θ) = −2θa⊤s0A(x̄)t(ω) + θ2a⊤s0A(x̄)as0 .

From the latter equality and inequality (25), it follows that there exists 0 < θ̄ ≤ θ0 such that (t(θ))⊤A(x̄)t(θ̄) < 0.
But this inequality implies relations (21) that contradict the assumption x̄ ∈ X . Hence equalities (24) are proved.

Now let us show that
t̂ ⊤A(x)t̄ = 0 ∀t̂ ∈ T̃ (Z), ∀t̄ ∈ T̃ (Z), ∀x ∈ X. (26)

In fact, any vector t̂ ∈ T̃ (Z) can be written as follows:

t̂ =
∑
s∈S

βsbs +
∑
s∈Z

αsas.

Taking into account this representation, equalities (24) and relations (20), we obtain

t̂ ⊤A(x)t̄ =
(∑
s∈S

βsbs +
∑
s∈Z

αsas

)⊤
A(x)t̄ = 0 ∀x ∈ X.

Consequently, we have proved equalities (26).
Given Z ∈ Z, let 0 < r = dim span(T̃ (Z)) ≤ p, being here span(D) the linear subspace generated by D ⊂ Rp.

Let {t1, . . . , tr} ⊂ T̃ (Z) be a basis of span(T̃ (Z)). Denote

T̂ (Z) := {t ∈ Rp : t =
∑
i∈I

tiγi, Bt ≥ 0, ||t||∞ = 1}, where I := {1, . . . , r}.

It is easy to see that the set T̂ (Z) is a union of a finite number of convex bounded polyhedra.
Suppose that t ∈ T̃ (Z). Hence, by construction, Bt ≥ 0, ||t||∞ = 1 and t admits a representation t =

∑
i∈I

tiγi.

Hence t ∈ T̂ (Z) and T̃ (Z) ⊂ T̂ (Z). Consequently∪
Z∈Z

T̃ (Z) = Tim ⊂
∪
Z∈Z

T̂ (Z). (27)

Now consider any t ∈ T̂ (Z). By construction, we have At = 0, Bt ≥ 0, ||t||∞ = 1, and, consequently, t ∈ T.

Since ti ∈ T̃ (Z), i ∈ I, it follows from (26) that

(ti)⊤A(x)tj = 0, i ∈ I, j ∈ I, ∀x ∈ X.

Taking into account these equalities, for any x ∈ X , we get

t⊤A(x)t =
∑
i∈I

∑
j∈I

γiγj(t
i)⊤A(x)tj = 0.

This implies that t ∈ Tim and hence T̂ (Z) ⊂ Tim. Consequently,
∪

Z∈Z
T̂ (Z) ⊂ Tim. This inclusion together with

(27) imply ∪
Z∈Z

T̂ (Z) = Tim.

Taking into account that |Z| < ∞ and the fact that each set T̂ (Z) is a union of a finite number of convex bounded
polyhedra, we conclude from the latter equality that the statement of the lemma is proved. 2

Consider the set {t∗(j), j ∈ J} of vertices of the polyhedron conv Tim. Recall that in the case Tim = ∅, we have
conv Tim = ∅ and J = ∅.
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Suppose that Tim ̸= ∅. Since t∗(j) ∈ Tim for any j ∈ J , it follows from Proposition 1 that the following relations
hold true:

a⊤s A(x)t∗(j) ≥ 0, s ∈ S∗; b
⊤
s A(x)t∗(j) = 0, s ∈ S, j ∈ J, ∀x ∈ X. (28)

Denote
X := {x ∈ Rn : a⊤s A(x)t∗(j) ≥ 0, s ∈ S∗; b

⊤
s A(x)t∗(j) = 0, s ∈ S, j ∈ J}. (29)

Evidently, X ⊂ X .

Proposition 2
Consider the SIP problem (8) with the set of immobile indices Tim. Let the set X be defined in (29). Then the
following relations hold true:

t⊤A(x)t ≥ 0 ∀t ∈ convTim, ∀x ∈ X . (30)

Proof. Let t ∈ convTim. Then t =
∑
j∈J

γjt
∗(j),

∑
j∈J

γj = 1, γj ≥ 0, j ∈ J. Hence for any x, it holds

t⊤A(x)t =
(∑
j∈J

γjt
∗(j)

)⊤
A(x)

(∑
j∈J

γjt
∗(j)

)
=

∑
i∈J

∑
j∈J

γiγj(t
∗(i))⊤A(x)t∗(j). (31)

Let us show that for any i ∈ J, j ∈ J,

(t∗(i))⊤A(x)t∗(j) ≥ 0, ∀x ∈ X . (32)

In fact, since the vector t∗(i) belongs to K, it admits a representation

t∗(i) =
∑
s∈S

βsibs +
∑
s∈S∗

αsias, where αsi ≥ 0, s ∈ S∗.

Hence, taking into account (29), we get

(t∗(i))⊤A(x)t∗(j) =
(∑
s∈S

βsibs +
∑
s∈S∗

αsias

)⊤
A(x)t∗(j) =

∑
s∈S∗

αsia
⊤
s A(x)t∗(j) ≥ 0, ∀x ∈ X .

Inequalities (30) follow from (31) and (32). The proposition is proved. 2

4.3. The properties of the feasible set of problem (8)

In this section, we will obtain some properties of the feasible set of problem (8). These properties are closely
connected with the properties of the elements of the convex hull of the set of normalized immobile indices in this
problem.

Denote
T (ε) := {t ∈ T, ρ(t, conv Tim) ≥ ε}, T̂ (ε) := {t ∈ T, ρ(t, conv Tim) ≤ ε}, (33)

X(ε) := {x ∈ X : t⊤A(x)t ≥ 0 ∀t ∈ T (ε)}, (34)

where ε > 0, the set X is defined in (29), the distance between a vector l and a set B in Rp is defined as
ρ(l, B) = min

τ∈B
||l − τ ||, and ||a|| stays for a norm of vector a ∈ Rp.

Lemma 4
Consider the SIP problem (8) with the set of immobile indices Tim and the feasible set X . There exists ε0 > 0 such
that X(ε0) = X, where the set X(ε) is defined in (34).
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Proof. It is evident that X ⊂ X(ε) for all ε > 0.
Let us show that there exists ε0 > 0 such that X(ε0) ⊂ X. Suppose the contrary. Then for all ε > 0 there exists

x(ε) ∈ X(ε) such that
(t(ε))⊤A(x(ε))t(ε) < 0, (35)

where t(ε) ∈ arg{min
t

t⊤A(x(ε))t, s.t. t ∈ T}.
It is easy to prove that t(ε) is also an optimal solution of the problem

minimize t⊤A(x(ε))t, subject to t ∈ T̃ , (36)

where T̃ := {t ∈ K : ∥ t ∥∞ ≤ 1}. Notice that T ⊂ T̃ , and the set T̃ is convex. By construction (see Proposition 2
and definition (34)), it holds

t⊤A(x(ε))t ≥ 0, ∀t ∈ T (ε) ∪ conv Tim.

Hence we can conclude that t(ε) ∈ T̂ (ε) \ conv Tim and there exists a limiting point t∗ of the sequence t(ε), ε → 0
such that t∗ ∈ conv Tim ⊂ T. To simplify notation without loss of generality suppose that t∗ = lim

ε→0
t(ε).

Set
P±(ε) := {k ∈ {1, . . . , p} : tk(ε) = ±1}, N0(ε) := {k ∈ {1, . . . ,m∗} : B⊤

k t(ε) = 0},

where tk(ε) denotes the k-th component of the vector t(ε) and B⊤
k stays for the k-th raw of the matrix B ∈ Rm∗×p.

Since the sets {1, . . . , p} and {1, . . . ,m∗} are finite, there exists a sequence εk > 0, k = 1, 2, ... and sets P±, N0

such that lim
k→∞

εk = 0, P±(εk) = P±, and N0(εk) = N0 for sufficiently large k > 0. To simplify the designation,

without loss of generality, we can consider that

P±(ε) = P± and N0(ε) = N0 for sufficiently small ε > 0. (37)

Given a sufficiently small ε > 0, consider vector l(ε) := t(ε)− t∗. It is easy to see that due to the convexity of the
set T̃ , we have t∗ + λ(t(ε)− t∗) = t∗ + λl(ε) ∈ T̃ for all λ ∈ [0, 1]. Hence l(ε) is a feasible direction for t∗ in T̃ .

Since by construction, Al(ε) = 0, then, according to definition, the direction l(ε) will be feasible for t(ε) in
the set T̃ if there exists θ0 > 0 such that −1 ≤ tk(ε) + θlk(ε) ≤ 1, k = 1, ..., p, and B(t(ε) + θl(ε)) ≥ 0, for all
θ ∈ [0, θ0]. Hence the direction l(ε) is feasible for t(ε) in the set T̃ if

lk(ε) ≤ 0 for k ∈ P+; lk(ε) ≥ 0 for k ∈ P−; B⊤
k l(ε) ≥ 0 for k ∈ N0.

The relations above are fulfilled since it follows from (37) that lk(ε) := tk(ε)− t∗k = 0, k ∈ P+ ∪ P− and
B⊤

k l(ε) = B⊤
k (tk(ε)− t∗k) = 0 for k ∈ N0. Consequently, the direction l(ε) is feasible for both vectors, t∗ and

t(ε), in the set T̃ and, hence,

t̄(σ) := t∗ + σl(ε) = t∗ + σ(t(ε)− t∗) ∈ T̃ , ∀σ ∈ [0, σ0], where σ0 > 1.

For a fixed ε > 0 that satisfies the assumptions above, define the function

w(σ) := (t̄(σ))⊤A(x(ε))t̄(σ) = (t∗)⊤A(x(ε))t∗ + 2σ(l(ε))⊤A(x(ε))t∗ + σ2(l(ε))⊤A(x(ε))l(ε)

= aσ2 + 2bσ + c, σ ∈ [0, σ0],

where c := (t∗)⊤A(x(ε))t∗, b := (l(ε))⊤A(x(ε))t∗, a := (l(ε))⊤A(x(ε))l(ε).
By construction, for σ∗ = 1 we have t̄(σ∗) = t(ε). Then w(σ∗) = (t(ε))⊤A(x(ε))t(ε), and w(σ∗) is the optimal

value of the cost function of the problem (36). Hence

w(σ∗) = min
σ∈[0,σ0]

w(σ) = min
σ∈[0,σ0]

(aσ2 + 2bσ + c). (38)
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As σ∗ ∈ (0, σ0), one can conclude from (38) that 2aσ∗ + 2b = 2a+ 2b = 0. Then −a = b and we get the following
equivalent equalities:

−(l(ε))⊤A(x(ε))t∗ = (l(ε))⊤A(x(ε))l(ε) ⇐⇒
(t(ε))⊤A(x(ε))t∗ = (t(ε))⊤A(x(ε))t(ε).

(39)

By construction, t∗ ∈ conv Tim. Therefore t∗ =
∑
j∈J

γjt
∗(j),

∑
j∈J

γj = 1, γj ≥ 0, j ∈ J.

Since t(ε) ∈ T̃ ⊂ K, then t(ε) =
∑
s∈S

βsbs +
∑

s∈S∗

αsas, where αs ≥ 0, s ∈ S∗. Consequently, taking into

account the inclusion x(ε) ∈ X(ε) ⊂ X , where X is defined in (29), we have

(t(ε))⊤A(x(ε))t∗ =
(∑
s∈S

βsbs +
∑

s∈S∗

αsas

)⊤
A(x(ε))

∑
j∈J

γjt
∗(j)

=
∑

s∈S∗

∑
j∈J

αsγja
⊤
s A(x(ε))t∗(j) ≥ 0.

The latter inequality and inequality (35) contradict the equality (39). The lemma is proved. 2

The next lemma can be proved using the same reasoning scheme as in the proof of Lemma 3 from [20].

Lemma 5
Given SIP problem (8) with the set of immobile indices Tim, for any ε > 0 there exists a vector x(ε) ∈ X such that

t⊤A(x(ε))t > 0 ∀t ∈ T (ε), (40)

where the sets X and T (ε) are defined in (29), (33).

5. The proof of Theorem 1

We will prove here Theorem 1 for problem (8). Taking into account that problems (3) and (8) are equivalent, the
theorem will be valid also for the K-semidefinite problem (3).

Necessity. Let x0 ∈ X be an optimal solution of the problem. Choose ε0 > 0 as in Lemma 4 and consider a
perturbed SIP problem

minimize c(x), subject to x ∈ X(ε0),

where the set X(ε) is defined in (34). This problem can be rewritten as follows:

minimize c(x),

subject to x ∈ Rn, t⊤A(x)t ≥ 0 ∀t ∈ T (ε0),

a⊤s A(x)t∗(j) ≥ 0, s ∈ S∗; b
⊤
s A(x)t∗(j) = 0, s ∈ S, j ∈ J.

(41)

According to Lemma 4, the set of feasible solutions of problem (41) coincides with the set of feasible solutions of
the original problem (8). Hence vector x0 is an optimal solution of the perturbed problem (41) as well.

Problem (41) has the following important properties:
• the index set T (ε0) is compact,
• the constraints satisfy the Slater type condition (see Lemma 5).

Hence, applying the classic optimality conditions (see, for example, Theorem 5.107 in [7]) for the optimal
solution x0 of problem (41), we can state that there exist numbers and vectors

y(i) > 0, t(i) ∈ T (ε0), i ∈ I, |I| ≤ n; αsj ≥ 0, s ∈ S∗, βsj ∈ R, s ∈ S, j ∈ J, (42)
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such that the following relations hold:

−∂c(x0)
∂xk

+
∑
i∈I

y(i)(t(i))⊤Akt(i) +
∑
j∈J

( ∑
s∈S∗

αsjas +
∑
s∈S

βsjbs

)⊤

Akt
∗(j) = 0, k = 1, ..., n; (43)

(t(i))⊤A(x0)t(i) = 0, i ∈ I; αsja
⊤
s A(x0)t∗(j) = 0, s ∈ S∗, j ∈ J. (44)

Denote τ(i) :=
√

y(i) t(i), i ∈ I , λ(j) := 1
2

( ∑
s∈S∗

αsjas +
∑
s∈S

βsjbs

)
∈ K, j ∈ J. It is easy to see that relations

(43), (44) can be written in the form (11) with matrices U and V defined in (12). The necessity is proved.

Sufficiency. Suppose that for x0 ∈ X , there exist vectors (10) such that for matrices (12) the relations (11) hold
true. Then it is easy to show that the vector x0 is an optimal solution in the following convex problem with linear
constraints:

minimize c(x),

(CP) : subject to x ∈ Rn, (τ(i))⊤A(x)τ(i) ≥ 0, i ∈ I,

a⊤s A(x)t∗(j) ≥ 0, s ∈ S∗; b
⊤
s A(x)t∗(j) = 0, s ∈ S, j ∈ J.

It is evident that the feasible set X of problem (8) belongs to the set of feasible solutions of the problem (CP).
Hence the optimality of x0 ∈ X in (CP) implies the optimality of x0 in the original problem (8). The theorem is
proved. 2

6. Dual formulations for the linear K- semidefinite problem (3): standard Lagrangian and regularized dual
problems

In this section, we will suppose that the cost function of the special conic problem (3) is linear and discuss some
new dual formulations for this problem.

In our papers [17] and [20], we derived regularized primal and dual formulations for linear copositive problems.
These formulations are explicit and guarantee the strong duality. In this section, in a similar way, we will derive
new strong dual formulations for the K-semidefinite problem (3). To obtain these results, we will use Theorem 2.

Consider a K-semidefinite problem with linear cost function in the form

minimize c⊤x subject to A(x) ∈ CK , x ∈ Rn, (45)

where c = (c1, c2, . . . , cn), function A(x) and the polyhedral set K are defined as in (3).

First of all, let us formulate for problem (45), the (standard) Lagrangian dual problem. According to [24], it has
the form:

maximize(−W •A0),

subject to − ck +W •Ak = 0, k = 1, 2, ..., n; W ∈ (CK)∗,
(46)

where the cone (CK)∗ = conv {ll⊤ : l ∈ K} is the dual cone to the cone CK .
It is a known fact (see e.g.[24]) that if the constraints of problem (45) satisfy the Slater condition, then there is

no gap between the optimal values of this problem and its Lagrangian dual.
If the constraints of problem (45) do not satisfy the Slater condition, then the positive gap is possible even in the

case when the primal problem has an optimal solution.

Consider the following cones:

CK(j) := {D ∈ S(p) : t⊤Dt∗(j) ≥ 0 ∀t ∈ K}, j ∈ J.
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These cones are explicitly generated by the finite set {t∗(j), j ∈ J} of vertices of the polyhedron conv Tim, where
Tim is the normalized immobile index set in problem (45).

One can show that for any j ∈ J , the cone CK(j) is convex and closed and the corresponding dual cone has the
form

(CK(j))∗ = {t(t∗(j))⊤ + t∗(j)t⊤ : t ∈ K}.

Denote
K := (

∩
j∈J

CK(j)) ∩ CK .

Evidently, K ⊂ CK , where the cone CK is defined in (1). It can be shown (see e.g. [4, 6]) that the dual cone to K
has the form

K∗ = cl
(∑
j∈J

(CK(j))∗ + (CK)∗
)
.

Hence
K∗ = cl{W ∈ S(p) : W = U + V, U ∈ (CK)∗, V ∈ V(p)}, (47)

where V(p) is defined in (13).
Taking into account Proposition 1, one can show that the K-semidefinite problem (45) can be rewritten in the

conic form
minimize c⊤x, subject to x ∈ Rn, A(x) ∈ K ⊂ CK . (48)

Let us refer to problem (48) as a regularized primal (set-semidefinite) problem. The dual problem to (48) (the
regularized dual problem) has the form

maximize(−W •A0),

subject to − ck +W •Ak = 0 ∀k = 1, 2, ..., n, W ∈ K∗.
(49)

It is easy to show that, given any feasible solution x of problem (48) and any feasible solution W of the dual
problem (49), the following inequality (weak duality) is satisfied:

c⊤x ≥ −W •A0.

Moreover, taking into account Theorem 2 and representation (47), we can conclude that for any optimal solution
x0 of problem (48), there exists a feasible solution W 0 = U0 + V 0, U0 ∈ (CK)∗, V 0 ∈ V(p), of the dual problem
(49) such that the strong duality property holds:

c⊤x0 = −W 0 •A0. (50)

This conclusion implies the following proposition.

Proposition 3
Suppose that the K-semidefinite problem (45) has an optimal solution. Then

• an optimal solution of the regularized dual problem (49) exists, and
• there is no gap between the optimal values of problem (45) (equivalently, the regularized primal K-

semidefinite problem (48)), and its regularized dual problem (49).

From this proposition, it follows that the strong duality is guaranteed for the primal problem (45) and its
regularized dual problem (49), while, as it was mentioned above, for the pair constituted by the primal problem
(45) and its (standard) Lagrangian dual problem (46), the strong duality may fail.

The main contribution of this section is to obtain for the set-semidefinite problem (45) a regularized dual one
(49) satisfying the strong duality conditions without CQs or any other assumptions. The dual problem (49) has an
explicit form and is constructed using the vertices of the convex hull of the normalized immobile index set of the
constraints in the primal problem.
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In [24, 30], a CQ-free duality theory for conic optimization was developed in terms of the so-called minimal
cone. Being quite general, this theory has one disadvantage in terms of its application, namely, it is very abstract.

To the best of our knowledge, for problem (45), there are no other explicit CQ-free dual formulations satisfying
strong duality relations.

We plan to dedicate a special paper to the detailed comparison of the new conic formulations obtained using the
notion of the immobile indices with that from [24, 30].

7. Conclusions

The main contribution of the paper consists in the formulation of new CQ-free optimality conditions and strong
duality results for set-semidefinite programming problems. To obtain these results, we used the approach, suggested
in our previous papers for convex SIP, SDP, and copositive problems, and based on the concept of immobile indices.

The main conclusions we can draw from the results of the paper, are the following.

• The concept of immobile indices being applied to set-semidefinite optimization permits one to obtain new
optimality conditions.

• The set of immobile indices has a special structure and its study is important. Notice that the optimality
conditions formulated in Theorems 1 and 2 do not use the proper normalized immobile indices but are
formulated with the help of a finite number of vertices of the convex hull of the normalized immobile index
set. In the future, we plan to obtain CQ-free optimality conditions and strong duality results without explicit
use of there vertices as well.

• The optimality conditions and strong duality relations obtained in the paper for the special set-semidefinite
problems may be used to develop numerical methods for solving these problems.
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