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Abstract Signal-to-noise ratio (SNR) is a reciprocal of coefficient of variation. The SNR is a measure of mean
relative to the variability. Confidence procedures for common SNR of two-parameter exponential distributions were
developed using generalized confidence interval (GCI) approach, large sample (LS) approach, adjusted method of
variance estimates recovery (Adjusted MOVER) approach, and bootstrap approaches based on standard bootstrap
(SB) and parametric bootstrap (PB). The performances of all approaches are measured by coverage probability
and average length. Simulation studies show that all approaches have the coverage probabilities below the nominal
confidence level of 0.95 when the common SNR is negative value. However, the coverage probabilities of all
approaches are greater than the nominal confidence level of 0.95 when the common SNR is positive value. Moreover,
the LS and AM approaches are the conservative confidence intervals. In addition, the GCI and PB approaches
provide the confidence intervals with coverage probabilities close to the nominal confidence level of 0.95 when the
sample sizes are large and the common SNR is positive value. The GCI and PB approaches are recommended
to estimate the confidence intervals for the common SNR of two-parameter exponential distributions. Finally, all
proposed approaches are employed in the data of the survival days of lung cancer patients for a demonstration.
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1. Introduction

Two-parameter exponential distribution is used as model in lifetime data analysis and reliability analysis.
The two-parameter exponential distribution is often used to illustrate concepts such as parameter
estimation and hypothesis testing in probability, mathematical statistics, and reliability. Various other
motivations and applications of the two-parameter exponential distribution can be found in Lawless [1],
Baten and Kamil [2], Petropoulos [3], Jiang and Wong [4], Thangjai and Niwitpong [5], Saothayanun and
Thangjai [6], Thangjai et al. [7], Thangjai and Niwitpong [8], and Chesneau et al. [9].

Coefficient of variation (CV) is a measure of variability relative to the mean. The CV is free from
the unit of measurement. Therefore, the CV is used rather than standard deviation for measuring of
relative variability. The CV has been used in many fields such as science, medicine, life insurance and
climatology. Signal-to-noise ratio (SNR) is a reciprocal of the CV. It is defined as the ratio of the mean
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to the standard deviation. The SNR is important in medicine, quality control, finance, economics, and
other fields. The SNR is a measure of the signal strength compared to background noise in analog and
digital communications, whereas it discusses the magnitude of the mean of a process relative to variation in
quality control. There are numerous publications for estimating SNRs based on two-parameter exponential
data, for example, Sharma and Krishna [10], George and Kibria [11], Albatineh et al. [12], Albatineh et
al. [13], Saothayanun and Thangjai [6], Niwitpong [14], Thangjai and Niwitpong [15], Thangjai and
Niwitpong [16], and Thangjai and Niwitpong [17].

The generalized confidence interval (GCI) approach uses generalized pivotal quantity (GPQ) to
construct the confidence interval. As an advantage, the GPQ of the parameters is based on the maximum
likelihood estimates. Since the scale and location parameters in the two-parameter exponential distribution
are easy to find the maximum likelihood estimators. Furthermore, the GCI approach can be used to
estimate the confidence interval for complex parameters. However, the numerical simulation of the GCI
approach is based on the maximum likelihood estimate only. According to Weerahandi [18], the GPQ is
based on the following two properties. Property A: the random quantity has a probability distribution
that is free of unknown parameters. Property B: the observed value of the random quantity does not
depend on nuisance parameters. The GCI approach is successfully constructed the confidence interval for
common parameter such as the research paper of Tian [19], Tian and Wu [20], Ye et al. [21], and Ng
[22]. The large sample (LS) approach uses the concept of the central limit theorem (CLT) which is the
most fundamental theory in statistics. The statistics of sample obtained based on a random sampling
with replacement are normal distribution with the parameter when the sample size is sufficiently large.
The LS approach has the advantage of being easy to construct the confidence interval using the exact
formula. For disadvantage, the LS approach should use the large sample size to estimate the confidence
interval. The method of variance estimates recovery (MOVER) approach is used to estimate the confidence
interval for two parameters case; see Zou and Donner [23] and Zou et al. [24]. The adjusted MOVER
approach is motivated based on the concepts of the large sample and MOVER approaches. This approach
is used in many studies for constructing the confidence interval of common parameter, for example, see
Thangjai et al. [25] and Thangjai and Niwitpong [5]. The advantage of the adjusted MOVER approach is
easy to use the exact formula for computing the confidence interval, whereas the disadvantage is that the
adjusted MOVER approach is based on the initial confidence interval of a single parameter. The bootstrap
approach approximates the sampling distribution of the statistics by resampling with replacement. The
bootstrap samples are repeatedly drawn from population. The bootstrap samples are used to represent
the population. As an advantage, the bootstrap approach is simple and reasonably accurate confidence
interval. For disadvantage, the distribution of estimates around the true values needs to know because
the sampling distribution follows the distribution of the data since estimates are function of the data.
Thangjai and Niwitpong [8] has used the parametric bootstrap approach to construct the simultaneous
confidence intervals for differences of CVs of two-parameter exponential distributions. Chachi [26] provided
the bootstrap approach to statistical testing of hypotheses about variance of a fuzzy random variable.
Therefore, the confidence interval for the common parameter based on the bootstrap approach is of
interest.

Saothayanun and Thangjai [6] proposed the GCI approach, the LS approach, the MOVER for interval
estimation of the single SNR of two-parameter exponential distribution. In this study, new approaches are
proposed for estimating confidence interval for common SNR of k two-parameter exponential distributions.
These approaches are GCI approach, LS approach, adjusted MOVER approach, and bootstrap approaches
using standard bootstrap (SB) and parametric bootstrap (PB).

The rest of this study is organized as follows. Section 2 proposes the computational procedures to
construct the confidence intervals for common SNR. Section 3 conducts the simulation studies. Section 4
illustrates the proposed approaches with real example. Finally, Section 5 concludes the paper with some
discussion and final remarks.
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2. Confidence intervals for common SNR

Consider k independent two-parameter exponential distributions with a common SNR δ. Let Xi =
(Xi1, Xi2, ..., Xini) be a random variable from the i-th two-parameter exponential population. Let λi

and βi be scale parameter and location parameter of i-th sample, respectively. The mean and variance of
Xi are E(Xi) = λi + βi and V ar(Xi) = λ2

i , respectively.
For i = 1, 2, ..., k, the common SNR defined as

δ =
λi + βi

λi
. (1)

From the i-th sample, the estimator of δ is

δ̂ =
λ̂i + β̂i

λ̂i

=
X̄i

X̄i −X(1)i

, (2)

where β̂i = X(1)i = min(Xi1, Xi2, ..., Xini
) and λ̂i = X̄i −X(1)i.

The variance of δ̂i has the following form

V ar(δ̂i) =
2n2

iλ
2
i − niλ

2
i + 2n2

iλiβi + n2
iβ

2
i

(ni − 1)3λ2
i

. (3)

2.1. Generalized confidence interval
The pivots for estimating βi and λi based on the i-th sample are

W1i =
2ni(β̂i − βi)

λi
∼ χ2

2 and W2i =
2niλ̂i

λi
∼ χ2

2ni−2, (4)

where χ2
2 and χ2

2ni−2 denote chi-squared distribution with 2 and 2ni − 2 degrees of freedom, respectively.
Thus, the generalized pivotal quantities for estimating βi and λi defined as

Rβi = β̂i −
W1iRλi

2ni
and Rλi =

2niλ̂i

W2i
. (5)

The generalized pivotal quantity for estimating δi based on the i-th sample is

Rδi = 1 +
1

2ni

(
β̂iW2i

λ̂i

−W1i

)
. (6)

According to Ye et al. [21], the generalized pivotal quantity for the common SNR is a weighted average
of the generalized pivot Rδi based on k individual samples as

Rδ =

k∑
i=1

Rδi

RV ar(δ̂i)

/
k∑

i=1

1

RV ar(δ̂i)

, (7)

where

RV ar(δ̂i)
=

2n2
iR

2
λi

− niR
2
λi

+ 2n2
iRλi

Rβi
+ n2

iR
2
βi

(ni − 1)3R2
λi

.
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Therefore, the 100(1− α)% generalized confidence interval for common SNR is obtained by

CIδ.GCI = [Lδ.GCI , Uδ.GCI ]

= [Rδ(α/2), Rδ(1− α/2)], (8)

where Rδ(α/2) and Rδ(1− α/2) denote the 100(α/2)-th and the 100(1− α/2)-th percentiles of Rδ,
respectively.

2.2. Large sample confidence interval
Let xi = (xi1, xi2, ..., xini) be observed value of Xi = (Xi1, Xi2, ..., Xini). Also, let x̄i and x(1)i be observed
values of X̄i and X(1)i, respectively. The estimates of δ̂i and V ar(δ̂i) are

δ̂i =
x̄i

x̄i − x(1)i
(9)

and
ˆV ar(δ̂i) =

2n2
i (x̄i − x(1)i)

2 − ni(x̄i − x(1)i)
2 + 2n2

i (x̄i − x(1)i)x(1)i + n2
ix

2
(1)i

(ni − 1)3(x̄i − x(1)i)2
. (10)

According to Saothayanun and Thangjai [6], the expectation of δ̂i is

E(δ̂i) =
n2
i (λi + βi)

(ni − 1)2λi
. (11)

It can be seen that the δ̂i is biased estimator of δi. Thus, an unbiased estimator of δi can be written as

δ̃i =
(ni − 1)2

n2
i

δ̂i. (12)

The variance of the unbiased estimator is

V ar(δ̃i) =
(ni − 1)4

n4
i

V ar(δ̂i). (13)

Following Graybill and Deal [27], the large sample estimate of the SNR is a pooled estimated unbiased
estimator of the SNR based on k individual samples as

δ̃ =

k∑
i=1

δ̃i
ˆV ar(δ̃i)

/
k∑

i=1

1

ˆV ar(δ̃i)
, (14)

where
δ̃i =

(ni − 1)2

n2
i

(
x̄i

x̄i − x(1)i

)
,

ˆV ar(δ̃i) =
(ni − 1)4

n4
i

ˆV ar(δ̂i),

and
ˆV ar(δ̂i) =

2n2
i (x̄i − x(1)i)

2 − ni(x̄i − x(1)i)
2 + 2n2

i (x̄i − x(1)i)x(1)i + n2
ix

2
(1)i

(ni − 1)3(x̄i − x(1)i)2
.

Let z1−α/2 be the 100(1− α/2)-th percentile of the standard normal distribution. Therefore, the
100(1− α)% large sample confidence interval for common SNR is obtained by

CIδ.LS = [Lδ.LS , Uδ.LS ], (15)
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where

Lδ.LS = δ̃ − z1−α/2

√√√√1

/
k∑

i=1

1

ˆV ar(δ̃i)

and

Uδ.LS = δ̃ + z1−α/2

√√√√1

/
k∑

i=1

1

ˆV ar(δ̃i)

2.3. Adjusted MOVER confidence interval
For i = 1, 2, ..., k, the lower limit and the upper limit for δi are

li =
(λ̂i + β̂i)λ̂i −

√
((λ̂i + β̂i)λ̂i)2 − l1iu2i(2(λ̂i + β̂i)− l1i)(2λ̂i − u2i)

u2i(2λ̂i − u2i)
(16)

and

ui =
(λ̂i + β̂i)λ̂i +

√
((λ̂i + β̂i)λ̂i)2 − u1il2i(2(λ̂i + β̂i)− u1i)(2λ̂i − l2i)

l2i(2λ̂i − l2i)
, (17)

where

l1i = λ̂i + β̂i −

√√√√(λ̂i −
niλ̂i

zα/2
√
ni − 1 + (ni − 1)

)2

+

(
λ̂i

ni
ln(α/2)

)2

,

u1i = λ̂i + β̂i +

√√√√( niλ̂i

−zα/2
√
ni − 1 + (ni − 1)

− λ̂i

)2

+

(
λ̂i

ni
ln(1− α/2)

)2

,

l2i =
niλ̂i√

ni − 1(zα/2 +
√
ni − 1)

,

and

u2i =
niλ̂i√

ni − 1(−zα/2 +
√
ni − 1)

.

Let zα/2 and z1−α/2 be the (α/2)-th and the (1− α/2)-th quantiles of the standard normal distribution,
respectively, δ̃, li, and ui are defined in Equation (14), Equation (16), and Equation (17), respectively.
Therefore, the 100(1− α)% adjusted MOVER confidence interval for common SNR is obtained by

CIδ.AM = [Lδ.AM , Uδ.AM ], (18)

where

Lδ.AM = δ̃ − z1−α/2

√√√√1

/
k∑

i=1

z2α/2

(δ̃i − li)2

and

Uδ.AM = δ̃ + z1−α/2

√√√√1

/
k∑

i=1

z2α/2

(ui − δ̃i)2
.
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Table 1. Coverage probabilities of 95% two-sided confidence intervals for common SNR of two-parameter
exponential distributions: 3 sample cases.

(n1, n2, n3) (λ1, λ2, λ3) θ GCI LS AM SB PB
(10,10,10) (1,1,1) -10 0.9006 0.8076 0.9160 0.9054 0.9376

-2 0.8948 0.7336 NA 0.8844 0.9254
2 0.9570 0.9996 0.9998 0.9544 0.9648
10 0.9140 0.8920 0.8734 0.9162 0.9460

(15,15,15) (1,1,1) -10 0.9138 0.8376 0.8988 0.9160 0.9384
-2 0.9182 0.7644 0.9644 0.9084 0.9400
2 0.9552 1.0000 0.9992 0.9548 0.9554
10 0.9356 0.9282 0.8846 0.9294 0.9452

(30,30,30) (1,1,1) -10 0.9252 0.8724 0.8982 0.9304 0.9408
-2 0.9270 0.7986 0.9206 0.9216 0.9376
2 0.9532 1.0000 0.9992 0.9520 0.9498
10 0.9430 0.9472 0.9078 0.9392 0.9486

(10,15,30) (1,1,1) -10 0.9200 0.8416 0.8994 0.9190 0.9364
-2 0.9190 0.7798 NA 0.9116 0.9350
2 0.9492 1.0000 0.9968 0.9484 0.9476
10 0.9274 0.9254 0.8486 0.9272 0.9408

(30,30,50) (1,1,1) -10 0.9310 0.8856 0.9046 0.9312 0.9434
-2 0.9296 0.8196 0.9000 0.9278 0.9430
2 0.9594 1.0000 0.9968 0.9596 0.9552
10 0.9468 0.9544 0.8682 0.9434 0.9522

(50,50,50) (1,1,1) -10 0.9338 0.8908 0.9058 0.9306 0.9432
-2 0.9340 0.8160 0.8842 0.9332 0.9454
2 0.9528 0.9998 0.9992 0.9510 0.9518
10 0.9426 0.9578 0.9252 0.9418 0.9470

(15,30,50) (1,1,1) -10 0.9330 0.8768 0.9038 0.9316 0.9410
-2 0.9228 0.7920 NA 0.9176 0.9366
2 0.9552 1.0000 0.9948 0.9560 0.9584
10 0.9376 0.9442 0.8302 0.9342 0.9464

(50,50,100) (1,1,1) -10 0.9384 0.8966 0.9096 0.9388 0.9476
-2 0.9430 0.8290 0.8842 0.9396 0.9482
2 0.9546 1.0000 0.9990 0.9516 0.9540
10 0.9426 0.9582 0.9136 0.9444 0.9470

(100,100,100) (1,1,1) -10 0.9470 0.9126 0.9230 0.9456 0.9500
-2 0.9386 0.8398 0.8692 0.9380 0.9422
2 0.9542 1.0000 0.9996 0.9550 0.9536
10 0.9502 0.9654 0.9400 0.9506 0.9518

(30,50,100) (1,1,1) -10 0.9408 0.9000 0.9132 0.9402 0.9460
-2 0.9372 0.8344 0.8838 0.9382 0.9482
2 0.9488 1.0000 0.9982 0.9482 0.9498
10 0.9458 0.9584 0.8970 0.9454 0.9510

(100,100,200) (1,1,1) -10 0.9410 0.9082 0.9154 0.9402 0.9434
-2 0.9436 0.8414 0.8620 0.9434 0.9472
2 0.9494 0.9998 0.9996 0.9510 0.9502
10 0.9428 0.9616 0.9456 0.9448 0.9466

(200,200,200) (1,1,1) -10 0.9414 0.9126 0.9138 0.9428 0.9478
-2 0.9502 0.8486 0.8616 0.9478 0.9518
2 0.9502 1.0000 0.9994 0.9478 0.9470
10 0.9534 0.9704 0.9592 0.9528 0.9532

2.4. Bootstrap confidence interval
Let X∗

i = (X∗
i1, X

∗
i2, , X

∗
ini

) be bootstrap sample with replacement from Xi = (Xi1, Xi2, , Xini
) with sample

size ni and let X̄∗
i and X∗

(1)i be mean and minimum of X∗
i , respectively. Let x∗

i = (x∗
i1, x

∗
i2, , x

∗
ini

) be the
observed values of X∗

i = (X∗
i1, X

∗
i2, , X

∗
ini

) and let x̄∗
i and x∗

(1)i be the observed values of X̄∗
i and X∗

(1)i,
respectively. The estimates of δ̂∗i and V ar(δ̂∗i ) are

δ̂∗i =
x̄∗
i

x̄∗
i − x∗

(1)i

(19)
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Table 2. Average lengths of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions: 3 sample cases.

(n1, n2, n3) (λ1, λ2, λ3) θ GCI LS AM SB PB
(10,10,10) (1,1,1) -10 9.5513 7.5766 8.0025 9.1360 9.0505

-2 2.3445 1.6401 NaN 2.3397 2.3035
2 0.8672 1.6822 3.1759 0.9549 0.9411
10 7.5719 7.6590 11.3934 7.5651 7.4776

(15,15,15) (1,1,1) -10 7.6439 6.0808 6.2240 7.2217 7.2040
-2 1.9389 1.3241 1.6992 1.8795 1.8649
2 0.6627 1.3512 6.7038 0.7092 0.7045
10 5.9920 6.1209 31.1239 5.8211 5.7943

(30,30,30) (1,1,1) -10 5.1362 4.2186 4.2520 4.9187 4.9222
-2 1.3625 0.9285 1.0367 1.3117 1.3096
2 0.4386 0.9388 2.4485 0.4556 0.4547
10 4.0429 4.2416 11.2792 3.9547 3.9514

(10,15,30) (1,1,1) -10 6.9989 5.4464 5.5520 6.4621 6.4539
-2 1.7393 1.1994 NaN 1.6948 1.6825
2 0.5873 1.2150 3.0289 0.6176 0.6146
10 5.3802 5.4760 13.4070 5.1908 5.1728

(30,30,50) (1,1,1) -10 4.5968 3.8058 3.8286 4.4123 4.4170
-2 1.2286 0.8415 0.9176 1.1849 1.1840
2 0.3930 0.8470 1.6494 0.4059 0.4051
10 3.6173 3.8204 7.4647 3.5434 3.5412

(50,50,50) (1,1,1) -10 3.8384 3.2467 3.2600 3.7260 3.7283
-2 1.0381 0.7179 0.7646 1.0079 1.0078
2 0.3318 0.7226 1.1654 0.3398 0.3396
10 3.0438 3.2570 5.2528 2.9910 2.9910

(15,30,50) (1,1,1) -10 5.0880 4.1024 4.1338 4.7956 4.8002
-2 1.3170 0.9049 NaN 1.2721 1.2687
2 0.4262 0.9134 1.7717 0.4413 0.4405
10 3.9324 4.1156 7.8894 3.8234 3.8191

(50,50,100) (1,1,1) -10 3.2762 2.8014 2.8092 3.1887 3.1903
-2 0.8880 0.6214 0.6500 0.8650 0.8654
2 0.2847 0.6242 0.8585 0.2900 0.2900
10 2.6033 2.8093 3.8257 2.5653 2.5657

(100,100,100) (1,1,1) -10 2.6130 2.2824 2.2866 2.5698 2.5709
-2 0.7125 0.5067 0.5223 0.6989 0.6989
2 0.2306 0.5087 0.6322 0.2335 0.2334
10 2.0982 2.2872 2.8312 2.0765 2.0768

(30,50,100) (1,1,1) -10 3.4927 2.9567 2.9657 3.3767 3.3804
-2 0.9386 0.6541 0.6870 0.9127 0.9126
2 0.3004 0.6579 0.9180 0.3063 0.3062
10 2.7593 2.9620 4.0585 2.7119 2.7117

(100,100,200) (1,1,1) -10 2.2412 1.9751 1.9776 2.2119 2.2136
-2 0.6118 0.4385 0.4482 0.6024 0.6027
2 0.1987 0.4399 0.5122 0.2004 0.2004
10 1.8047 1.9780 2.2861 1.7901 1.7907

(200,200,200) (1,1,1) -10 1.8069 1.6109 1.6123 1.7903 1.7915
-2 0.4940 0.3584 0.3638 0.4893 0.4895
2 0.1615 0.3587 0.3982 0.1625 0.1625
10 1.4651 1.6144 1.7870 1.4571 1.4570

and

ˆV ar(δ̂∗i ) =
2n2

i (x̄
∗
i − x∗

(1)i)
2 − ni(x̄

∗
i − x∗

(1)i)
2 + 2n2

i (x̄
∗
i − x∗

(1)i)x
∗
(1)i + n2

ix
∗
(1)i

2

(ni − 1)3(x̄∗
i − x∗

(1)i)
2

. (20)

The unbiased estimator is

δ̃∗i =
(ni − 1)2

n2
i

δ̂∗i . (21)
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Table 3. Coverage probabilities of 95% two-sided confidence intervals for common SNR of two-parameter
exponential distributions: 5 sample cases.

(n1, n2, n3, n4, n5) (λ1, λ2, λ3, λ4, λ5) θ GCI LS AM SB PB
(10,10,10,10,10) (1,1,1,1,1) -10 0.8070 0.7158 0.8720 0.8312 0.8814

-2 0.7834 0.6326 NA 0.7846 0.8580
2 0.9384 0.9988 1.0000 0.9318 0.9546
10 0.8350 0.8348 0.9314 0.8522 0.9004

(15,15,15,15,15) (1,1,1,1,1) . -10 0.8346 0.7572 0.8502 0.8572 0.8940
-2 0.8220 0.6880 0.9670 0.8268 0.8720
2 0.9426 1.0000 0.9994 0.9392 0.9528
10 0.8652 0.8784 0.9268 0.8770 0.9110

(30,30,30,30,30) (1,1,1,1,1) -10 0.8828 0.8396 0.8778 0.8976 0.9156
-2 0.8654 0.7514 0.9044 0.8786 0.9044
2 0.9452 0.9996 0.9994 0.9446 0.9516
10 0.9030 0.9230 0.9390 0.9116 0.9272

(10,10,15,30,30) (1,1,1,1,1) -10 0.8640 0.7964 0.8728 0.8822 0.9060
-2 0.8360 0.7030 NA 0.8392 0.8790
2 0.9500 0.9996 0.9994 0.9434 0.9542
10 0.8866 0.8974 0.9068 0.8960 0.9232

(30,30,30,50,50) (1,1,1,1,1) -10 0.8954 0.8580 0.8842 0.9096 0.9230
-2 0.8896 0.7780 0.8914 0.9014 0.9204
2 0.9468 1.0000 0.9986 0.9464 0.9486
10 0.9194 0.9416 0.9004 0.9264 0.9408

(50,50,50,50,50) (1,1,1,1,1) -10 0.9108 0.8794 0.9006 0.9214 0.9318
-2 0.8948 0.7938 0.8834 0.9102 0.9228
2 0.9534 1.0000 0.9996 0.9518 0.9540
10 0.9198 0.9422 0.9486 0.9260 0.9362

(15,15,30,50,50) (1,1,1,1,1) -10 0.8826 0.8376 0.8792 0.9004 0.9150
-2 0.8814 0.7720 0.9016 0.8896 0.9134
2 0.9490 1.0000 0.9978 0.9438 0.9496
10 0.9122 0.9272 0.8732 0.9164 0.9324

(50,50,50,100,100) (1,1,1,1,1) -10 0.9158 0.8852 0.8994 0.9272 0.9334
-2 0.9026 0.8030 0.8664 0.9126 0.9246
2 0.9496 1.0000 1.0000 0.9508 0.9550
10 0.9296 0.9520 0.9416 0.9302 0.9376

(100,100,100,100,100) (1,1,1,1,1) -10 0.9254 0.9040 0.9108 0.9300 0.9372
-2 0.9218 0.8308 0.8728 0.9288 0.9368
2 0.9536 1.0000 0.9998 0.9520 0.9538
10 0.9350 0.9570 0.9516 0.9362 0.9406

(30,30,50,100,100) (1,1,1,1,1) -10 0.9150 0.8848 0.9016 0.9216 0.9324
-2 0.8980 0.7958 0.8710 0.9104 0.9250
2 0.9530 0.9998 0.9982 0.9526 0.9532
10 0.9254 0.9468 0.9026 0.9308 0.9376

(100,100,100,200,200) (1,1,1,1,1) -10 0.9270 0.9012 0.9104 0.9328 0.9394
-2 0.9230 0.8198 0.8524 0.9318 0.9364
2 0.9466 1.0000 1.0000 0.9478 0.9468
10 0.9390 0.9608 0.9586 0.9420 0.9480

(200,200,200,200,200) (1,1,1,1,1) -10 0.9308 0.9040 0.9088 0.9356 0.9380
-2 0.9326 0.8360 0.8570 0.9360 0.9406
2 0.9524 1.0000 1.0000 0.9536 0.9536
10 0.9376 0.9612 0.9628 0.9410 0.9430

The variance of δ̃∗i is

V ar(δ̃∗i ) =
(ni − 1)4

n4
i

V ar(δ̂∗i ). (22)

According to Graybill and Deal [27], the common SNR is a pooled estimated unbiased estimator of the
SNR based on k individual samples. The common SNR is defined by

δ̃∗ =

k∑
i=1

δ̃∗i
ˆV ar(δ̃∗i )

/
k∑

i=1

1

ˆV ar(δ̃∗i )
, (23)
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Table 4. Average lengths of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions: 5 sample cases.

(n1, n2, n3, n4, n5) (λ1, λ2, λ3, λ4, λ5) θ GCI LS AM SB PB
(10,10,10,10,10) (1,1,1,1,1) -10 7.8535 5.7157 6.0647 6.9312 6.9149

-2 1.7669 1.2341 NaN 1.7335 1.7091
2 0.6634 1.2990 2.4511 0.6858 0.6810
10 5.9721 5.8182 8.6631 5.5577 5.5304

(15,15,15,15,15) (1,1,1,1,1) -10 6.2285 4.6084 4.7248 5.5681 5.5756
-2 1.5017 1.0079 1.3023 1.4300 1.4202
2 0.5066 1.0437 5.1733 0.5268 0.5250
10 4.7334 4.6898 23.8459 4.4328 4.4259

(30,30,30,30,30) (1,1,1,1,1) -10 4.1074 3.2354 3.2618 3.8296 3.8380
-2 1.0711 0.7125 0.7971 1.0169 1.0161
2 0.3369 0.7259 1.8926 0.3467 0.3465
10 3.1631 3.2635 8.6781 3.0382 3.0388

(10,10,15,30,30) (1,1,1,1,1) -10 5.6826 4.0840 4.1638 4.9174 4.9285
-2 1.3110 0.8929 NaN 1.2714 1.2626
2 0.4396 0.9210 2.1792 0.4529 0.4520
10 4.1810 4.1380 9.5228 3.8884 3.8847

(30,30,30,50,50) (1,1,1,1,1) -10 3.5794 2.8715 2.8883 3.3679 3.3739
-2 0.9481 0.6364 0.6921 0.9035 0.9031
2 0.2962 0.6432 1.2132 0.3034 0.3031
10 2.7717 2.8934 5.4594 2.6795 2.6808

(50,50,50,50,50) (1,1,1,1,1) -10 3.0356 2.5030 2.5134 2.9057 2.9098
-2 0.8136 0.5528 0.5892 0.7795 0.7799
2 0.2556 0.5592 0.9017 0.2608 0.2607
10 2.3723 2.5121 4.0515 2.3052 2.3058

(15,15,30,50,50) (1,1,1,1,1) -10 4.0860 3.1297 3.1540 3.7287 3.7380
-2 1.0206 0.6904 0.7597 0.9785 0.9764
2 0.3258 0.7024 1.3118 0.3336 0.3333
10 3.0644 3.1510 5.7860 2.9238 2.9247

(50,50,50,100,100) (1,1,1,1,1) -10 2.5096 2.1116 2.1172 2.4212 2.4251
-2 0.6760 0.4667 0.4873 0.6538 0.6542
2 0.2141 0.4714 0.6374 0.2173 0.2173
10 1.9748 2.1180 2.8343 1.9333 1.9338

(100,100,100,100,100) (1,1,1,1,1) -10 2.0456 1.7641 1.7673 1.9978 1.9990
-2 0.5583 0.3916 0.4037 0.5438 0.5443
2 0.1779 0.3937 0.4892 0.1798 0.1798
10 1.6342 1.7711 2.1923 1.6104 1.6108

(30,30,50,100,100) (1,1,1,1,1) -10 2.7167 2.2465 2.2531 2.5957 2.5994
-2 0.7226 0.4971 0.5210 0.6971 0.6974
2 0.2283 0.5014 0.6870 0.2317 0.2317
10 2.1171 2.2545 3.0269 2.0630 2.0633

(100,100,100,200,200) (1,1,1,1,1) -10 1.7022 1.4883 1.4901 1.6714 1.6731
-2 0.4641 0.3306 0.3376 0.4559 0.4562
2 0.1498 0.3324 0.3840 0.1509 0.1509
10 1.3661 1.4932 1.7126 1.3526 1.3530

(200,200,200,200,200) (1,1,1,1,1) -10 1.4066 1.2467 1.2478 1.3899 1.3900
-2 0.3842 0.2768 0.2810 0.3791 0.3793
2 0.1249 0.2777 0.3083 0.1255 0.1255
10 1.1345 1.2480 1.3815 1.1269 1.1272

where

δ̃∗i =
(ni − 1)2

n2
i

(
x̄∗
i

x̄∗
i − x∗

(1)i

)
,

ˆV ar(δ̃∗i ) =
(ni − 1)4

n4
i

ˆV ar(δ̂∗i ),

and
ˆV ar(δ̂∗i ) =

2n2
i (x̄

∗
i − x∗

(1)i)
2 − ni(x̄

∗
i − x∗

(1)i)
2 + 2n2

i (x̄
∗
i − x∗

(1)i)x
∗
(1)i + n2

i (x
∗
(1)i)

2

(ni − 1)3(x̄∗
i − x∗

(1)i)
2

.
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Figure 1. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 3 and θ = -10.

Figure 2. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 3 and θ = -2.

The B bootstrap statistics are used to construct the sampling distribution for estimating the confidence
interval for the common SNR. Therefore, the 100(1− α)% SB confidence interval for common SNR is
obtained by

CIδ.SB = [Lδ.SB , Uδ.SB ]

= [
¯̃
δ∗ − z1−α/2S

∗,
¯̃
δ∗ + z1−α/2S

∗], (24)

where ¯̃
δ∗ and S∗ denote the mean and the standard deviation of δ̃∗ defined in Equation (23) and z1−α/2

denotes the 100(1− α/2)-th percentile of the standard normal distribution.
Furthermore, the 100(1− α)% PB confidence interval for common SNR is obtained by

CIδ.PB = [Lδ.PB , Uδ.PB ]

= [δ̃∗(α/2), δ̃∗(1− α/2)], (25)

where δ̃∗(α/2) and δ̃∗(1− α/2) denote the 100(α/2)-th and the 100(1− α/2)-th percentiles of δ̃∗,
respectively.
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Figure 3. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 3 and θ = 2.

Figure 4. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 3 and θ = 10.

3. Simulation studies

Simulation study is performed to compare the proposed approaches for estimating confidence intervals
of common SNR. The simulation is performed to evaluate the proposed confidence intervals for common
SNR by coverage probability and average length. The data are generated from two-parameter exponential
distributions with scale parameters λi and location parameters βi, where i = 1, 2, ..., k. The sample cases
k = 3 and k = 5 are used. The scale parameters λ1, λ2, ..., λk are fixed equal to be 1. The location
parameters β1, β2, ..., βk are applied to get the common SNR δ = -10, -2, 2, and 10. For each parameter¡¯s
combination, 5000 simulation data sets are generated. For each simulation data set, 2500 random variables
are generated to compute the generalized pivotal quantities and bootstrap pivotal quantity. Hence, the
95% confidence intervals based on the GCI approach, the LS approach, the adjusted MOVER approach,
the SB approach, and the PB approach can be obtained. The coverage probabilities and average lengths
for 3 and 5 sample cases are presented in Tables 1 - 4. From Tables 1 - 2, the coverage probabilities and
average lengths for k = 3 sample cases clearly indicate that the coverage probabilities of all approaches are
below the nominal confidence level of 0.95 when the common SNR is negative value. For δ = 2, the coverage
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Figure 5. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 5 and θ = -10.

Figure 6. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 5 and θ = -2.

probabilities of all approaches are greater than the nominal confidence level of 0.95, but the LS and AM
approaches provide the conservative confidence intervals. For δ = 10, the PB appraoch is satisfactorily in
terms of the coverage probabilities and average lengths. From Tables 3 - 4, the coverage probabilities of
LS, AM, and SB approaches are below the nominal confidence level of 0.95 for all sample sizes, except the
coverage probabilities of these approach are greater than the nominal confidence level of 0.95 when the
common SNR is equal to two. The LS and AM approaches are conservative confidence intervals when the
common SNR is equal to two. The GCI and PB approaches have the coverage probabilities less than the
nominal confidence level of 0.95 when the common SNR is negative value for all sample sizes, whereas two
these approaches have the coverage probabilities close to the nominal confidence level of 0.95 when the
common SNR is positive value for large sample sizes. The GCI and PB approaches are recommended to
construct the confidence interval for the common SNR of two-parameter exponential distributions when
the sample sizes are large and the common SNR is positive value.
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Figure 7. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 5 and θ = 2.

Figure 8. CP and AL of 95% two-sided confidence intervals for common SNR of two-parameter exponential
distributions for k = 5 and θ = 10.

4. Empirical application

Maurya et al. [28] presented the data of the survival days of patients for different types of lung cancer.
The summary statistics of squamous type are as follows n1 = 9, x̄1 = 51.0000, and x(1)1 = 8.0000. The
summary statistics of small type are as follows n2 = 9, x̄2 = 22.1111, and x(1)2 = 13.0000. The summary
statistics of adeno type are as follows n3 = 9, x̄3 = 72.8889, and x(1)3 = 3.0000. And the summary
statistics of large type are as follows n4 = 9, x̄4 = 197.8889, and x(1)4 = 103.0000. The common SNR of
two-parameter exponential distributions is 1.1114. The 95% confidence intervals are constructed using five
proposed approaches. Using the GCI approach, the 95% generalized confidence interval is [1.0224,1.3770]
with interval length 0.3546. Using the LS approach, the 95% LS confidence interval is [0.5670,1.6559]
with interval length 1.0889. Using the adjusted MOVER approach, the 95% adjusted MOVER confidence
interval is [0.0316,2.1761] with interval length 2.1445. Using the SB approach, the 95% SB confidence
interval is [1.0295,1.3203] with interval length 0.2908. And using the PB approach, the 95% PB confidence
interval is [1.0777,1.3641] with interval length 0.2864. For all five approaches, the confidence interval
contains the true common SNR of two-parameter exponential distributions. The PB approach is better
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than the others. This is because the interval length of the PB confidence interval is shorter than the
interval lengths of the other approaches.

5. Discussion and conclusions

In this study, the research paper of Saothayanun and Thangjai [6] is extended to develop new approaches
for estimating the confidence interval for common SNR of two-parameter exponential distributions. The
confidence intervals are constructed using the GCI approach, the large sample approach, the adjusted
MOVER approach, and the bootstrap approaches (SB approach and PB approach). A Monte Carlo
simulation study is conducted to evaluate the performance of the proposed approaches. The coverage
probabilities and the average lengths of each confidence interval is estimated using simulation. The
coverage probabilities of all approaches are below the nominal confidence level of 0.95 when the common
SNR is negative value. The coverage probabilities of the GCI and PB approaches are close to the nominal
confidence level of 0.95 when the sample sizes are large and the common SNR is positive value. Therefore,
the GCI approach and the PB approach are recommended to estimate the confidence interval for the
common SNR of two-parameter exponential distributions.
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