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Abstract An iterative procedure to find the optimal solutions of general fractional nonlinear delay systems with quadratic
performance indices is introduced. The derivatives of state equations are understood in the Caputo sense. By presenting
and applying a general framework, we use the Chebyshev wavelet method developed for fractional linear optimal control
to convert fractional nonlinear optimal control problems as a sequence of quadratic programming ones. The concepts and
computational procedure that are used for fractional linear optimal control are applied on fractional nonlinear optimal control.
Different types of nonlinear optimal control problems with fractional or integer order can be solved. To see this, some
numerical examples are solved. Another operational property of Chebyshev wavelets is presented.
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1. Introduction

In some processes like chemical, electronic, aerospace and mechanical processes, we have to deal with time-delay
systems. The optimal control problem is to find the optimal solutions which cause a dynamical system to satisfy
some conditions and at the same time minimize a performance index [1, 2, 3]. To carry out the computational
procedures developed for linear optimal control systems to nonlinear optimal control delay-free systems, we
may use the quasilinearization method [4] which is based on replacing a nonlinear optimal control problem by
a sequence of linear optimal control problems. The iterative procedure has been studied for delay-free optimal
control problems in some works like [5, 6, 7]. In this work, we are going to extend this iterative procedure to
fractional time-delay optimal control problems. One of the most important features of a method for solving the
optimal control problems is its generality. For handling fractional nonlinear delay optimization in the previous
research [8, 9, 10], some methods for obtaining the solutions of fractional optimal control of nonlinear delays
systems have been presented. The main idea in these works is converting a nonlinear optimal control problem to
a system of algebraic equations. Regardless of how difficult this is, one has to calculate the value of the optimal
cost by substituting the approximations of the state and control vectors in the cost function of the system under
consideration and this causes at the cost of more computations. Also, some of the methods are only applicable to a
specific class of nonlinear optimal control problems, for example see [10]. We proposed a simple method in [11]
based on an exact Riemann–Liouville fractional integration operational matrix of Chebyshev wavelets to obtain the
optimal control of fractional linear quadratic systems from solving quadratic optimization problems and without
doing any work, the value of optimal cost is reached as a default output of the quadprog solver. Whereas some of
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real-world systems are modeled by nonlinear differential equations, for example a model of machine tool vibrations
in the turning of metals [12], and differential equations of fractional orders are valuable tools in modeling of some
phenomena in various fields of engineering [13, 14, 15], now the question is: Whether the method can be applied
to fractional nonlinear systems? Of course, we implicitly implemented the method on a simple nonlinear example
in [11]. In this research, we go into greater detail and illustrate how by a general useful wavelet-based method we
can solve such problems. In addition, we implement Chebyshev wavelet method to some engineering systems. We
see that the method can be applied to a wide variety of nonlinear systems. Also, it can be used for constrained
and unconstrained systems having integer orders and/or fractional orders. The procedure proposed in this work,
with some modifications, can be utilized in useful wavelet-based methods like Legendre wavelet [16] and Hermite
wavelet [17] methods or other wavelet methods such as those based on Boubaker wavelets [18], Taylor wavelets
[19], and etc.

2. Approximation process

2.1. Basic definitions of fractional operators

Definition 1
The Riemann–Liouville fractional integral operator of order α denoted by Iα of a function f(t) is defined by [11]

Iαf(t) =

{
1

Γ(α)

∫ t

0
(t− ρ)α−1f(ρ)dρ, α > 0

f(t), α = 0,

where Γ(α) is the gamma function.

Definition 2
The Caputo fractional derivative of order α denoted by the symbol Dα of a function f(t) is defined by [20]

Dαf(t) =

{
1

Γ(n−α)

∫ t

0
(t− ρ)n−α−1f (n)(ρ)dρ, n− 1 < α < n, n ∈ N

dn

dtn f(t), α = n.

This operator arise in modeling of some physical systems. The following property will be needed

IαDαf(t) = f(t)−
n−1∑
ν=0

f (ν)(0) t
ν

ν! .

2.2. An iterative procedure for optimal control of nonlinear systems

We select the general form of the performance index which includes Terminal Control, Minimum Control Energy,
and Regulator problems as

J = 1
2x

⊤(1)Tx(1) + 1
2

∫ 1

0

{
x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)

}
dt, (1)

where x(t) ∈ Rq and u(t) ∈ Rr are the state and control vectors, T ∈ Rq×q and Q(t) ∈ Rq×q and R(t) ∈ Rr×r

are matrices. It indicates that our objective is to keep the terminal state close to its desired value and the desired
state vector close to its steady-state value with consuming minimum control energy [2]. The performance index (1)
(quadratic form) leads to some very elegant results in optimal control systems [3].

Consider a fractional nonlinear time-delay system described by

Dαx(t) = f(x(t),u(t),x(t− h(t)),x(t− hx),u(t− hu), t), (2)

x(0) = x0, ẋ(0) = ẋ0,

{
x(t) = θ(t), t < 0
u(t) = ζ(t), −hu ≤ t ≤ 0,

(3)
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where 0 < α ≤ 2, t ∈ [0, 1], f ∈ Rq is a nonlinear (differentiable) vector function, hx and hu are delays, h(t) is a
piecewise constant delay, and θ(t) ∈ Rq and ζ(t) ∈ Rr are specified initial functions. This fractional time-delay
system is to be controlled to minimize the quadratic performance index given in (1).

Lemma 1
Consider the nonlinear delay optimal control problem which to minimize (1) subject to

ẋ(t) = f(x(t),u(t), t),

where x(0) = x0 is the initial condition, f is continuous in (t,x,u) and nonlinearity satisfies a local Lipschitz
condition. The problem can be replaced by the following sequence of linear fractional delay problems which the
sequence converges to a solution
for i ≥ 1, minimize

J [i] = 1
2x

[i]⊤(1)Tx[i](1) + 1
2

∫ 1

0

{
x[i]⊤(t)Q(t)x[i](t) + u[i]⊤(t)R(t)u[i](t)

}
dt (4)

subject to

ẋ[i](t) = A(x[i−1](t))x[i](t) +B(x[i−1](t),u[i−1](t))u[i](t) + d[i−1](t), (5)

where [i] represents the iteration, x[0](t) = x0, u[0](t) = 0, A ∈ Rq×q, B ∈ Rq×r and d ∈ Rq.

Proof
We prove this Lemma in like manner presented in [5]. To show that the iteration process converges to the solution of
the problem, we must show that ||x[i] − x[i−1]|| → 0 as i→ ∞. Suppose that the optimal control of the problem (4),
(5) is given by u[i](t) = −K(x[i](t),u[i](t),d[i−1](t))x[i](t). By K[i−1](t) := K(x[i](t),u[i](t),d[i−1](t)), from (5)
it follows that ẋ[i](t) = (A(x[i−1](t))−B(x[i−1](t),u[i−1](t))K[i−1](t))x[i](t) + d[i−1](t). By G(x(t),u(t)) :=
−B(x(t),u(t))K(t), we assume here that:

1. T[i−1](t, 0) is the transition matrices generated by A(x[i−1](t)).

2. A(x(t)) is δ-Lipschitz continuous, ||A(x(t))−A(x̄(t))|| ≤ δ||x(t)− x̄(t)||, where x(t), x̄(t) ∈ Rq.

3. ||G(x(t),u(t))|| ≤ ϵ1 and ||G(x(t),u(t))−G(x̄(t), ū(t))|| ≤ ϵ2||x(t)− x̄(t)||+ ϵ3||u(t)− ū(t)||, where
u(t), ū(t) ∈ Rr and ϵ1, ϵ2, ϵ3 ∈ R>0 are constants.

4. ||d(x(t),u(t))|| ≤ ϵ4 and ||d(x(t),u(t))− d(x̄(t), ū(t))|| ≤ ϵ5||x(t)− x̄(t)||+ ϵ6||u(t)− ū(t)||, where ϵ4, ϵ5,
ϵ6 ∈ R>0 are constants.

5. µ(A(x(t))) ≤ µ0, where µ(A) denotes the measure of the matrix A and is defined as its logarithmic norm.

In each iteration, we have

ẋ[i](t) = A(x[i−1](t))x[i](t) +G(x[i−1](t),u[i−1](t))x[i](t) + d(x[i−1](t),u[i−1](t)).

So

x[i](t) = T[i−1](t, 0)x0 +

∫ t

0

T[i−1](t, ϱ){G(x[i−1](ϱ),u[i−1](ϱ))x[i](ϱ) + d(x[i−1](ϱ),u[i−1](ϱ))}dϱ. (6)
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Using this equation, for i > 2 we have

||x[i](t)− x[i−1](t)|| =
∣∣∣∣∣∣∣∣T[i−1](t, 0)x0 −T[i−2](t, 0)x0

+

∫ t

0

T[i−1](t, ϱ)G(x[i−1](ϱ),u[i−1](ϱ)){x[i](ϱ)− x[i−1](ϱ)}dϱ

+

∫ t

0

T[i−1](t, ϱ){G(x[i−1](ϱ),u[i−1](ϱ))−G(x[i−2](ϱ),u[i−2](ϱ))}x[i−1](ϱ)dϱ

+

∫ t

0

{T[i−1](t, ϱ)−T[i−2](t, ϱ)}G(x[i−2](ϱ),u[i−2](ϱ))x[i−1](ϱ)dϱ

+

∫ t

0

T[i−1](t, ϱ){d(x[i−1](ϱ),u[i−1](ϱ))− d(x[i−2](ϱ),u[i−2](ϱ))}dϱ

+

∫ t

0

{T[i−1](t, ϱ)−T[i−2](t, ϱ)}d(x[i−2](ϱ),u[i−2](ϱ))dϱ

∣∣∣∣∣∣∣∣. (7)

By Brauer inequality [21],
||T[i−1](t, 0)|| ≤ e

∫ t
0
µ(A(x[i−1](ϱ)))dϱ. (8)

For 0 ≤ ϑ ≤ 1, we can write

||T[i−1](t, ϑ)−T[i−2](t, ϑ)|| ≤ δeµ0(t−ϑ)(t− ϑ) sup
ϱ∈[0,t]

||x[i−1](ϱ)− x[i−2](ϱ)||. (9)

From (8), we see ||T[i−1](t, ϱ)|| ≤ eµ0(t−ϱ). Using the submultiplicativity property of the matrix norm, it follows
from (6) that

||x[i](t)|| ≤ eµ0t||x0||+
∫ t

0

eµ0(t−ϱ)
{
ϵ1||x[i](ϱ)||+ ϵ4

}
dϱ.

Taking ϵ4 = ϵ′4||x[i](t)||, we see that e−µ0t||x[i](t)|| ≤ ||x0||+
∫ t

0
e−µ0(ϱ) {ϵ1 + ϵ′4} ||x[i](ϱ)||dϱ. Applying

Gronwall–Bellman inequality [22] yields

||x[i](t)|| ≤ e(ϵ1+ϵ′4+µ0)t||x0||. (10)

By
β[i](t) := sup

ϱ∈[0,t]

||x[i](ϱ)− x[i−1](ϱ)||, γ[i](t) := sup
ϱ∈[0,t]

||u[i](ϱ)− u[i−1](ϱ)|| (11)

and using the bounds given in Assumptions 2–5 and (8)–(11) in (7), we write

β[i](t) ≤ δeµ0ttβ[i−1](t)||x0||+ ϵ1β
[i](t)

∣∣∣∣∣∣∣∣ ∫ t

0

eµ0(t−ϱ)dϱ

∣∣∣∣∣∣∣∣
+ {ϵ2β[i−1](t) + ϵ3γ

[i−1](t)}||x0||
∣∣∣∣∣∣∣∣ ∫ t

0

e(ϵ1+ϵ′4+µ0)ϱeµ0(t−ϱ)dϱ

∣∣∣∣∣∣∣∣
+ ϵ1δβ

[i−1](t)||x0||
∣∣∣∣∣∣∣∣ ∫ t

0

e(ϵ1+ϵ′4+µ0)ϱeµ0(t−ϱ)(t− ϱ)dϱ

∣∣∣∣∣∣∣∣
+ {ϵ5β[i−1](t) + ϵ6γ

[i−1](t)}
∣∣∣∣∣∣∣∣ ∫ t

0

eµ0(t−ϱ)dϱ

∣∣∣∣∣∣∣∣
+ ϵ4δβ

[i−1](t)

∣∣∣∣∣∣∣∣ ∫ t

0

eµ0(t−ϱ)(t− ϱ)dϱ

∣∣∣∣∣∣∣∣.
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By considering similar assumptions and doing similar calculations for ||u[i](t)− u[i−1](t)||, we see that

β[i](t) ≤ l1β
[i−1](t) + l2γ

[i−1](t), γ[i](t) ≤ l3β
[i−1](t) + l4γ

[i−1](t),

where l1, l2, l3, and l4 are constants. Under some assumptions leading to β[i+1] ≤ β[i] and γ[i+1] ≤ γ[i], we see the
sequence converges to a solution.

Lemma 2
A nonlinear time-delay system characterized by

ẋ(t) = f(x(t),u(t),x(t− h(t)),x(t− hx),u(t− hu), t),

can be transformed to a nonlinear delay-free system in the form (the subscript ’mod’ is a shorthand to writing
modified)

ẋmod(t) = A(xmod(t))xmod(t) +B(xmod(t),u(t))u(t) + d(t).

Proof
We can use some techniques like the Taylor series approximation in [23] and Páde approximation in [24, 25] for
systems characterized by ẋ(t) = f(x(t),u(t),x(t− hx), t), and together with procedures in [26, 27, 28, 29] for
systems in the form ẋ(t) = f(x(t),u(t),x(t− h(t)),x(t− hx),u(t− hu), t), by which nonlinear systems having
delayed state and/or control functions are transformed into delay-free ones.

Remark 1
It should be obvious that we just mention these methods like Páde approximation for using the proof of the iterative
method for delay-free optimal control problems and we will not use any of them in our procedure.

2.2.1. General Framework In the discussion that follows, we present a general framework for optimal control of
fractional nonlinear systems with delays which can be utilized by wavelet functions.

Theorem 1
The nonlinear delay optimal control problem described by (1)–(3), which nonlinearity satisfies a local Lipschitz
condition, can be replaced by the following sequence of linear delay problems which the sequence converges to a
solution
for i ≥ 1, minimize

J [i] = 1
2x

[i]⊤(1)Tx[i](1) + 1
2

∫ 1

0

{
x[i]⊤(t)Q(t)x[i](t) + u[i]⊤(t)R(t)u[i](t)

}
dt (12)

subject to

Dαx[i](t) = A[i−1](t)x[i](t) +B[i−1](t)u[i](t)+C[i−1](t)x[i](t− h(t)) +E[i−1](t)x[i](t− hx)

+ F[i−1](t)u[i](t− hu) + d[i−1](t), (13)

x[i](0) = x0,

{
x[i](t) = θ(t), t < 0

u[i](t) = ζ(t), −hu ≤ t ≤ 0,
(14)

where α = 1, A[i−1],C[i−1],E[i−1] ∈ Rq×q, B[i−1],F[i−1] ∈ Rq×r, and d[i−1] ∈ Rq.

Proof
A proof can be obtained upon invoking Lemma 2 in the proof of Lemma 1.

Corollary 1
For α ̸= 1, under assumptions of Theorem 1, the fractional nonlinear delay optimal control problem described by
(1)–(3), can be replaced by the sequence of linear fractional delay problems given in (12)–(14) which this sequence
converges to a solution. Also we can use this procedure by considering ẋ(0) = ẋ0 in the case 1 < α ≤ 2.
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Proof
This can be proved in a straightforward manner using Theorem 1.

Remark 2
We use d(t) as a qth vector to represent disturbances, or terms like cos(xς(t)) and exς(t), ς = 1, 2, . . . , q, which
cannot be decomposed, or a combination of both.

Remark 3
For i = 1, we take O[i−1](t) = O(t = 0), where O indicates A[i−1](t),B[i−1](t), and so on. For i > 1, we construct
it from O[i−1](t) = O(x[i−1](t),x[i−1](t− h(t)),x[i−1](t− hx),u

[i−1](t),u[i−1](t− hu)). If O[i−1](t) is not a
function of x[i−1] and u[i−1], it is replaced by O(t).

Remark 4
For a delayed term like x[i−1](t− hx) as a state or input matrix, or whose entries, or as a disturbance or its entries,

we expand it from x[i−1](t− hx) =

{
θ(t− hx), 0 ≤ t ≤ hx
x[i−1](t− hx), hx ≤ t ≤ 1

. Also for a similar term having input delays,

we do the same. For a term with a piecewise delay, we expand it according to values of delays in each subinterval.

Remark 5
To use this framework, we solve the obtained sequence of linear quadratic optimal control problems iteratively
until for i ≥ 2, |J [i] − J [i−1]| or |x[i]ς (t)− x

[i−1]
ς (t)| becomes negligible.

2.3. Chebyshev wavelet method

Here, we use Chebyshev wavelets with scaling [30] for their advantages over classical Chebyshev wavelets [31].

Definition 3
Chebyshev wavelets ψξ

nm(t) are defined on the interval [0, 1] by

ψξ
nm(t) =

{ √
2ξk−1cmTm(2ξk−1t− 2n+ 1), t ∈

[
n−1
ξk−1 ,

n
ξk−1

]
0, otherwise,

(15)

where ξ ∈ N≥2, k ∈ N≥2, and are finite values, n = 1, 2, . . . , ξk−1, m = 0, 1, . . . ,M − 1 is the degree of Tm,
c0 = 1/

√
π, cm ̸=0 =

√
2/
√
π, and t is the independent variable. A function f(t) may be approximated in terms

of Chebyshev wavelets over the interval 0 ≤ t ≤ 1 by the M th term in ξk−1 subintervals as

f(t) ∼= fcwψ(t), (16)

where fcwψ(t) =
∑ξk−1

n=1

∑M−1
m=0 f

ξ
nmψ

ξ
nm(t), fcw is a row vector of constant coefficients {fξnm}, ψ(t) denotes the

Chebyshev wavelets column vector consisting of Chebyshev wavelets {ψξ
nm(t)} and the subscript ’cw’ refers to

the Chebyshev wavelets expansion. The first summation denotes this expansion is piecewise-defined.

Theorem 2
Let f(t) be a twice differentiable function on [0, 1], then f(t) can be expanded as f(t) =

∑ξk−1

n=1

∑∞
m=0 f

ξ
nmψ

ξ
nm(t),

where this series converges uniformly to f(t).

Proof
Since f is twice differentiable, f ′ is differentiable and bounded on [0, 1] and f is bounded. By assuming that
|f(t)| , |f ′(t)| , |f ′′(t)| ≤ l, the idea of proof is the same that given in [30].

Lemma 3
For the Chebyshev wavelets vector ψ(t) we have:

∫ 1

0
ψ(t)ψ⊤(t) dt = Γcw, fcwψ(t)ψ⊤(t) ∼= ψ⊤(t)f̃cw, ψ(t−

hι) =

{
0, 0 ≤ t < hι
Dιcwψ(t), hι ≤ t ≤ 1

, ψ(t− h(t)) =

{
0, 0 ≤ t < h(t)
Dt

cwψ(t), h(t) ≤ t ≤ 1
and Iαψ(t) ∼= Pα

cwψ(t), where

hι is a time-delay, h(t) is a piecewise delay and Γcw, f̃cw, Dιcw, Dt
cw, and Pα

cw are operational matrices of
Chebyshev wavelets.
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Proof
See [30] and [11].

Now, we use the concepts and computational procedures that have been developed for linear optimal control
systems to nonlinear optimal control systems (in the Riemann–Liouville sense).

Theorem 3
A fractional nonlinear time-delay problem as minimizing the performance index (1) for the plant described by (2)
and (3), by using (16) and the properties of Chebyshev wavelets can be solved by forming a sequence of quadratic
programming (QP) problems as

min
z[i]

1
2z

[i]⊤Ξ z[i]

subject to Λ[i−1](α, f)z[i] = b[i−1](α, f),

where Ξ, Λ, and b are known constant matrices and z as a combination of the state and control variables is the
solution of the problem in terms of Chebyshev wavelets..

Proof
From Corollary 1, we model the problems given in (12)–(14) instead of the original problem. Using (16),

we can write x[i]ς (t) = ψ⊤(t)x
[i]
ςcw

⊤
, where ς = 1, 2, . . . , q and x

[i]
ςcw

⊤
is a vector of unknown parameters. For

x[i](t) = [{x[i]ς (t)}]⊤, we find

x[i](t) = [x
[i]
1 (t), x

[i]
2 (t), . . . , x[i]q (t)]⊤

=
[
ψ⊤(t)x

[i]
1cw

⊤
,ψ⊤(t)x

[i]
2cw

⊤
, · · · ,ψ⊤(t)x[i]

qcw

⊤]⊤
= [ψξ

10(t)x
ξ1
10

[i]
+ . . .+ ψξ

ξk−1 M−1
(t)xξ1

ξk−1 M−1

[i]
, . . . , ψξ

10(t)x
ξq
10

[i]
+ . . .+ ψξ

ξk−1 M−1
(t)xξq

ξk−1 M−1

[i]
]⊤

=


ϕ1(t)
ϕ2(t)
...

ϕq(t)

[
xξ110

[i]
xξ210

[i]
. . . xξq10

[i]
. . . xξ1

ξk−1 M−1

[i]
. . . xξq

ξk−1 M−1

[i]
]⊤

,

where

ϕς(t) = ψ
⊤(t)⊗ϖς , ϖς = [

ς−1︷ ︸︸ ︷
0, 0, . . . , 0, 1,

q−ς︷ ︸︸ ︷
0, 0, . . . , 0].

Thus from the property of Kronecker product, we can write

x[i](t) = (ψ⊤(t)⊗ Iq)x
[i]
cw,

where
x[i]
cw =

[
xξ110

[i]
xξ210

[i]
. . . xξq10

[i]
. . . xξ1

ξk−1 M−1

[i]
. . . xξq

ξk−1 M−1

[i]
]⊤

.

Similarly, for u[i](t) = [u
[i]
1 (t), u

[i]
2 (t), . . . , u

[i]
r (t)]⊤, we have

u[i](t) = (ψ⊤(t)⊗ Ir)u
[i]
cw,

where
u[i]
cw =

[
uξ110

[i]
uξ210

[i]
. . . uξr10

[i]
. . . uξ1

ξk−1 M−1

[i]
. . . uξr

ξk−1 M−1

[i]
]⊤

.

Using these last two results, for O[i]
s (t) ∈ Rq×q, O[i]

v (t) ∈ Rr×r and O
[i]
z (t) ∈ Rq×r in (12) and (13), we can write

O[i]
s (t) = O[i]

scw(ψ(t)⊗ Iq),O
[i]
v (t) = O[i]

vcw(ψ(t)⊗ Ir),O
[i]
z (t) = O[i]

zcw(ψ(t)⊗ Ir).
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We express the initial condition in (14) as

x0 = (ψ⊤(t)⊗ Iq)x
0
cw,

where

x0
cw =

√
π√

2ξk−1
[χ01,χ

0
2, . . . ,χ

0
ξk−1 ]

⊤, χ0n = [x⊤
0 ,

q(M−1)︷ ︸︸ ︷
0, 0, . . . , 0].

We model each system in Theorem 1 for each iteration by proceeding exactly as we did in [11], and
using the relations given in Lemma 3; by expanding the matrices terms of Chebyshev wavelets as A[i−1](t) =

A
[i−1]
cw (ψ(t)⊗ Iq), B[i−1](t) = B

[i−1]
cw (ψ(t)⊗ Ir), C[i−1](t) = C

[i−1]
cw (ψ(t)⊗ Iq), E[i−1](t) = E

[i−1]
cw (ψ(t)⊗ Iq),

F[i−1](t) = F
[i−1]
cw (ψ(t)⊗ Ir), d[i−1](t) = (ψ⊤(t)⊗ Iq)d

[i−1]
cw , θ(t− h(t)) = (ψ⊤(t)⊗ Iq)θ

t
cw, θ(t− hx) =

(ψ⊤(t)⊗ Iq)θcw, ζ(t− hu) = (ψ⊤(t)⊗ Ir)ζcw, and by applying the α-integral (0 < α ≤ 1) to both sides of (13),
we have

(ψ⊤(t)⊗ Iq)
(
x[i]
cw − x0

cw

)
=(ψ⊤(t)⊗ Iq)(P

α
cw

⊤ ⊗ Iq)
{
Ã[i−1]

cw x[i]
cw + B̃[i−1]

cw u[i]
cw

+ C̃[i−1]
cw θt

cw + C̃[i−1]
cw (Dt

cw
⊤ ⊗ Iq)x

[i]
cw

+ Ẽ[i−1]
cw θcw + Ẽ[i−1]

cw (D⊤
xcw ⊗ Iq)x

[i]
cw

+ F̃[i−1]
cw ζcw + F̃[i−1]

cw (D⊤
ucw ⊗ Ir)u

[i]
cw + d[i−1]

cw

}
,

where Pα
cw, Dt

cw, and Dcw are operational matrices, Õcw is the product operational matrix of the matrix Ocw, the
subscript ’cw’ denotes that Ocw is the expansion of O(t) in terms of Chebyshev wavelets.

By expanding the matrices of the performance index (12) and using the concepts given in Lemma 3, we find

J = 1
2x

[i]
cw

⊤
(ψ(1)ψ⊤(1)⊗T)x[i]

cw + 1
2x

[i]
cw

⊤
(Γcw ⊗ Iq)Q̃cwx

[i]
cw + 1

2u
[i]
cw

⊤
(Γcw ⊗ Ir)R̃cwu

[i]
cw.

Setting In = [(n− 1)/ξk−1, n/ξk−1], we see from (15) the fact that there exist some points as tI , where
{tI} = In ∩ In+1. At these points we must have x(t−I ) = x(t+I ). Applying this compatibility constraint yields

(ψ⊤(t−I )⊗ Iq)x
[i]
cw − (ψ⊤(t+I )⊗ Iq)x

[i]
cw = 0.

This gives q(ξk−1 − 1) equations, written in matrix form,


ψ⊤(t−1 )−ψ
⊤(t+1 )

ψ⊤(t−2 )−ψ
⊤(t+2 )

...

ψ⊤(t−
ξk−1−1

)−ψ⊤(t+
ξk−1−1

)

⊗ Iq

x[i]
cw = 0.

By denoting the first matrix in the bracket by Ψcc,

(Ψcc ⊗ Iq)x
[i]
cw = 0,

where Ψcc in a constant matrix obtained from the properties of Chebyshev wavelets.
Hence we can solve the following sequence of QP problems iteratively for 0 < α ≤ 1 instead of the problem

described by (12)–(14),

for i ≥ 1,min 1
2

[
x
[i]
cw

u
[i]
cw

]⊤ [
Ξ1 Ξ2

Ξ3 Ξ4

][
x
[i]
cw

u
[i]
cw

]
(17)

subject to
[

Λ
[i−1]
1 Λ

[i−1]
2

Λ3 Λ4

][
x
[i]
cw

u
[i]
cw

]
=

[
b
[i−1]
1

b2

]
, (18)
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until the condition in Remark 5 is reached, where

Ξ1 = (ψ(1)ψ⊤(1)⊗T) + (Γcw ⊗ Iq)Q̃cw, (19)

Ξ2 = 0qξk−1M×rξk−1M , (20)

Ξ3 = 0rξk−1M×qξk−1M , (21)

Ξ4 = (Γcw ⊗ Ir)R̃cw, (22)

Λ
[i−1]
1 = (Pα

cw
⊤ ⊗ Iq)Ã

[i−1]
cw + (Pα

cw
⊤ ⊗ Iq)C̃

[i−1]
cw (Dt

cw
⊤ ⊗ Iq) + (Pα

cw
⊤ ⊗ Iq)Ẽ

[i−1]
cw (D⊤

xcw ⊗ Iq)− Iqξk−1M ,
(23)

Λ
[i−1]
2 = (Pα

cw
⊤ ⊗ Iq)B̃

[i−1]
cw + (Pα

cw
⊤ ⊗ Iq)F̃

[i−1]
cw (D⊤

ucw ⊗ Ir), (24)

Λ3 = ΨC ⊗ Iq, (25)

Λ4 = 0qξk−1×rξk−1M , (26)

b
[i−1]
1 = −x0

cw − (Pα
cw

⊤ ⊗ Iq)d
[i−1]
cw − (Pα

cw
⊤ ⊗ Iq)C̃

[i−1]
cw θt

cw−(Pα
cw

⊤ ⊗ Iq)Ẽ
[i−1]
cw θcw

− (Pα
cw

⊤ ⊗ Iq)F̃
[i−1]
cw ζcw, (27)

b2 =

[
0q(ξk−1−1)×1

x0

]
. (28)

Also ΨC :=
[

Ψcc

ψ⊤(0)

]
and to avoid needless repetition we do not present the details and the process of constructing

the operational matrices and other required matrices was described in [30] and [11].
For 1 < α ≤ 2, we must modify b

[i−1]
1 as we did for linear systems in the latter reference.

Remark 6
For a matrix O[i−1](t) which is not a function of x[i−1] and u[i−1], Õ[i−1]

cw is replaced by Õcw.

Remark 7
In order to use this sequence of QP problems for another wavelets by applying α-integral, we must replace ψ(1)
and the matrices denoted by the subscript cw with those which are defined for the new wavelet.

3. Some nonlinear systems

In this section, to see the generality of the method, different kinds of nonlinear time-delay systems are considered
in which we construct (17)–(18) from (19)-(28) and then we use the powerful QP solver quadprog in MATLAB.

3.1. Example 1

Consider the minimization of the performance index [32]

J = 1
2x

2(2) + 1
2

∫ 2

0

{
x2(t) + u2(t)

}
dt

for the nonlinear delay system described by the fractional delay differential equation

Dαx(t) = x(t) sinx(t) + x(t− 1) + u(t), 0 ≤ t ≤ 2

in which the initial function is

θ(t) =

{
10(t+ 1), −1 ≤ t ≤ −0.5
−10t, −0.5 ≤ t ≤ 0

.
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Using the given procedure, considering Remark 3 and setting t/2 −→ t, this problem is replaced by a sequence
of linear fractional delay optimization problems as follows:
for i ≥ 1, minimize

J = 1
2x

[i]2(2) + 1
2

∫ 1

0

{
2x[i]

2
(t) + 2u[i]

2
(t)

}
dt (29)

subject to
Dαx[i](t) = 2α[sinx[i−1](t)]x[i](t) + 2αx[i](t− 1

2 ) + 2αu[i](t), 0 ≤ t ≤ 1 (30)

x[i](0) = 0, θ(t) =

{
20t+ 10, −0.5 ≤ t ≤ −0.25
−20t, −0.25 ≤ t ≤ 0

. (31)

Our task is to find the final solutions; we do this by substituting x[0](t) = x(0) in (30) and obtaining x[1](t) from
solving the QP model of (29)–(31)-this is the first step-then by substituting x[1](t) = ψ⊤(t)x

[1]
cw, where x

[1]
cw was

obtained from the first step, and obtaining x[2](t)-this is the second step-and so on.
First we select ξ = 4, k = 2, and M = 8. Using the procedure, after 15 iterations, we reach the solutions for

α = 1, where |J [16] − J [15]| ≤ 6.67E − 08. Also, we solve the problem for different α and the results for the
optimal cost J∗ are given in Table 1 and a comparison is made between the optimal cost obtained by this work and
those reported in [32, 33, 34]. The optimal controls and states for α = 1, 0.975, 0.95, 0.925 are shown in Figure 1.

Table 1. J∗ for some α, 0.8 ≤ α ≤ 1 in Example 1.

α [32] [33] [34] This work

1 2.4371 2.5290 2.5077202960 2.54807
0.99 2.55616
0.95 2.59081
0.91 2.62918
0.9 2.63937
0.8 2.75520
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Figure 1. Optimal states and controls for Example 1.

3.2. Example 2

Consider a fractional nonlinear system a with time-varying delay described by

Dαx(t) =
t− 1

t
x(t− h(t))x(t) + u(t), 1 ≤ t ≤ 3
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x(t) = 1, t ≤ 1.

We want to find the optimal state and control which minimize

J =

∫ 3

1

{
x2(t) + u2(t)

}
dt,

where

Case 1: h(t) = ln(t) + 1, 1 ≤ t ≤ 3 (see [35, 36]).

Case 2: h(t) = ln(t) + 0.25, 1 ≤ t ≤ 3.

The reason for considering another case as Case 2 lies in the colored regions in Figure 2; we find that in Case 1
for ∀t ∈ [1, 3], t− h(t) < 1 and the region is indicated in gray color, which means that in Form A given below, the
initial function is expanded on full interval and Dt

cw = 0 while in Case 2 for some t ∈ [1, 3[ which t− h(t) < 1,
we should have a piecewise-defined initial function. The method for approximating and expanding this kind of the
initial functions was introduced in [30] and [16]. To rescale the problem, first we set t− 1 −→ t, then t/2 −→ t.
We apply our framework for linearization of the nonlinear system in two alternative forms:

A: Dαx[i](t) = 2α[(1− 1
2t+1 )x

[i−1](t)]x[i](t− h(t)) + 2αu[i](t), 0 ≤ t ≤ 1.

B: Dαx[i](t) = 2α[(1− 1
2t+1 )x

[i−1](t− h(t))]x[i](t) + 2αu[i](t), 0 ≤ t ≤ 1.

One should be a little bit careful in rescaling (t− h(t)). This argument in [0, 2] should have same behavior as that
in [1, 3], not same values. We solve the problem with the use of the given forms by considering Remark 4 and the
results are reported in Table 2.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

t

Case 1

t−
h(

t)

1 1.5 2 2.5 3
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t

Case 2

t−
h(

t)

Figure 2. t− h(t) for Cases 1 and 2, Example 2.

Table 2. Comparison of J∗ for Example 2.

Case 1 Case 2

α this work, A this work, B [35] [36] this work, A this work, B

1 1.270217 1.243391 1.66793163716010 1.24339085679272 1.240470 1.222775
0.95 1.262642 1.232479 1.227841 1.208855
0.9 1.257003 1.223094 1.216226 1.195964

For Case 2, by using Remark 7 the solution curves (in the case α = 1) for Legendre wavelets [16] are given in
Figure 3, where we obtain J∗ = 1.222775.

3.3. Example 3

In this example, we aim to minimize the criterion [37]∫ 10

0

{x21(t) + x22(t) + u2(t)} dt
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Figure 3. Solution curves for Case 2 in Example 2.

subject to
Dαx1(t) = x1(t)x2(t) + 2x1(t− 2)x2(t)− x1(t− 2) + u(t),
Dαx2(t) = −x1(t) + x2(t− 2)

and we have θ(t) = [0.5, 0.5]⊤.
Using the quasilinearization method, we solve the sequence of quadratic programming problems obtained for

this problem. The values of J∗ are given in Table 3. We see J∗ decreases as α decreases. The optimal control and
states for these values of α are shown in Figure 4. Also for showing the convergence of the method, the results
for α = 0.9 are given in Table 4. To overcome drawbacks of classical (conventional) Legendre wavelets, Ref. [37]
was used the hybrid functions as a combinations of block pulse and Legendre functions. But we can use Legendre
wavelets with scaling [16] by which those drawbacks are eliminated and they have advantages over these hybrid
functions, for example Γlw = I.

Table 3. J∗ for some α, Example 3.

α [37] This work

1 1.9955 2.022230
0.99 2.017244
0.98 2.012553
0.97 2.008170
0.96 2.004106
0.95 2.000377

3.4. Example 4

Consider a cascade chemical system with reactors 1 and 2, as shown in Figure 5 arises in the chemical industry, for
details see [38]. The inputs of reactor 1 come from reactor 2 and the external disturbances; the inputs of reactor 2
are the delayed state of reactor 1, the control and the external disturbances. The plant is described by

D1x1(t) = −k1x1(t)− 1
θ1
x1(t)− 1

θ1
x1(t− h1) +

1−R2

V1
x2(t) + δ1(t, x1(t− h1)),

D1x2(t) = −k2x2(t)− 1
θ2
x22(t) +

R1

V2
x1(t− h1)− 1

θ2
x2(t) +

R2

V2
x2(t− h2) +

F
V2
u(t) + δ2(t, x2(t− h1)),

where for i = 1, 2, Ri are the recycle flow rates, θi are the reactor residence times, ki are the reaction constants, F
is the feed rate, Vi are reactor volumes, and δi are nonlinear functions for describing the system uncertainties and
disturbances. The performance index is

J =

∫ tf

0

{x⊤(t)Qx(t) +Ru2(t)} dt.
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Table 4. |J [i] − J [i−1]| for α = 0.9 in Example 3.

i J [i] |J [i] − J [i−1]|

1 1.777053
2 1.935883 0.158830
3 1.985908 0.050025
4 1.987188 0.001280
5 1.987283 0.000094
6 1.987306 0.000023
7 1.987316 0.000010
8 1.987319 0.000003
9 1.987321 0.000001
10 1.987321∗ 0.000000

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
pt

im
al

 s
ta

te
s

Example 3

t

x
1
* (t)

x
2
* (t)

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

O
pt

im
al

 c
on

tr
ol

s

Example 3

t

Figure 4. Solution curves of Example 3, α decreases in the direction of the arrow.

Figure 5. A schematic of cascade chemical reactor system, [38].

Also we have Ri = 0.5, ki = 0.5, , F = 0.5, Vi = 0.5, δ1(t, x1(t− h1)) = θ3x1(t− h1) and

Case 1: h = 0.5, tf = 3, δ2(x2(t− h)) = 0.5θ4x
2
2(t− h), θ = [1,−2]⊤ and for i = 1, . . . , 4, θi = 1, Q = 100I2,

R = 1; see [37].

Case 2: h = 0.25, tf = 5, , δ2(x2(t− h)) = 0.5θ4x
2
2(t− h)e0.01x2(t−h), θ = [8,−8]⊤, θ1 = θ2 = 2 and θ3 =

θ4 = 1; see [38]. Also we take Q = I2, R = 0.01.

We use the proposed method for solving both cases. Taking the optimal control law as a function of the state and
delayed state vectors, the optimal curves for the two cases are shown in Figure 6. In addition, a comparison is made
in Table 5.

We have considered a wide variety of constraints in the previous works. We again, to show the applicability of
the method, we consider different kinds of constraints in this work. We impose another types of constraints to the
same system of the Example 4, Case 2 as:
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Figure 6. Solution curves of Example 4.

Table 5. Comparison of J∗ for Example 4.

Case 1 Case 2

This Work [37] This Work

57.971696 57.9349 45.193082

Type 1: the pure state constraint −1 ≤ x2(t) ≤ 0 is imposed for each 0.25 ≤ t ≤ 5.

Type 2: the isoperimetric constraint
∫ 5

0.25
{x1(t) + x2(t)− u(t)} dt ≤ 1.5 is active.

Type 3: the quadratic state and control constraint x21(t)− x22(t) + u(t) ≤ 0 is imposed for each 0.25 ≤ t ≤ 5.

For adding the constraint in Type 1 to the QP model of the unconstrained system, we use the method given in
[31, 14]. For the constraint in Type 2, in like manner we add it by using a new operational property as (A.1) which
is presented in Appendix A. Finally for adding the constraint in Type 3, we use a similar linearization method by
replacing it with a sequence of linear constraints. We find for Types 1, 2, and 3, J∗ = 49.710339, J∗ = 46.614521

and J∗ = 46.190119, respectively. In the second type, we have
∫ 5

0.25
{x∗1(t) + x∗2(t)− u∗(t)}dt = 1.5. The solution

curves are presented in Figure 7. We see that the method can handle with complex nonlinear systems as real-world
applications of time-delay optimal control theory. Figure 8 graphically illustrates the result of Type 3.

3.5. Example 5

Consider a continuous stirred tank reactor with the dynamics (see [39, 40])

Dαx1(t) = −x1(t)− r(t),
Dαx2(t) = −x2(t) + 0.9u2(t− hu) + 0.1u2(t),
Dαx3(t) = −2x3(t) + 0.25r(t)− 1.05u1(t)x3(t− hx),
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Figure 7. Solution curves of Example 4, Case 2 with constraints; x∗1(t) —, x∗2(t) —.
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Figure 8. Results of Example 4, Case 2, Type 3.

where r(t) = (1 + x1(t))(1 + x2(t)) exp

[
25x3(t)

1 + x3(t)

]
, hu = 0.02 and we take hx ≃ 0.02; also

x3(t) = −0.02, hx ≤ t ≤ 0
u2(t) = 1, hu ≤ t ≤ 0
x(0) = [0.49,−0.0002,−0.02]⊤.

The cost function is

J =

∫ 0.2

0

{
x⊤(t)I3x(t) + 0.01u⊤(t)I2u(t)

}
dt.

By using Remark 2 for the term exp[25x3(t)/(1 + x3(t))], we model this system and our result are presented in
Figure 9 and Table 6. Also for α = 0.91, we impose the constraint u2(t) ≥ −0.1. By modeling the constraint and
adding it to the QP formulation of the system, we obtain the solutions and J∗ is given in Table 6.

Again as a practical application, we applied the method to a real-world nonlinear system.

Table 6. J∗ for some α, Example 5.

α J∗

0.999 0.021312
0.95 0.021614
0.91 0.041571
0.91, constrained system 0.043957

Stat., Optim. Inf. Comput. Vol. 8, December 2020



IMAN MALMIR 873

0

0.05

0.1

0.15

0.2 0.9

0.92

0.94

0.96

0.98

1−1

−0.5

0

0.5

α
t

O
pt

im
al

 S
ta

te
s

(a) x∗
1(t) —, x∗

2(t) —, x∗
3(t) —

0

0.05

0.1

0.15

0.2 0.9

0.92

0.94

0.96

0.98

1−0.4

−0.2

0

0.2

α
t

O
pt

im
al

 C
on

tr
ol

s

(b) u∗
1(t) —, u∗

2(t) —

Figure 9. Solution curves of Example 5.

4. Conclusion

In this study, by using the iterative method we have expanded the concepts and computational procedure presented
for the optimal control of fractional linear quadratic systems to the optimal control of fractional nonlinear systems.
By using the quasilinearization method and the powerful properties associated with Chebyshev wavelets, the
optimal solutions of fractional nonlinear systems have been obtained. Since the method is based on converting
the problem under consideration to the sequence of QP problems, it can be applied in the cases we have some
constraints on the control (input) vector, and/or state (internal variable) vector, and/or on the energy of the system.
After reaching the condition of the final (optimal) solutions, the value of optimal cost is available as a default
output of the quadprog solver. Different classes of nonlinear systems have been studied to show the applicability
and generality of the method. We have seen that the method can be applied to practical industrial systems.

Appendix

A. The integration operational property of the Chebyshev wavelets vector on [0, 1]

Lemma 4
The integration of the Chebyshev wavelets vector on the interval [0, 1] is obtained as∫ 1

0

ψ(t) dt = γcw, (A.1)

where γcw is the ξk−1M × 1 integration operational vector of the Chebyshev wavelets vector over [0, 1] and it
consists of ξk−1 replicated column vectors.

Proof
From the definition of Chebyshev wavelets, by φn(t) := [ψξ

n0(t), ψ
ξ
n1(t), . . . , ψ

ξ
nM−1(t)], we have

∫ 1

0

ψ(t) dt =

∫ 1
ξk−1

0

[φ1(t),0,0, . . . ,0]
⊤dt+ . . .+

∫ 1

ξk−1−1
ξk−1

[0,0, . . . ,0,φξk−1(t)]⊤dt.

We conclude by considering three cases as: m = 0, m = 1, and m ≥ 2 that
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I. if m = 0, ∫ n
ξk−1

n−1
ξk−1

ψξ
n0(t)dt =

√
2√

ξk−1π
,

II. if m = 1, by substituting cos θ = 2ξk−1t− 2n+ 1,∫ n
ξk−1

n−1
ξk−1

ψξ
n1(t)dt =

2
√

ξk−1

√
π

1
2ξk−1

∫ π

0

cos θ sin θ dθ = 0,

III. if m ≥ 2, ∫ n
ξk−1

n−1
ξk−1

ψξ
nm(t)dt =

2
√

ξk−1

√
π

1
2ξk−1

∫ π

0

cosmθ sin θ dθ = 1√
ξk−1π

(
− 1+(−1)m

m2−1

)
.

It is apparent the values of the entries of γcw in the nth subinterval depend not on n but only on m, thus we find

γcw = 1√
ξk−1π


γ̄
γ̄
...
γ̄


 (ξk−1 times)

as the ξk−1M × 1 vector consisting of ξk−1 replicated vectors, where the M × 1 vector γ̄ is

γ̄ =
[√

2, 0,−2
3 , 0,−

2
15 , 0, . . . , 0,−

1+(−1)m

m2−1 , 0, . . . ,−1+(−1)M−1

(M−1)2−1

]⊤
,m ≥ 2.
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