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Abstract Stochastic programming is an approach for solving optimization problems with uncertain data whose probability
distribution is assumed to be known, and progressive hedging algorithm (PHA) is a well-known decomposition method for
solving the underlying model. However, the per iteration computation of PHA could be very costly since it solves a large
number of subproblems corresponding to all the scenarios. In this paper, a stochastic variant of PHA 1is studied. At each
iteration, only a small fraction of the scenarios are selected uniformly at random and the corresponding variable components
are updated accordingly, while the variable components corresponding to those not selected scenarios are kept untouch.
Therefore, the per iteration cost can be controlled freely to achieve very fast iterations. We show that, though the per iteration
cost is reduced significantly, the proposed stochastic PHA converges in an ergodic sense at the same sublinear rate as the
original PHA.
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1. Introduction

Stochastic programming (SP) and robust optimization are two main approaches to deal with optimization problems
with uncertain data. Unlike robust optimization, which usually assumes the unknown data lies in certain region,
SP takes advantage of the fact that the probability distribution of the uncertain data are known or can be estimated.
Therefore, SP is frequently applied to settings in which decisions are made repeatedly in essentially the same
circumstances, and the goal is to make decisions that perform well on average. It has many applications in finance,
portfolio investment, energy optimization, wireless communication, machine learning, etc., see the monographs
[1, 17].

We now review very briefly the multistage convex SP model introduced by Rockafellar and Wets [15]. In an
N-stage decision problem, decisions are made and uncertain information is revealed alternatingly and sequentially
as follows

1 =& x> E — - > Ev_1 >Ny — €N

Here, for each j, x; denotes the decision to be made at stage j, and &; represents the uncertain information revealed
after decision z; and before x; ;. SP aims at determining an optimal response to the information available at each
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stage, resulting a decision sequence essentially of the form

x1 = 22(&) = x3(61,&) = - = an (&, EN—1).

Note that each z; is dependent on {&; : i < j} but not on {¢; : @ > j} since the later is not yet available at the time
the decision z; is to be made. This restriction on the decision is called nonanticipativity constraint, which plays an
important role in SP. For each j, we denote the set of all possibilities of {; by =;. The set of all scenarios is then
given by

—
—

j 1‘—‘j {f (51,5277£N)|£J€Ejvj:17277N}

Throughout this paper, we assume that = has a finite cardmahty and the probability distribution of E is given, i.e.,

each £ € = has a known probability p(£) such that ZE c=p() =1
Assume that z; € R" and let n := Zj\;l n;. A response mapping x(+) : 2 — R is given by

z(:): &€ — (&) = (21(8),22(8),...,zn(8)) € ™ X RN x .- x RN =R", VE € E.

The set of all response mappings from = to R”, which forms a linear space, is denoted by L. For convenience, we
endow £ with the following weighted inner product

N
§EE Jj=1

where (7;(€),y;(£)) = x;(£)Ty;(€) denotes the usual inner product in " . The nonanticipativity constraint on the
decision mapping is denoted by

N ={z(-) € L] z;(§) does notdepend on §;,...,&n,7 =1,2,...,N}.
It is easy to show that NV forms a subspace of £ and its orthogonal complement space is given by

NJ_ = {y() = (yl(')7 .- 'ayN(')) €L | EE|$17~"75j71yj(£) = 0 for all]}a

where E¢j¢, ¢, _,9;(€) denotes the conditional expectation of y;(§) given &1, ..., &j-1.
For each £ € =, let C'(£) be a nonempty closed convex subset of ™ and define

C=A{z()eL]x(£) € CE),VE{€E}.

Besides the nonanticipativity constraint, we assume that the decision mapping has the abstract constraint z(-) € C.
This constraint on response mapping can be specified in particular applications. In this paper, we are interested
in the progressive hedging algorithm (PHA) and the convergence analysis of a stochastic variant of it, and it is
not necessary to go beyond an abstract representation of the constraint on the response mapping. We assume that
CNN #£0.

For each ¢ € E, we let g(+, &) : C(§) — R be a lower semicontinuous convex function. An alternating sequence
of decisions and observations (x1, &1, 2,2, . .., 2N, En) Will result in a cost g(x, ), which depends on both = and
&, and each choice of z(-) € L yields a function from = to R, i.e.,

Clearly, g(z(-),-) can be regarded as a random variable. A commonly used risk measure in SP is the expected cost
G : L — R given by

G(a () =Eelg(@(€),€)] = Y __p(€)9(w(€),€).

Here E, denotes the expectation taken with respect to £. The classical SP model with nonanticipativity constraint
originally proposed by Rockafellar and Wets in [15] aims to find z(-) € C NN such that the expected cost G(z(+))
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is minimized, namely

min, (e {G(x()) | 2() €CANY. (1.2)

An important property of the expected cost is that it is completely separable with respect to scenarios, which often
fulfills an important requirement in designing decomposition algorithms, e.g., PHA. By using this risk measure,
it is also implied that the decision maker is risk neutral since a response mapping that performs well on average
is pursued. Risk averse measures are also popular in SP, e.g., the conditional value-at-risk measure. However, the
separability feature is lost in that case and some additional efforts are required to reactivate PHA, see the recent
work [12].

We organize this paper as follows. In Section 2, we state the connections between the PHA and the classical
alternating direction method of multipliers (ADMM). A stochastic variant of PHA is proposed in Section 3 and the
main convergence results are given in Section 4. A summary is given in Section 5.

2. PHA and its connection with ADMM

PHA was originally introduced in [15] for multistage convex SP and has recently been extended in [13] to
multistage stochastic monotone linear complementarity and variational inequality problems. It was shown in [15,
Theorem 5.1] and [13, Theorem 1] that PHA is a customized application of the proximal point algorithm [7, 9].
In this section, we first review very briefly the PHA for SP. In particular, we show that PHA for SP problem (1.2)
is an application of the classical ADMM for linearly constrained separable convex optimization. This explanation
serves as a basis of the stochastic PHA which can be viewed essentially as a randomized variant of ADMM.

Let Py and Py be the projection operators onto N and N, respectively, under the norm induced by the
weighted inner product (1.1). The PHA for convex SP (1.2) is summarized below.

Algorithm 1 (PHA for SP (1.2), [15, page 8], [13, Eq. (2.3)]). Given 3 > 0. Initialize 2°(-) € N, w*(-) € N+,
and set k = 0.

1. Solve for each & € = the following convex optimization problem to obtain the unique solution &*(€):
min g(2().) + ()7 x(6) +
z(£)eC(€) 2

2. Compute z*T1(-) = Par(2%())) and wkH1(-) = w*(-) + BParL (7(-)).
3. Set k = k + 1 and repeat until convergence.

lz(&) — =" (©)I>.

Note that the norm in the minimand of Step 1 is the common 2-norm. By categorizing PHA as a proximal point
algorithm, it is explained in [15, 13] that the sequence generated by PHA is contractive with respect to the solution
set. Linear convergence rate results are also given in the linear quadratic case [15, Theorem 5.2], i.e., C'(§)’s are
polyhedron and g¢(-, £)’s are convex quadratic functions.

To apply ADMM, we introduce an auxiliary variable y(-) and rewrite (1.2) as

min () st =) =y(), #() €N y() €C. @1

Although the variables are duplicated, the constraint z:(-) € C N N is now separated into z(-) € N and y(-) € C.
Moreover, the objective function, as well as the constraints z(-) = y(-) and y(-) € C are now separable with respect
to each scenario. This makes the classical ADMM [4, 2] for linearly constrained separable convex optimization
problem readily applicable.

Let 8 > 0 be a penalty parameter and w(-) € £ be a Lagrange multiplier. The augmented Lagrangian function
associated with (2.1) is given by

Lp(z(-),y(),w()) = G(y() + (w(-), y(-) — () + glly(J — ()|

Stat., Optim. Inf. Comput. Vol. 8, September 2020



ZHENGUO MU, JUNFENG YANG 659

Note that here the norm in the last term is the one induced by the weighted inner product (1.1). Given 2°(-) € £
and w°(-) € L, the ADMM iterates, for k = 0,1,.. ., as

jk() = aI‘gTI(n)élc[//g(l‘k(),l‘(),wk()), (2.2a)
"1 () = arg min O AORIAC .

() gm(»)eNﬁﬁ(()7 (), w" (")), (2.2b)

W) = W)+ BER() — 2t T(). (2.2¢)

The following theorem summarizes the well known fact that PHA is an application of ADMM. For completeness,
we give a proof.

Theorem 2. Assume that w®(-) € N'-. Then, the ADMM (2.2) generates exactly the same sequence of points as
the PHA given in Algorithm 1, i.e., PHA is an application of ADMM.

Proof
It is easy to observe that (2.2a) is separable with respect to each scenario £ € =, and (2.2b) is no more than a
projection onto A/. Thus, (2.2) is equivalent to

) B . B oo _
e = argm(g)rgg(g)g(w(é)vf)+w’“(€)va(£)+2H (&) — 2" (OI?, Ve e & (2.32)
aF () = PN<:%’“(~)+%w’“<->), (2.3b)
wht () = wh() + BER() — (). (2.3¢)

Note that the norm in the minimand of (2.3a) is the common 2-norm. Since w°(-) € N+, it follows from (2.3b)
and (2.3c) that
M) = Par(@0() and w () = w* () + BPr (27())

forall £ > 0. Thus, the ADMM (2.3) generates exactly the same sequence of points as the PHA given in Algorithm
1, i.e., the PHA for multistage convex SP is an application of the ADMM. O

Compared with the classical augmented Lagrangian method [6, 8], which minimizes Lg(z(-),y(-),w(:)), for
fixed w(-), jointly with z(-) € £ and y(-) € C, an important advantage of PHA/ADMM is that it decomposes this
large and coupled subproblem into many smaller pieces. In particular, PHA needs to solve at each iteration the
following subproblems

min_g(2(6),6) + w*(€)T2(€) + LJlx(e) — FOP, €e=.

2(€)€0(9) 2
Although this step is fully separable, in cases when the cardinality of = is large, even a single iteration of PHA
could be very costly. Note that |Z| = I}, |Z;|, which can be very large when either N or some |Z;]’s are large.
On the other hand, the projection onto A/ is much cheaper. Given the above connection between PHA and ADMM,
we propose in the next section a stochastic variant of PHA, which at each iteration selects a small fraction of £’s in

= and updates the corresponding variables only. Since the number of selected scenarios can be controlled, the per
iteration cost of this stochastic PHA can be significantly lower than that of the original algorithm.

3. A stochastic PHA

For clearness of presentation and analysis, we denote the decision variables by vectors instead of mappings.
For this purpose, we now redefine some notation. For any positive integer g, we let [¢q] = {1,2,...,q}. Let

m = vazl |Z;] be the cardinality of |Z|. For convenience, we rewrite = as £ = {&' = (&1,...,&4) | i € [m]}. Let
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z;; = x;(£Y) € R™ be the decision made at the jth stage corresponding to the ith scenario %, i € [m] and j € [N].
Define x; = (z41,...,%in) € R", X = (X1,...,X;m) € R™" and p; = p(&*) for i € [m]. Let g:(y:) = g(y(£9), &),
i € [m],and g(y) = > i~ Gi(y:) with §;(y:) = pigi(y;) for alli € [m]. Throughout this paper, we endow R?" with
the usually inner product for ¢ < m — 1, while for ¢ = m, i.e., R™", we endow it with the weighted inner product

(x,y) = Zpl(xi,yi) forall x = (x1,...,Xm) e R and y = (y1,...,¥ym) € R 3.1
i=1
The norm || - || always denotes the induced norm by the corresponding endowed inner product. With all the above

notation, (2.1) can be simplified to

nin 9(y),

s.t. x = Yy, (3'2)
x e N,

y:(Yh-«-aYm)GC:CH><---><C’m,

where A is a subspace of ™" corresponding to the nonanticipativity constraint and each C; = C(¢?) is a closed
convex set in ™. Let § > 0 and w € ™. The augmented Lagrange function of (3.2) is

Loly.xw) = 5(y) + (w.y —x)+ 2 ly x|

Note that here the inner product in the middle term is that defined in (3.1) and the norm in the last term is the
corresponding induced norm. Based on the equivalence of PHA and ADMM established in Section 2, we propose
to solve (3.2) by the following stochastic variant of PHA, which can essentially be viewed as a randomized variant
of ADMM.

Algorithm 3 (Stochastic PHA for SP (1.2)). Let 8 > 0and 0 < 6 < 1 be such that Om is an integer. Define p = 03.
Initialize x° € ™", y° € R w0 € N+, and set k = 0.

1. Generate Sy, C [m] uniformly at random with a fixed cardinality | S| = 6m.
2. Perform the following updates:

T B ming, ¢, gi(yi) + (WE,yi) + Slly: — xF|%, Vi€ Sk, (3.30)
B yf’ Vi & S

X" = Pu(yF L), (3.3b)

whHl = wh 4 p(yFtl — xi ), (3.3¢)

3. Set k = k + 1 and repeat until convergence.

Here, for simplicity of analysis we assumed that Sy, has a fixed cardinality #m. Since w® € N/, it follows from
(3.3b)-(3.3¢c) that w* € N'* for all k£ > 1. From (3.3a), only the variable components {y; : i € Sy} are updated at
the kth iteration and {y; : ¢ ¢ Sk} are kept untouch. Since the cardinality of S; can be controlled freely, the per
iteration cost of this stochastic variant of PHA can be significantly smaller than than of the original PHA. Our main
contribution is to show in the next section that this stochastic PHA shares in an ergodic sense the same sublinear
rate of convergence as the original algorithm.

4. Convergence analysis

Below we analyze the convergence property of the stochastic PHA given in Algorithm 3. Throughout the
convergence analysis, we make the following assumption.
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Assumption 4. Assume that the set of KKT points of (3.2) is nonempty, i.e., there exists (x*,y*, w*) such that
X*=y*€CnNN,w* e Nt and §(y) — §(y*) + (w*,y —y*) > 0 forally € C.

Let S =Sk, ys = (¥i)ics, ps = (pi)ics and gs(ys) = ZiES Gi(y:). Let Eg be the expectation about S
conditional on all previous history, while [E denote the overall expectation. For convenient of analysis, we further
introduce a sequence of dummy vectors

W = wh 4 Byt — X vk > 0. (4.1)
We first establish some lemmas, which characterize the one-step convergence behavior of the stochastic PHA.
Lemma 5. Forall y € C and k > 0, it holds that
Es[g(y* ™) — g(y) + (y*+! —y, wh + B(y" ! —x¥)) ]
<(1-0)[3y") - ay) + ¥ —y. w" + By* —xM)]. 4.2)

Proof
Let y € C be arbitrarily fixed. Then, the optimality condition of (3.3a) reads

<yi€Jr1 — i, Vg (yF) + wh 4+ By — xf)> <0,VieS.
Multiplying both sides by p; and taking a sum over ¢ € .S, we obtain

(yet' —ys, Vis(ys™) + ps ® [wh + B(yE™ —x§)]) <o. (4.3)

Here and hereafter, we let “®” be the Kronecker product. Note that since we assume 6 < 1 and thus |S| = 6m < m.

Therefore, the inner product in (4.3) is the standard one. It follows from the convexity of g;, ¢ € S, and the fact
k+1 ko

y, =y, 1¢S5, that

(ye™' —ys, Vas(ysth)) = as(ys™) — gs(ys) = 9" ) — a(v") + Gs(y%) — ds(ys)-
By taking expectation Eg on both sides of the above inequality, we obtain
Es (yst' —ys. Vis(ys™)) > Es[a(y* ") — a(y")] + 0[a(y") — a(y)]
=Es[3(y"") — 9] — 1 - 0)[3") —9(x))- (4.4)
We use the fact ™! = y¥, Vi ¢ S, and write
(yet' —ys,ps@we) = (y&™ =yt ps @ wl) + (y& —ys.ps @ wh)
= (" =" W)+ (v — ys.ps @ WE) . 4.5)

Note that the inner product in the term (y*™* — y* w*) in (4.5) is defined by (3.1) since the corresponding space
is R™", while inner products in all other terms in this equation are standard. Take expectation Eg on both sides and
obtain
Es(y5™ —ys.ps @ wh) =Egs (yi™' — y&,ps @ i) + Es (y& — ys,ps ® W)
=Es (y" —y", wh) + 0(y" — y,w")
=Es (y""' —y.wh) -1 -0)y" —y, wh). (4.6)

By taking expectation Eg on (4.3), plugging (4.4) and (4.6) and rearranging terms, we obtain

Es[g(y*") —a(y) + (y"' =y, W) | + Es (v — ys,ps @ BlyE™ — x§))

47
<(1-0[") —aly) + y" —y,wh)]. -
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Again, by using y*** = y* for all i ¢ S, we have

(Y5 — ys,ps @ By —xB)) = (5 — yg,ps @ BYET — yB)) + (yET — ys,ps © BlyE —x5))
= (Y"1 —y, By —yh)) + (yET — ys,ps @ By — xE)).

Similar to (4.6), we have

Es (yi —ys.ps @ B(ys —xE)) = Es(ytt' -yt ps® ﬁ(Y'§ —x5)) + Egs (yk — ys,ps ® B(yk — x%))

= Es(y""' —y"B8(y" —x") +0(y" -y, B —x*))
= Es(y"" -y, 86" —x")) - (1-0) (y* -y, BGF —x")).

Therefore,

Es (y5™ —ys.ps @ B(yEt! —x8§)) = Es (y*™ —y, B(y* ! —x")) — (1 - 0) (y" — y. B(y" — x")). (4.8)

Plugging (4.8) into (4.7) and rearranging terms, we obtain (4.2). ]

Lemma 6. Let T > 0 be an integer. For any w and (x,y) such that x =y € N NC, it holds that

T-1
E[gy™") —aly) + (¢ =x"TL w40 Y B [G(y" ) - g(y) + (v = %M w)]
k=0
T-1
2 w0 _ w2 k+1 _ k2 T+l _ T T+l _ T
+ 55 [BIWT = wlP = [ —w| # DBt oW P BT T )
T T-1
DRI P — [ = ) + SO E —a7] 4  3 EwE - wh x—xE)
k=0 k=0
<A-9)[30°) —9y) + (v —y, W] + (1 -0) (¥’ —y. B(y° —x")).
Proof
Taking expectation on both sides of (4.2) and summing it from k& = 0 through 7', we have
T
Efg(y™") —aly +eZE Y = g(y)] + DBy -y, wh 4 By - xM))
. k=0 (4.10)
<(1-0)[36°) —aly) + Y E(y* —y, wh + B(y* —xM))].
k=0

Recall that w”*! is defined in (4.1). Plug the identity
T

ZE <yk+1 o y,Wk> —E <yT+1 o y"';VT+1> _E <yT+1 o y’v*VT+1 o WT>
k=0

T-1 T-1
+ Z E <yk+1 _ y,wk+1> _ Z E <yk+1 _ y7Wlc-|-1 _ Wk>
k=0 k=0
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into (4.10) and rearrange terms, we obtain

E[gy™) —a) + (" -y, w40 Z E[G(y* ) — gly) + (y*! -y, wht1)]
T T-1
+ ZE <yk+1 _ y7ﬁ(yk+1 _ Xk)> _E <yT+1 y, wl+l _ T> _ Z E <yk+1 _ y7wk+1 _ Wk>

<(1-0)[ay°) —ay) + ¢ —y, W)+ (1-0) Y E(y* -y, B(y* —xN)). (4.11)

k=0
Since w*, w* € N+ and x* € N forall k > 1 and x = y € A" NC, it follows from (3.3b) that

T+1 ~T+1 T+1 T+1 T+1 ~T+1 T+1 T+1 & T+1
yT+ y,wlit yT+ xT+ xT+ x, wlt yT+ xT+1 wT+ >7
ykt y,w+> ykt xk+ xk+ x’W+> yht ervar>7

forall k =0,1,...,7 — 1. Plug the above identities into (4.11), we obtain
E[g(yTJrl) —9(y) + <yT+1 _ xT+ 1 T+1 + 0 Z E k+1 —g(y)+ <yk+1 _ Xk+1,Wk+1>}
T _
+ Z]E <yk+1 —y, BlyRt - Xk)> _E <yT+1 R WT> . Z E <yk+1 —y,whtl Wk>

<(1-0)[a6") - dy) + ¢ —y, W) + (1 -0)> E(y* -y, 8" —x¥)). (4.12)

k=0

Since y**+! — x**+! = 2 (wh — w") and p = 68, it holds that

T—1 T—1
0 Z <yk+1 xk+1,wk+1 W> _ l <wk+1 wk,wk'H W>
k=0 B k=0
1 T—1
=35 [w” = w? = w0 —w[?+ > W —whP].  @.13)
Note that
T T
DY -y BT X)) (1= 0)> (yF -y, B - xM))
k=0 k=0
T—1
= (Y -y BT = xT) 10 (yET —y, ByE T - xE ) — (1-0) (Y — v, B(y° — 7))
k=0
T—1
= (Y -y, W W) £y W W) - (1-0) (y0 -y, B(y° - 7)) (4.14)
k=0
Recalling x =y, we have
< k+1 —y, ﬂ( k+1 k)> _ %<Wk+1 o Wk,Xk+1 o Xk> + /8<Xk+1 - X, Xk+1 o xk>7 (415)
(Y91 =y B ) = (R —wh o) 4 g T ) @e)
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Summing (4.15) from k = 0 through T" — 1 and adding (4.16) with k = T yield

k=0
= T
_ 5 < k1 _ ok k1 ch> + < T+1 T ,T+1 XT> + Zﬁ( k1 k41 Xk>
k=0 k=0
=
=3 (Wt —wh P xRy (wT - w T xT X T 4.17)
k=0
B
Dt e e x4 3 [+ — ]
k
It follows from (4.14) and (4.17) that
T T
D -y BT xR = (1-60)) (v -y, B —xN)
k=0 k=0
T T
=Y Ty BT =X+ T =) - (1-0) D (vE -yl ByE - xF))
k=0 k=0

T-1
_ <yT+1 _ y,v~VT+1 _ WT> + Z <yk+1 _ y,wk'H _ wk> _ (1 _ 9) <y0 —y, /3(}’0 _ X0)>

% k+1 k+1 . Xk> + <“~,T+1 o WT,XTJFI o XT>
3 - T
G L =l = [ x4 3 [ =P, (4.18)
Taking expectation on (4.13) and (4.18) and adding them into (4.12), we obtain (4.9). ]

Now, we are ready to establish a key result for the ergodic convergence.

Theorem 7. Assume x° = y® and w® = 0. Let T > 0 be any integer and define

xT+1 k+1 T+1 T-1_ k41
JFQZ fox and 37 = y' 40 0y

<T+1 —
1+0T 1+0T

Forany wandx =y € N'NC, we have

(1= 0)[36°) = 3()] + gpllwl> + §1x" — x|

Elgy™") —gy)+ (¥ -x"w)] < T (4.19)
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Proof
Note that
= T—1
6 <Wk+1 _ Wk, xk+l Xk> =8 Z<yk+1 _ Xk+17 <kl Xk)
k=0 k=0
3 T—1
— 5 ‘ k+1 yk+1||2 o ”Xk _ yk+lH2 + ka-‘rl o Xk||2]
k=0
3 T—1
= =5 ) K =Xt (4.20)
k=0

where the inequality follows from x**1 = P (y**1). Apparently, this holds trivially if x € A since in that case
xF € N and w* € Nt for all & > 0. In addition, there hold

<yT+1 xT+1 T+ w> L <V~VT+1 R w>
[II oWl = W = w? + W — w?]
ﬂ
= 5\\3'”1 —x"H?2 4 25 (W = wlf® = [w" — w]?] (4.21)
and
<V~VT+1 _ WT XT+1 _ XT> — ﬁ(yTH _ XT—|-1 XT+1 _ XT>
B
—5 i i e [ e e e /) IS C%2))
Adding (4.20), (4.21) and (4.22) together, we
T—1
é Z<Wk+1 _ Wk,xk'H _ xk> + <yT+1 _ XT+1,\7VT+1 W> + wl+l _ T,XT'H _ XT>
k=0
(RS 1
k+1 k 2 T+1 2 T 2
> =5 DI =P g [T =~ fw T - w?] (4.23)
k=0
Taking expectation on both sides of (4.23) and adding it to (4.9), we obtain
Elgly™") —gy) + ("' - J+0 Z E [g(y"") = g(v) + (" =x" w)]
T—1 3
+35 [EIIWT+1 wl? = [w® = w®+ > E[lwh — wk[P] + 5 [E[lx" = x| = [1x” — x|1?]
k=0
<1=-0)ay") -y + ' -y, W)+ (1 -0 (y° -y, 86° —x")),
which implies
E[Gy™") —gv) + (" =x"Tw) ] + 6 Z E [G(y* ™) = g(y) + (y* —x", w))] (4.24)
_ . p
<(1=-0)[g°) —3(y) + ¥ —y,w)] + (1= 0) (y° -y, B(y°* = x")) + 33 L w? - w4 + 5l = x|
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Since x? = y° and w® = 0, we have from the convexity of ¢ and (4.24) that

A+0DE[gF™) —g(y) + (F" =%, w) |

T—1
<EGy™™ - g + & = xTTw) 40> R [GyET) - a(y) + (vFT - %M w))]
k=0
1
< (1-0)[50°) - 5] + gl + < = x*
We thus have proved (4.19). ]

To prove the main convergence result, we need the following lemmas, which follow directly from [3, Lemmas
3.3,3.5].

Lemma 8. Let h be a continuous function and X and y are random vectors. If for any (x,y, w) with x =y, which
may depend on X and y, it holds that

E[3(y) - 3y) + x —y)"w] < E[h(x,y,w)],

then for any v > 0 and any optimal solution (x*,y*) we also have

E[3(y) — dly") +lx—¥l] < Sup E[h(x*,y*, w)].

Lemma 9. Let (x*,y*, w*) be an optimal solution and vy > ||w*||. If a random vector (X,y) satisfies
E[3(F) - 9") +lx-Fl] <e.
then

ey and Blg(s) ~ 30)] < {

The following theorem summarizes the main convergence result of this paper.

2]
" E.
= Tw

Theorem 10. Let T > 0 be an integer and (x*,y*, w*) be any primal-dual optimal solution. Under the conditions
x = y0 and w° = 0, we have X711 e N, y7+! € C, and

2C

ST+l ST+1 O, TN
max {E[x" " =y L B3y ) — a0} < g7 (4.25)
where C is dependent on (x*,y*,w*) and (x°,y°) and is given by
- s max{(|[w*|| + 0.5)2, 9||w*||? 5] "
€= (- 0)(y") - ")) + PO ORI 4 B e
28 2
Proof
Set v = max(||w*|| + 0.5, 3||w*||). Then
1 2||lw*

v = [wll v = [wl

The theorem follows directly from (4.19), Lemmas 8 and 9. O

Theorem 10 basically says that the proposed stochastic PHA converges in expectation and in an ergodic
sense, because X7+ € A and §7*! € C satisfying (4.25) can naturally be viewed as an approximate solution
of (3.2). Furthermore, the convergence rate is sublinear, i.e., O(1/(1 4 6T')), which reduces to O(1/(1 + T)) for
the classical ADMM when 6 = 1, see [5].
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5. Concluding remarks

Progressive hedging algorithm (PHA) is a classical decomposition approach for solving multistage convex
stochastic programming (SP). It decomposes a large and complicated problem into many smaller pieces and can be
implemented in parallel. Due to this feature, it is especially advantageous in large scale computing. Thus, PHA has
been used in various domains ever since it was invented. Lately, it becomes even more popular due to the series of
work by Rockafellar and his collaborators, see [16, 13, 12, 10, 11, 14].

At each iteration, PHA solves for each scenario a convex programming problem. Since the cardinality of the
scenario set can be very large [18, 1, 17], the per iteration cost of PHA can be prohibitive in practice. Based on a
connection between PHA and the alternating direction method of multipliers, in this paper we proposed a stochastic
PHA, which selects a small fraction of the scenarios and updates the corresponding variables only. The number of
selected scenarios can be controlled freely. Thus, the per iteration cost of the new algorithm can be significantly
lower. Furthermore, our analyses have shown that the new algorithm shares the same sublinear ergodic convergence
rate in the sense of expectation. An interesting problem might be extending the present analysis for SP to the case
of multistage stochastic variational inequality [16, 13].
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