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Abstract This research study presents a novel methodology to estimate reassurance premiums in the setting of large
datasets, employing the principle of grouping. We present a median-of-means nonparametric estimator that addresses the
difficulties posed by huge datasets. We analyze this estimator’s consistency and asymptotic normality under specific criteria
about the growth rate of subgroups.
Furthermore, we introduce a novel approach to the empirical likelihood method for the median to evaluate excess-of-loss
reinsurance. Our proposed method eliminates the need to estimate the estimator’s variance structure in advance, which can
be difficult and prone to inaccuracies. Numerical simulation analysis is implemented to evaluate the efficacy of our proposed
estimator. The results indicate that our estimator is highly resilient in the presence of outliers.
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1. Introduction

An essential problem in actuarial science revolves around pricing insurance risks. The pricing of an insurance risk
must accurately capture the level of risk implied by the underlying distribution of the loss random variable. Factors
such as the variability of the loss variable, the shape of the distribution, and especially the tail behavior play a
significant role in determining the appropriate price. Higher variability and a heavier right-tail distribution require
a higher price.

The approach used to determine the price of an insurance risk leads to the concept of a risk measure. A risk
measure is a mapping from the set of all loss random variables to the non-negative real numbers that quantify
the risk associated with an insurance contract. Artzner (1999) [3] examines the properties of a risk measure must
possess to be coherent, building on their previous collaborative work.

Various premium principles have been developed to assess the risk premium accurately. Within the insurance
literature, numerous premium calculation principles have been proposed, such as mean, value at risk, variance, and
others. In this study, we focus on the Wang premium calculation principle introduced by Wang (1996) [17]. This
principle relies on a proportional transformation of the hazard function.

Wang’s premium calculation principle satisfies all the desired properties of a premium principle, including sub-
additivity and layer additivity. These properties align with the adjusted distribution methods advocated by Venter for
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no-arbitrage pricing models. In the following, we present the formulation of the PH-premium for regular insurance
based on Wang’s principle.

The premium for an insured risk X , denoted as the Proportional Hazard (PH) premium, is determined by the
continuous distribution function F of the risk and the hazard function S = 1− F . The PH premium is influenced
by a parameter ρ ≥ 1, known as the risk aversion index. In certain actuarial scenarios, such as reinsurance treaties,
the focus is estimating a premium for a specified retention level R > 0. We denote the reinsurance premium for the
high layer [R,+∞[ as Πρ,R. This type of problem arises when the insured poses a high level of risk for the insurance
company and chooses to transfer a portion of this risk to a reinsurance company. This transfer is necessary because
the insurance company may lack sufficient capital to bear the entire risk on its own.

The PH premium is defined as a function of ρ and S by

Πρ,R =

∫ +∞

0

(S(x))
1/ρ

dx (1)

Excess-of-loss reinsurance is a prevalent type of reinsurance in which the reinsurer indemnifies only those losses
that surpass a designated retention threshold. This category of reinsurance enables the cedent to restrict their risk
exposure to a specified threshold. The premium for excess-of-loss reinsurance can be articulated as a result of
the additivity property of the proportional hazards premium for losses. For a specified retention level R > 0, the
risk-adjusted premium for excess-of-loss reinsurance is defined as:

Πρ,R =

∫ +∞

R

(S(x))
1/ρ

dx (2)

Now, consider X1, X2, . . . , XN are independent and identically distributed (i.i.d.) random variables with
common distribution function (cdf) F of an insured risk X and X(1) ≤ X(2) ≤ .... ≤ X(N) its order statistics.
Further, let 1 ≤ k ≤ N be a sequence of positive integers, such that k → ∞ and k/N → 0 as N → ∞. Integer k
represents the number of extremes used in the computation of the tail index estimate. Now, let then the optimal
retention level Ropt := F←(1− k/n) will be estimated by Ropt := Xn−k, where Xn−k,n is the (k + 1) largest
observation. An empirical estimator of excess-of-loss reinsurance with retention R = X(n−k) is

Π̂ρ,N =

k∑
i=1

(
i

N

)1/ρ (
X(N−i+1) −X(N−i)

)
. (3)

The asymptotic theory for the empirical Π̂ρ,N has been known, [13] have developed an asymptotic theory for
the excess-of-loss reinsurance estimator, assuming that the underlying i.i.d. random variables X1, X2, ..., XN have
finite (r) moments for some r > 2ρ/(2− ρ). Likewise, Centeno et al. (2005) [6] use a bootstrap technique to
describe the behavior of a proposed biased estimator for Πρ,0 (premium without retention). In this study, we
concentrate primarily on the statistical and probabilistic approaches that might be taken to address this matter.
The non-parametric confidence intervals that are generated by estimating the asymptotic variance are typically
erroneous. This is because the asymptotic variance of Πρ,R is quite complicated. [16] among others, proposed the
jackknife empirical likelihood method [12] to improve the inference on Πρ,R which avoids the prior estimation
of variance. In this paper, we introduce a simpler method based on the idea of random grouping and the usual
empirical likelihood method for the median to study risk measures. Our approach can be classified as one of the
so-called divide-conquer methods. More precisely, we divide the data set into several groups, and then obtaining
interesting statistics within each group is the first step. In the second step of “conquer”, considering robustness, we
take the median, instead of mean, of the resulting statistics as our final estimator. It works well, especially in the
case of massive data, such as high-frequency data in finance markets. In a world full of big data, we believe that
we have developed one effective and robust inference approach to reducing the computational burden arising from
an analysis of massive data.

The rest of the paper is organized as follows: In section 2, we present our proposed estimator and its asymptotic
properties. Section 3 is devoted to an empirical likelihood approach to testing Πρ,R. Section 4 contains some criteria
about choices of blocks. Simulations analysis are given in Section 5. The proofs of different results are postponed
to section 6.
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2. Median-of-means estimate for Πρ,R

Initially introduces the median-of-means method [2] to study population means. In this paper, we based this
approach to construct a new estimator of the excess-of-loss reinsurance premium Πρ,R. To fix the idea, we divide the
N observations X1, ..., XN into K blocks randomly. Assume that each block contains n data points for simplicity.
In block Bj , j = 1, 2, ...,K, we note Π̃

(j)
ρ,n a non-parametric estimator for Π(j)

ρ,R based on the empirical distribution
pertaining to the sample X1, · · · , Xn of block j, as follows:

Π̃(j)
ρ,n :=

k∑
i=1

(
i

n

)1/ρ (
X(n−i+1) −X(n−i)

)
. (4)

Next, we define the median-of-means estimator of Rv as

Π̃MoM
ρ,N := Median

{
Π̃(1)

ρ,n, Π̃
(2)
ρ,n, ..., Π̃

(K)
ρ,n

}
. (5)

The asymptotic properties of Π̃MoM
ρ,N are summarized in the following theorems.

Theorem 1
Assume that E(|X|3) < ∞ and σ2

ρ (F ) > 0, where,

σ2
ρ (F ) :=

∫ +∞

−∞

∫ +∞

−∞
(F (x ∧ y)− F (x)F (y)) a (F (x)) b (F (y)) dx dy, (6)

where a(·) and b(·) are two functions on [0, 1]. If F has a strictly positive, continuous density function f , then for
any fixed x > 0,

P
(∣∣Π̃MoM

ρ,N −Πρ,R

∣∣ ≥ x
)
≤ C

(N/K)
K/5

, (7)

holds for some constant C := C(x) > 0 and any positive integer K.

Remark 1 • Note that the constant C at the right hand side of (7) is not uniform in x.
• Theorem 1 directly implies that the convergence of Π̃MoM

ρ,N towards to Πρ,R is almost surely by Borel-Cantelli
Lemma.

Theorem 2 1. Suppose K is fixed. Let Θ1,Θ2, ...,ΘK be independent and identically distributed standard
normal random variables. Then as N → ∞,

√
N

σρ (F )

(
Π̃MoM

ρ,N −Πρ,R

) D→ Median {Θ1,Θ2, ...,ΘK} , (8)

where ”D→” means convergence in distribution.
2. Suppose N/K2 → ∞ as K → ∞. Then the following asymptotic normality holds,

√
N

σρ (F )

(
Π̃MoM

ρ,N −Πρ,R

) D→√
π

2
N (0, 1) . (9)

3. Test by empirical likelihood

In this section, we consider the hypothesis testing problem of whether the excess-of-loss reinsurance premium
equals a given value. As commented at the end of the last section, we will not use Π̃MoM

ρ,N to construct the test
statistic since it involves the unknown σρ(F ).

Our approach is based on the empirical likelihood (EL) defined by [15].
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Since different blocks are disjoint, Π̃(1)
ρ,n, Π̃

(2)
ρ,n, ..., Π̃

(K)
ρ,n are independent and share the same distribution. So, we

can regard them as one sample and apply the EL method.
For each k = 1, ...,K, we denote Zn,k := I

(
Π̃

(j)
ρ,n ≤ Πρ,R

)
. Obviously, E (Zn,k) = 0.5 (actually E (Zn,k) =

0.5 = O (1/
√
n) by Lemma 1 in section 5) and hence the empirical likelihood ratio for Πρ,R is given by

R (Πρ,R) = max

{
K∏

k=1

Kwk |
K∑

k=1

wkZn,k = 0.5, wk ≥ 0,

K∑
k=1

wk = 1

}
. (10)

By the Lagrange multiples method, the maximum point is given by

wk =
1

K

1

1 + λ (Zn,k − 0.5)
, (11)

where λ = λ (Πρ,R) satisfies the following equation

1

K

K∑
k=1

Zn,k

1 + λ (Zn,k − 0.5)
= 0. (12)

By the use of the same arguments as in [15], we can obtain the following result define by the theorem 3.

Theorem 3
Under the conditions in Theorem 2, we have

−2 logR (Πρ,R)
D→ χ2

1, as K,n → ∞. (13)

Using the result of Theorem 3, the rejection region for the hypothesis with significance level α, with (0 < α < 1)

H0 : Πρ,R = ϖ vs. H1 : Πρ,R ̸= ϖ (14)

can be constructed as
R =

{
−2 logR (Πρ,R) ≥ χ2

1 (β)
}
, (15)

where χ2
1 (α) is the upper α− th quantile of χ2

1.

4. Selection of block

In this section, we discuss the selection of optimal K when applying the EL method in previous sections. From
(8), when N is fixed, the small K works better since the median is the middle value for the data set in practice.
Furthermore, the median is a robust statistic, which has a breakdown point of 50%. Hence, K should be selected
large when the data are contaminated. On the other hand, EL performs not well when K is small. So, we adopt
different methods to select K for estimation and inference.

If we are interested in the point estimator (8), We can proceed in the following manner, when the data are not
contaminated, we adopt the suggestion by [14], K = 8 ⌈log(1/δ)⌉ with (0 < δ < 1), where ⌈a⌉ is the largest integer
not greater than a. In practice, δ comes from the uniform distribution on (0, 1). To eliminate the random effect of
K, we replicate 500 times and get their mean as our final choice of K. When the data are contaminated, we set
K = ⌈0.04N⌉.

If we are interested in inference (14), we can proceed as follows. We note that the accuracy of the estimator in
each block increases as n increases. However, the power of EL increases as K becomes larger. Hence, we propose
one information criterion, AAIC, which is analogous to adjusted AIC (AAIC) (Akaike (1973)) [1],

AAIC =
1

K

K∑
k=1

(
Π̃(k)

ρ,n −Πρ,R

)2
+

m

K
,
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where m = ⌈N/K⌉. In this paper, the above information criteria are minimized over K ∈ [Klow,Kupp]. Here we
set Klow to be 30, which is the usual smallest sample size for EL performing well, and Kupp = ⌈N/SX⌉, where
SX = Smax {1,KUX/3} with KUX an estimator of the kurtosis. The adjusted factor of 3 is the kurtosis of normal
distribution.

Here S is a specific constant, such as 50 or 100. When KUX is higher, we get larger m to improve the accuracy
of each block estimation. This is consistent with the belief that each block should contain more data if the skewness
and kurtosis of distribution are bigger. Kopt is obtained by minimizing AAIC.

5. Simulation study and real data application

5.1. Simulation study

In this section, we investigate the finite sample to show the performance of our proposed methods. The data are
drawn from the following two distributions:

1. Gamma distribution:

F (x;α, β) =

∫ x

0

βα

Γ (α)
tα−1e−βtdt, x > 0.

we set α = 3, β = 1.
2. Fréchet distribution:

F (x;α) = exp
{
−x−α

}
, x > 0.

we set α = 3.

We replicate 500 Monte Carlo simulations. We present the results of this subsection in three examples.

Example 1
This example is used to estimate Πρ,R. We compare the method in Section 2 (MoM, median of Πρ,R) given by
formula (5), with the traditional method (TM, i.e, the empirical version of Πρ,R defined by formula (3) with using
full data) by the Average Square Error (ASE) criterion:

ASE =
1

500

500∑
j=1

(
Π̃(j)

ρ,n −Πρ,R

)2
,

where Π̃
(j)
ρ,n is the estimator of Πρ,R based on the jth sample. To analyze the sensitivity of two methods against

outliers, we contaminate each sample by adding r% of χ2
100 observations, where r ∈ {0, 1}, and we fix two values

of the aversion index ρ, where ρ ∈ {1.1, 1.2}. We set N ∈ {600, 1000, ..., 3000} Table 1 and Table 2 presents the
results.

We have the following comments.

1. The ASEs of the two methods are small as the sample size increases.
2. When the data are not contaminated, MoM is almost the same as TM. The latter is slightly better. However,

when outliers are added, TM does not work since its ASEs are bigger, which implies that TM is very sensitive
to outliers. But, MoM has good performance. Hence, our proposed method is better than TM.

Example 2
This example is for statistical inference on Πρ,R. We set Klow = 30, choose sample sizes N ∈
{2000, 3000, ..., 8000} for S = 50, and N ∈ {3000, 4000, ..., 8000} for S = 100. The nominal significance level
is 0.05. We compared our proposed method with the normal approximation method. However, the normal
approximation method performs badly even when we use the known σ2 (F ), not its estimator. Hence, we report
only the empirical size and power of our proposed method. Furthermore, we also report ASE and average K (AK)

Stat., Optim. Inf. Comput. Vol. 14, October 2025
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Table 1. ASE for Gamma distribution in Example 1

ρ 1.1 1.2
r 0% 1% 0% 1%
N TM MoM TM MoM TM MoM TM MoM

600 0.0124 0.0133 0.1304 0.0074 0.0137 0.0144 0.1415 0.0087
1000 0.0122 0.0130 0.1305 0.0073 0.0136 0.0143 0.1416 0.0085
1400 0.0121 0.0127 0.1303 0.0071 0.0134 0.0142 0.1418 0.0082
1800 0.0121 0.0125 0.1303 0.0069 0.0133 0.0140 0.1416 0.0081
2200 0.0120 0.0125 0.1302 0.0068 0.0131 0.0138 0.1415 0.0080
2600 0.0119 0.0124 0.1302 0.0068 0.0131 0.0137 0.1414 0.0078
3000 0.0119 0.0124 0.1301 0.0067 0.0130 0.0137 0.1414 0.0078

Table 2. ASE for Fréchet distribution in Example 1

ρ 1.1 1.2
r 0% 1% 0% 1%
N TM MoM TM MoM TM MoM TM MoM

600 0.0154 0.0166 0.2021 0.0079 0.0187 0.0195 0.1751 0.0085
1000 0.0151 0.0162 0.2012 0.0076 0.0183 0.0193 0.1745 0.0083
1400 0.0149 0.0157 0.2007 0.0074 0.0179 0.0192 0.1739 0.0082
1800 0.0148 0.0156 0.2001 0.0072 0.0177 0.0191 0.1734 0.0080
2200 0.0147 0.0156 0.1992 0.0071 0.0174 0.0189 0.1731 0.0079
2600 0.0145 0.0155 0.1991 0.0071 0.0171 0.0189 0.1731 0.0079
3000 0.0145 0.0154 0.1990 0.0070 0.0170 0.0188 0.1728 0.0078

in the empirical size. For the power, we consider Πρ,R + θ with θ ∈ {0.1, 0.3, 0.5} as the alternative hypothesis.
The simulations are displayed in Tables 3-4. The results with S = 100 are better than S = 50 since its ASE is
slightly smaller. The size of the proposed test is closer to 0.05 as N increases.

Table 3. Empirical size, AK and ASE for Gamma distribution in Example 2

ρ 1.1 1.2
S N Size AK ASE Size AK ASE
50 2000 0.061 33.84 0.0058 0.067 36.71 0.0085

3000 0.062 34.45 0.0055 0.065 38.52 0.0084
4000 0.059 36.78 0.0053 0.063 39.41 0.0082
5000 0.058 39.53 0.0052 0.061 40.28 0.0080
6000 0.054 41.78 0.0049 0.059 41.84 0.0079
7000 0.053 43.54 0.0047 0.055 43.74 0.0077
8000 0.052 46.97 0.0045 0.053 49.75 0.0075

100 3000 0.059 35.78 0.0053 0.061 43.74 0.0082
4000 0.058 38.47 0.0048 0.059 45.89 0.0081
5000 0.057 41.47 0.0045 0.057 47.83 0.0079
6000 0.052 44.27 0.0040 0.054 51.14 0.0077
7000 0.052 49.19 0.0037 0.051 54.95 0.0075
8000 0.051 55.87 0.0036 0.049 59.47 0.0073
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Table 4. Empirical size, AK and ASE for Fréchet distribution in Example 2

ρ 1.1 1.2
S N Size AK ASE Size AK ASE
50 2000 0.069 35.74 0.0069 0.065 37.84 0.0073

3000 0.065 38.04 0.0066 0.062 38.86 0.0071
4000 0.060 40.58 0.0065 0.061 39.05 0.0071
5000 0.058 43.96 0.0063 0.057 39.89 0.0069
6000 0.054 45.79 0.0062 0.054 41.15 0.0068
7000 0.053 48.09 0.0061 0.053 45.52 0.0068
8000 0.051 52.71 0.0061 0.052 50.41 0.0067

100 3000 0.053 37.58 0.0065 0.060 41.52 0.0070
4000 0.055 42.49 0.0063 0.059 45.48 0.0068
5000 0.057 46.38 0.0061 0.055 49.74 0.0068
6000 0.054 50.49 0.0059 0.053 53.07 0.0067
7000 0.052 54.46 0.0058 0.050 57.17 0.0065
8000 0.050 58.19 0.0058 0.048 60.89 0.0064

Table 5. Empirical power for Gamma distribution in Example 2

ρ 1.1 1.2
S N 0.1 0.3 0.5 0.1 0.3 0.5
50 2000 0.357 0.695 1.00 0.415 0.747 1.00

3000 0.374 0.754 1.00 0.452 0.812 1.00
4000 0.392 0.825 1.00 0.524 0.893 1.00
5000 0.412 0.892 1.00 0.597 0.945 1.00
6000 0.439 0.947 1.00 0.662 0.995 1.00
7000 0.468 0.989 1.00 0.723 1.00 1.00
8000 0.507 1.000 1.00 0.804 1.00 1.00

100 3000 0.310 0.857 1.00 0.652 0.818 1.00
4000 0.331 0.912 1.00 0.729 0.892 1.00
5000 0.371 0.962 1.00 0.806 0.953 1.00
6000 0.418 0.999 1.00 0.882 0.985 1.00
7000 0.451 1.000 1.00 0.926 1.00 1.00
8000 0.487 1.000 1.00 0.973 1.00 1.00

Example 3
In this example, we consider the testing problem for Πρ,R. We set the sample size as

{
104, 105, 106

}
. For

convenience of calculations, we fix K ∈ {30, 60}. We report ASE and empirical size. The other settings are the
same as those in Example 2. From Table 7, the results with K = 30 are better than K = 60 Since smaller K
produces a large sample size of each block, the block estimator is more accurate. On the other hand, the block size
K = 30 is enough to make EL perform satisfactorily.

5.2. Application to Norwegian fire insurance dataset

We conclude this section with a brief illustration of the estimation procedure using a fire insurance dataset
analyzed by [4]. The dataset contains the sizes of 9, 181 fire insurance claims from a Norwegian insurance
company, spanning the years 1972 to 1992. These claim amounts have been adjusted for inflation using the
Norwegian Consumer Price Index (CPI) and are expressed in thousands of Norwegian kroner (NKR). The dataset
is available, for example, in the R package CASdatasets, which can be downloaded from the following link:

Stat., Optim. Inf. Comput. Vol. 14, October 2025
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Table 6. Empirical power for Fréchet distribution in Example 2

ρ 1.1 1.2
S N 0.1 0.3 0.5 0.1 0.3 0.5
50 2000 0.342 0.675 1.00 0.474 0.847 1.00

3000 0.378 0.715 1.00 0.541 0.907 1.00
4000 0.401 0.783 1.00 0.592 0.962 1.00
5000 0.424 0.852 1.00 0.638 1.00 1.00
6000 0.448 0.925 1.00 0.749 1.00 1.00
7000 0.473 0.988 1.00 0.793 1.00 1.00
8000 0.517 1.000 1.00 0.958 1.00 1.00

100 3000 0.321 0.848 1.00 0.682 0.878 1.00
4000 0.351 0.897 1.00 0.761 0.947 1.00
5000 0.384 0.951 1.00 0.842 0.989 1.00
6000 0.421 0.988 1.00 0.874 1.00 1.00
7000 0.457 1.000 1.00 0.932 1.00 1.00
8000 0.491 1.000 1.00 0.963 1.00 1.00

Table 7. Empirical size for Gamma and Fréchet distribution in Example 3

K=30 K=60
Distribution ρ N ASE Size ASE Size
Gamma 1.1 104 0.0068 0.057 0.0074 0.062

105 0.0067 0.056 0.0073 0.060
106 0.0066 0.053 0.0072 0.057

1.2 104 0.0076 0.061 0.0082 0.059
105 0.0075 0.059 0.0081 0.057
106 0.0074 0.058 0.0081 0.055

Fréchet 1.1 104 0.0066 0.063 0.0075 0.062
105 0.0065 0.059 0.0073 0.059
106 0.0065 0.057 0.0071 0.056

1.2 104 0.0073 0.065 0.0078 0.061
105 0.0072 0.061 0.0075 0.056
106 0.0072 0.060 0.0074 0.054

http://dutangc.perso.math.cnrs.fr/RRepository/pub/. For the period from 1985 to 1992, the annual number of claims
is consistent, so we focus on this time frame in our application.
The parameters of the Norwegian fire insurance dataset are provided in Table 8 We model the Norwegian fire

Table 8. Parameters of description of the Norwegian fire insurance dataset

Min 1st Qu. Median Mean sd 3rd Qu. Max
0.5 0.7 1.020 2.217 7.760 1.8 465.365

insurance dataset using appropriate distributions, and the fitting results are presented in Table 9 Based on the
results in Table 9, we conclude that the log-normal distribution provides a good fit for the data, with parameters
shape = 0.87 and scale = 1962.99.

The results of the estimation of the reinsurance premium for three values of distortion parameters 1.1, 1.2, and
1.3, are presented in Table 10. From Table 10, we deduce that the new estimator (MoM) is very robust compared
with the traditional estimator (TM), which is very sensitive to the outliers data.

Stat., Optim. Inf. Comput. Vol. 14, October 2025
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Table 9. Results of the fitting Norwegian fire insurance dataset

Weibull log-Normal gamma
Kolmogorov-Smirnov statistic 0.261276 0.124491 0.200603
Akaike’s Information Criterion 158927.9 152859.3 159471.2

Table 10. Results of estimation of reinsurance premium based on the Norwegian fire insurance dataset

ρ 1.1 1.2 1.3
Theoretical PHT 1.6355 1.9382 2.2603

TM 1.7431 2.4021 3.2225
MoM 1.6122 1.9628 2.2539

6. Proofs

In this section, we show the theorems 1-3; for this reason, we need the following Berry-Essen bound, which is due
to [13].

Lemma 1
Assume that E(|X|3) < ∞ and σ2

ρ (F ) > 0 which is defined in (6). If F has a strictly positive, continuous density
function f on [−η, η] for some η > 0, then there exists a constant C > 0 such that

sup
x∈R

{
P
∣∣∣∣( √

N

σρ(F )

(
Π̃ρ,N −Πρ,R

)
≤ x

)
− Φ (x)

∣∣∣∣} ≤ C√
N

(16)

where Φ is the cumulative function of a standard normal random variable.

Proof of theorem 1
Define the random variables

ηn,j :=

√
n

σρ(F )

(
Π̃(j)

ρ,n −Πρ,R

)
, j = 1, ...,K (17)

From 16, we have

sup
x∈R

{|(ηn,j ≤ x)− Φ (x)|} ≤ C√
n

for each j = 1, ...,K. Setting x =
√
nz/σρ(F ), we get

P
((

Π̃(j)
ρ,n −Πρ,R

)
≥ z
)
≤ C√

n
+ 1− Φ

(√
nz

σ(F )

)
for all z > 0. Use the elementary inequality

1− Φ

( √
nz

σρ(F )

)
≤ e
− nz2

2σ2
ρ(F ) ,

which is o (1/
√
n) for large n and fixed z > 0. Thus

P
(
Π̃(j)

ρ,n −Πρ,R ≥ z
)
≤ C

2
√
n
,

and similarly, we have

P
(
Π̃(j)

ρ,n −Πρ,R ≤ −z
)
≤ C

2
√
n
,
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where C is a constant depending on z but not n. As a consequence, we have

P
(∣∣∣Π̃(j)

ρ,n −Πρ,R

∣∣∣ ≥ z
)
≤ C√

n
. (18)

We claim that ∣∣Π̃MoM
ρ,N −Πρ,R

∣∣ ≤ Median
{∣∣∣Π̃(j)

ρ,n −Πρ,R

∣∣∣ , j = 1, 2, ...,K
}
. (19)

in fact,
Π̃MoM

ρ,N −Πρ,R = Median
{
Π̃(j)

ρ,n −Πρ,R, j = 1, 2, ...,K
}
.

Note that

Median
{
Π̃(j)

ρ,n −Πρ,R, j = 1, 2, ...,K
}
≤ Median

{∣∣∣Π̃(j)
ρ,n −Πρ,R

∣∣∣ , j = 1, 2, ...,K
}

which implies that
Π̃MoM

ρ,N −Πρ,R ≤ Median
{∣∣∣Π̃(j)

ρ,n −Πρ,R

∣∣∣ , j = 1, 2, ...,K
}
.

Similarly, we can also prove

−
(
Π̃MoM

ρ,N −Πρ,R

)
≤ Median

{∣∣∣Π̃(j)
ρ,n −Πρ,R

∣∣∣ , j = 1, 2, ...,K
}
.

This prove (19). Consequently, we have:

P
(∣∣Π̃MoM

ρ,N −Πρ,R

∣∣ ≥ z
)

≤ P
(
Median

{∣∣∣Π̃(j)
ρ,n −Πρ,R

∣∣∣ , j = 1, 2, ...,K
}
≥ z
)

: = P (E) .

Define the Bernoulli random variables

θj = I
(∣∣∣Π̃(j)

ρ,n −Πρ,R

∣∣∣ ≥ z
)
, j = 1, 2, ...,K

E (θj) ≤ C/
√
n. Obviously, the event E happens if and only if

∑K
j=1 θj is larger than K/2. Thus,

P (E) = P

(
K∑
j=1

θj ≥
K

2

)
≤ e−KE(θ1)

(
2eKC

K
√
n

)K/2

≤ C

nK/5
,

where we have used Chernoff’s inequality in the last step. This ends the proof of Theorem 1.

For any fixed x, define the independent and identically distributed Bernoulli random
variables

ξn,j (x) := I (ηn,j ≤ x) , j = 1, 2, ...,K

and set pn(x) = P(ηn,j ≤ x). From Lemma 1,

|pn(x)− Φ(x)| = O
(
1/
√
n
)

for all real x. The following lemma gives the central limit theorem for partial sums of ξn,j (x).

Lemma 2
Suppose n/K → ∞ as K → ∞. Then we have

√
K

(
1

K

K∑
j=1

ξn,j (x)− Φ(x)

)
D→ N (0,Φ(x) (1− Φ(x)))

for any fixed real x. Particularly, as K → ∞,

√
K

(
1

K

K∑
j=1

ξn,j

(
x/

√
K
)
− 1

2
− x√

2πK
Φ(x)

)
D→ N (0, 1/4) . (20)
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Proof
By independence, for any real t, and i2 = −1, we have

E
(
eit
√
K( 1

K

∑K
j=1 ξn,j(x)−Φ(x))

)
=
(
E
(
e
it 1√

K
|ξn,j(x)−Φ(x)|

))K
,

and by the Taylor’s expansion

E
(
e
it 1√

K
(ξn,j(x)−Φ(x))

)
= pne

it 1√
K

(1−Φ(x))
+ (1− pn) e

−it 1√
K

Φ(x)

= 1 + it
pn√
K

(1− Φ(x))− it
(1− pn)√

K
Φ(x)

− pn
2K

[t (1− Φ(x))]
2 − (1− pn)

2K
[tΦ(x)]

2
+ o

(
K−1

)
= 1− pn

2K
[Φ(x) (1− Φ(x))] + o

(
K−1

)
. (21)

where we have used the fact that |pn − Φ(x)| = O (1/
√
n), n/K → ∞, K → ∞ and∣∣∣∣ pn√

K
(1− Φ(x)) +

1− pn√
K

Φ(x)

∣∣∣∣ = ∣∣∣∣pn − Φ(x)√
K

∣∣∣∣ = o (1/K)

Now the first conclusion of this lemma follows easily from (21).
For the second part, we observe that the above calculations still hold if we replace x with x/

√
K and note the fact

fact

Φ
(
x/

√
K
)
=

1

2
+

1√
2π

∫ x/
√
K

0

e−u
2/2du =

1

2
+

x√
2πK

+ o
(
K−1/2

)
.

Now, the proof is complete, according to Slutsky’s Theorem.

Proof of Theorem 2

1. This follows immediately from Lemma 1 and the continuous mapping theorem since the Median function is
continuous.

2. First, we observe that
√
N

σ (F )

(
Π̃MoM

ρ,N −Πρ,R

)
=

√
K

√
n

σρ (F )

(
Π̃MoM

ρ,N −Πρ,R

)
=

√
KMedian {ηn,j , j = 1, ...,K} . (22)

We first assume K is odd and for any real x, we have

P
(√

KMedian {ηn,j , j = 1, ...,K} ≤ x
)

= P

(
K∑
j=1

I

(
ηn,j ≤

x√
K

)
≥ K + 1

2

)

= P

(
K∑
j=1

ξn,j

(
x√
K

)
≥ K + 1

2

)

= P

(
√
K

{
1

K

K∑
j=1

ξn,j

(
x√
K

)
− 1

2
− x√

2πK

}
≥ − x√

2π
+O

(
1√
K

))
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which tends to Φ
(√

2/πx
)

by the above lemma 2. If K is even, then

P
(√

KMedian {ηn,j , j = 1, ...,K} ≤ x
)
≥ P

(
K∑
j=1

I

(
ηn,j ≤

x√
K

)
≥ K

2
+ 1

)

and

P
(√

KMedian {ηn,j , j = 1, ...,K} ≤ x
)
≤ P

(
K∑
j=1

I

(
ηn,j ≤

x√
K

)
≥ K

2

)

The right-hand sides of the above two inequalities tend to Φ
(√

2/πx
)

as K → ∞. Now, we complete the
whole proof of Theorem 2.

Proof of Theorem 3
Recall that

Zn,k = I
(
Π̃(k)

ρ,n −Πρ,R

)
, for k = 1, 2, ...,K.

Write (11) as

f (λ) =
1

K

K∑
j=1

Zn,k − 0.5

1 + λ (Zn,k − 0.5)
= 0. (23)

Write
Un,k = λ (Zn,k − 0.5) .

By (23), we can easily get
Z̄n,k − 0.5 = λS, (24)

where

S =
1

K

K∑
k=1

(Zn,k − 0.5)
2

1 + Un,k

and

Z̄n,k =
1

K

K∑
k=1

Zn,k.

Note

S =
1

K

K∑
k=1

(Zn,k − 0.5)
2
= 0.25,

and
ZK = max

1≤k≤K
|Zn,k − 0.5| = 0.5.

Combining the constraint condition ωi > 0, we can derive that 1 + Un,k > 0, and

λS ≤ λS

(
1 + max

1≤k≤K
Un,k

)
≤ λS (1 + λZK) =

(
Z̄n,k − 0.5

)
(1 + λZK)

The last equality follows by (24). Hence,

λ
[
S −

(
Z̄n,k − 0.5

)
ZK

]
≤ Z̄n,k − 0.5.
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Furthermore, together with Lemma 2, Z̄n,k − 0.5 = Op

(
1/
√
K
)
. We have

λ
[
0.25−Op

(
1/
√
K
)]

= Op

(
1/
√
K
)
.

So λ = Op

(
1/

√
K
)
. In addition, we have

max
1≤k≤K

|Un,k| = Op

(
1/
√
K
)
= op(1).

Expanding (23) gives

0 =
1

K

K∑
k=1

(Zn,k − 0.5)

1 + Un,k

=
1

K

K∑
k=1

(Zn,k − 0.5)

(
1− Un,k +

U2
n,k

1 + Un,k

)

=
(
Z̄n,k − 0.5

)
− λS +

1

K

K∑
k=1

(Zn,k − 0.5)

1 + Un,k
U2
n,k (25)

The final term in (25) above has a norm bounded by

1

K

K∑
k=1

λ2 |Zn,k − 0.5|3

1 + Un,k
= O (1)Op (1/K)Op (1) = op

(
1/
√
K
)
.

Hence
λ = S−1

(
Z̄n,k − 0.5

)
+ β = 4

(
Z̄n,k − 0.5

)
+ β

with β = op
(
1/
√
K
)
. By (25) and using Taylor expansion, we can find

log (1 + Un,k) = Un,k − 1

2
U2
n,k + ηk

holds for some finite B > 0, 1 ≤ k ≤ K,

P
(
|ηk| ≤ B |Un,k|3

)
→ 1, as K → ∞ and m → ∞.

Now, direct calculation yields that

−2 logR (Πρ,R) = 2

K∑
k=1

log (1 + Un,k)

= 2

K∑
k=1

(
Un,k − 1

2
U2
n,k + ηk

)

= 4K
(
Z̄n,k − 0.5

)2 − 4Kβ2 + 2

K∑
k=1

ηk

By Lemma 2, we have
4K
(
Z̄n,k − 0.5

)2 D→ χ2
1.

Note that:
4Kβ2 = 4Kop (1/K) = op (1) ,

and ∣∣∣∣∣
K∑

k=1

ηk

∣∣∣∣∣ ≤ B |λ|3
K∑

k=1

|Zn,k − 0.5|3 = Op

(
1/
√
K3
)
O (1) = op (1) .

This completes the proof.
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7. Conclusion

In this paper, we propose a new and robust non-parametric estimator for the excess-of-loss reinsurance premium
based on a grouping strategy. The asymptotic properties, including consistency and asymptotic normality of the
proposed estimator, are obtained. Due to the complexity of the variance term in the normal approximation of
the proposed estimator, we construct a new test for the excess-of-loss reinsurance premium based on the empirical
likelihood method for the median. Numerical simulations confirm that our newly proposed estimator is quite robust
regarding outliers.
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