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Abstract This article undertakes to study a NOMVIP involving XNOR-operation and solved by employing a proposed
three-step iterative algorithm in ordered Banach Space. Under suitable conditions, we obtain the strong convergence and
existence results of NOMVIP involving XNOR-operation by applying the resolvent operator technique with XNOR and
XOR operations and discuss the stability of the proposed algorithm. Finally, we provide a numerical example to confirm the
convergence of the suggested algorithm in support of our considered problem which gives the grantee that all the proposed
conditions of our main result have been formulated by using MATLAB programming.

Keywords Comparison, Convergence, Ordered Inclusion, XOR Operation, XNOR-operation, Stability.

AMS 2010 subject classifications 47H09, 49J40

DOI:10.19139/soic-2310-5070-990

1. Introduction

A wide class of inclusion problems has been investigated to find the zeros of the monotone operator G from Rn
to itself that is find ℘ ∈ Rn such that 0 ∈ G(℘). Many problems in management sciences, economics, operations
research, physics, and applied sciences can be formulated as an inclusion problem 0 ∈ G(℘), for a given multi-
valued mapping G in Hilbert spaces. In the 19th century, Martinet [19] and Rockafellar [24] proposed the proximal
point iterative scheme for the monotone inclusion problem. The resolvent operator elegant methods introduced to
prove the existence of a solution and some iterative procedures developed for several types of variational inclusions
and their generalizations which provided us a powerful and novel framework for the study abroad class of nonlinear
problems arising in optimization, convex programming problems, tomography, molecular biology, image restoring
processing in applied and pure sciences (see, [1, 6, 7, 8, 9, 10, 11, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29]).

After that, the problem of the inclusion involving multi-valued mappings which were introduced and studied
by Moudafi et al. [20], Osilike [23], Bella [6], Jeong [12], Shelmas [26], Tan [28], Ahmad et al. [5], and Huang
[11], is an important and useful extension of mathematical analysis and developed the various kinds of efficient
and implementable iterative schemes to solve several types of variational inclusions problems in the literature,
and among these authors used projection operator, the resolvent operator and proximal operator techniques to
solve interesting and important variational inclusions problems. Recently, Glowinski et al. [10] and Noor [21, 22]
investigated the convergence of the sequences generated by three-step predictor-corrector iterative schemes to solve
several types of mixed variational inequalities and inclusion problem by applying the auxiliary principle and the
Lagrangian multiplier techniques, and Glowinski et al. [10] proved that the three-step iterative schemes have more
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reliable numerical results than the one-step and two-step iterative schemes to solve several problems, which aries
in pure and applied sciences.

Very Recently, Li and his co-authors, focussed on the work done related to ordered variational inclusions
involving multi-valued mappings with XOR-operation. The XOR-operation and XNOR-operations are the binary
operations and behaves like ADD operations, which are insertable to each other, and have real-time applications in
neural networks and digital communication systems. Several problems concerning in ordered variational inclusions
have been solved by using the different kinds of multi-valued mappings to find the solutions of nonlinear ordered
equations (inclusions) with or without XOR-operation and obtained their solutions in different settings (see [2, 3]).

Inspired and motivated by the above-described research, the aim of this work is proposed as follows. In section 2,
contains certain basic results needed in this paper. In Section 3, we consider a new NOMVIP in real ordered Banach
space and prove the existence of a unique solution. In section 4, we use the XOR and XNOR-operations technique
and propose the three-step iterative schemes are better than the previously developed iterative schemes investigated
by many authors (see, [2, 3, 13, 14, 15, 17, 18]). Moreover, we investigate the stability and convergence criteria
of the proposed iterative schemes. In the last section, we demonstrate an example that ensures all the assumptions
of our consider problem are fulfilled and show the convergence of the supposed iterative schemes by applying
MATLAB programming.

2. Preliminaries

Throughout this article, B expresses a real ordered Banach space whose norm ‖.‖ and inner product 〈., .〉,
respectively. Let K be a normal cone with normal constant δK , and ≤ is a partial ordering defined by for any
℘, ℘̂ ∈ E, ℘ ≤ ℘̂ if and only if ℘̂− ℘ ∈ K. For arbitrary elements ℘, ℘̂ ∈ B, lub{℘, ℘̂} is denoted by least upper
bound of the set {℘, ℘̂} and glb{℘, ℘̂} is denoted by greatest lower bound of the set {℘, ℘̂}, respectively. Let
glb{℘, ℘̂} and lub{℘, ℘̂} exist, binary operations ∨,∧, ⊕ and � which called as AND, OR, XNOR and XOR
operations, respectively are defined as follows:

(i) ℘ ∨ ℘̂ = sup{℘, ℘̂};
(ii) ℘ ∧ ℘̂ = inf{℘, ℘̂};

(iii) ℘⊕ ℘̂ = (℘− ℘̂) ∨ (℘̂− ℘);
(iv) ℘� ℘̂ = (℘− ℘̂) ∧ (℘̂− ℘).

Definition 1 ([9, 14, 25])
A non-empty subset K of B. Then

(i) K said to be a normal cone if and only if there exists a constant δK > 0 such that for 0 ≤ ℘ ≤ ℘̂, we have
||℘|| ≤ δK ||℘̂||, for any ℘, ℘̂ ∈ B;

(ii) For each ℘, ℘̂ ∈ B if either ℘ ≤ ℘̂ or ℘̂ ≤ ℘ hold, then ℘ and ℘̂ are said to be comparable to each other
(denoted by ℘ ∝ ℘̂).

Definition 2 ([9, 14])
A comparison mapping S : B → B is called

(i) a strongly comparison mapping, ℘ ∝ ℘̂ if and only if S(℘) ∝ S(℘̂), for all ℘, ℘̂ ∈ B;
(ii) a δS-ordered compression mapping, if S is a comparison mapping and there exists 0 < λS < 1 such that

S(℘)⊕ S(℘̂) ≤ λS(℘⊕ ℘̂), for all ℘, ℘̂ ∈ B.

(iii) a ν-ordered non-extended mapping, if there exists ν > 0 such that

S(℘)⊕ S(℘̂) ≥ ν(℘⊕ ℘̂), for all ℘, ℘̂ ∈ B.
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Definition 3 ([14])
A single-valued bi-mapping F : B × B → B is said to be (κ, µ)-ordered Lipschitz continuous, if ℘ ∝ ℘̂ and q ∝ q̂,
then F (℘, q) ∝ F (℘̂, q̂) and there exist constants κ, µ > 0 such that

F (℘, q)⊕ F (℘̂, q̂) ≤ κ(℘⊕ ℘̂) + µ(q ⊕ q̂), for all ℘, ℘̂, q, q̂ ∈ B.

Definition 4 ([14])
Let G : B → B be a single-valued mapping and M : B⇒ B be a multi-valued mapping. Then M is said to be a

(i) weak-comparison mapping, if for any ϑ℘ ∈M(℘), ℘ ∝ ϑ℘, and if ℘ ∝ ℘̂, then there exist ϑ℘ ∈M(℘) and
ϑ℘̂ ∈M(℘̂), ϑ℘ ∝ ϑ℘̂, for all ℘, ℘̂ ∈ B;

(ii) αG-weak-non-ordinary difference mapping with respect to G, if for each ℘, ℘̂ ∈ B, there exist a constant αG
and ϑ℘ ∈M(G(℘)) and ϑ℘̂ ∈M(G(℘̂)) such that

(ϑ℘ ⊕ ϑ℘̂)⊕ αG(G(℘)⊕G(℘̂)) = 0;

(iii) λ-ordered different weak-comparison mapping with respect to G, if there exists a constant λ > 0 and
ϑ℘ ∈M(G(℘)) and ϑ℘̂ ∈M(G(℘̂)) such that

λ(ϑ℘ − ϑ℘̂) ∝ ℘− ℘̂, for all ℘, ℘̂ ∈ B;

(iv) (αG, λ)-weak-GNODD mapping with respect toG, ifM is a αG-weak-non-ordinary difference mapping with
respect to G and a λ-ordered different weak-comparison mapping with respect to G and [G+ λM ](B) = B
for αG, λ > 0.

Definition 5
LetG : B → B be a γ-ordered non-extended mapping. LetM : B⇒ B be an ordered (αG, λ)-weak-GNODD multi-
valued mapping with respect to G. The resolvent operator RGλ,M : B → B associated with G and M is defined by

RGλ,M (℘) = [G+ λM ]−1(℘), for all ℘ ∈ B, (1)

where λ > 0 is a constant.

Definition 6 ([27])
Let R : B → B be a single-valued mapping, ℘0 ∈ B and let

℘m+1 = S(R,℘m)

defines an iterative sequence which yields a sequence of points {℘m} in B. Suppose that F (R) = {℘ ∈ B : R(℘) =
℘} 6= ∅ and {℘m} converges to a fixed point ℘∗ of R. Let {qm} ⊂ B and

ςm = ‖qm+1 − S(R,℘m)‖.

If lim
m→∞

ςm = 0, which implies that qm → ℘∗, then the iterative sequence {℘m} is said to be stable with respect to
R or R-stable.

Lemma 1 ([29])

Let {am} and {bm} be the sequences such that am ≥ 0 and 0 ≤ bm ≤ 1, for all m ≥ 0, and
∞∑
m=0

bm =∞. If there

exists a number p ≥ 0 such that
am+1 ≤ (1− bm)am + bmcm, ∀m ≥ p,

where cm ≥ 0, for all m ≥ 0 and cm → 0 (m→ 0), then lim
m→∞

am = 0.

Lemma 2 ([9, 13, 14, 15])
Let ⊕ and � be the XOR and XNOR-operations, respectively. Then the following properties satisfied:
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(i) ℘� ℘ = 0, ℘� ℘̂ = ℘̂� ℘ = −(℘⊕ ℘̂) = −(℘̂⊕ ℘);
(ii) (`℘)⊕ (`℘̂) = |`|(℘⊕ ℘̂);

(iii) if ℘ ∝ ℘̂, then ℘⊕ ℘̂ = 0 if and only if ℘ = ℘̂;
(iv) (℘+ ℘̂)� (q + q̂) ≥ (℘� q) + (℘̂� q̂);
(v) if ℘, ℘̂ and s are comparative to each other, then (℘⊕ ℘̂) ≤ ℘⊕ s+ s⊕ ℘̂;

(vi) if ℘ ∝ ℘̂, then ((℘⊕ 0)⊕ (℘̂⊕ 0)) ≤ (℘⊕ ℘̂)⊕ 0 = ℘⊕ ℘̂;
(vii) (ı℘)⊕ (℘) = |ı− |℘ = (ı⊕ )℘;

(viii) ‖℘⊕ ℘̂‖ ≤ ‖℘− ℘̂‖ ≤ δK‖℘⊕ ℘̂‖;
(ix) if ℘ ∝ ℘̂, then ‖℘⊕ ℘̂‖ = ‖℘− ℘̂‖, for all ℘, ℘̂, q, q̂, s ∈ B and ı, , ` ∈ R.

Lemma 3 ([14])
Let G : B → B be an γ-ordered non-extended mapping and M : B⇒ B be an ordered (αG, λ)-weak-GNODD
multi-valued mapping with respect to RGλ,M . The resolvent operator RGλ,M : B → B associated with G and M is
well-defined, single valued, comparison and 1

γ(λαG−1) -ordered Lipschitz continuous mapping with λαG > 1, that
is

RGλ,M (℘)⊕RGλ,M (℘̂) ≤ 1

γ(λαG − 1)
(℘⊕ ℘̂), for all ℘, ℘̂ ∈ B. (2)

3. Formulation of NOMVIP and existence result

Let G,A, g, h : B → B and η : B × B → B be the single-valued comparison mappings. Let M : B⇒ B be an
ordered (αG, λ)-weak-GNODD multi-valued mapping. We consider the following nonlinear ordered mixed
variational inclusion problem involving XNOR-operation (in short, NOMVIP):

For any ω, ξ ∈ R and some τ > 0, find ℘ ∈ E such that

0 ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘)). (3)

Now, we first transfer our considered NOMVIP (3) into a fixed point formulation.

Lemma 4
Let h, g,A,G : B → B and η : B × B → B be the single-valued comparison mappings, and M : B⇒ B be an
ordered (αG, λ)-weak-GNODD multi-valued mapping with respect to g. Then the followings are equivalent:

(i) a NOMVIP (3) has a solution ℘ ∈ B;
(ii) a mapping Q : B⇒ B defined by

Q(℘) =
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘)) + ℘,

has a the fixed point ℘ ∈ B;
(iii) the following equation

g(℘)�RGλ,M
[
(Gog)(℘) +

λ

τ

(
(ξRGλ,M (℘)−A(℘))� ωη(℘, h(℘))

)]
= 0. (4)

has a solution ℘ ∈ B.

Proof
(i) =⇒ (ii) Adding ℘ to both sides of (3), we have

0 ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘))

=⇒ ℘ ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘)) + ℘ = Q(℘).
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Hence, ℘ is a fixed point of Q.

(ii) =⇒ (iii) Let ℘ be a fixed point of Q, then

℘ ∈ Q(℘) =
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘)) + ℘

=⇒ 0 ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘))

=⇒ ωη(℘, h(℘)) ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))

=⇒ λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)
∈ λM(g(℘))

=⇒ (Gog)(℘) +
λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)
∈ (Gog)(℘) + λM(g(℘))

=⇒ (Gog)(℘) +
λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)
∈ G(g(℘)) + λM(g(℘))

=⇒ (Gog)(℘) +
λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)
∈ [G+ λM ](g(℘)),

that is
g(℘) = RGλ,M

[
(Gog)(℘) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)]
,

implies that g(℘)�RGλ,M
[
(Gog)(℘) + λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)]
= 0.

Consequently, ℘ is a solution of the NOMVIP (3).

(iii) =⇒ (i), from (4) we have

g(℘)�RGλ,M
[
(Gog)(℘) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)]
= 0

g(℘) = RGλ,M
[
(Gog)(℘) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)]
g(℘) = [G+ λM ]−1

[
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)]
,

so

G(g(℘)) +
λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

)
∈ G(g(℘)) + λM(g(℘))),

ωη(℘, h(℘)) ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘)),

which implies

0 ∈
(
ξRGλ,M (℘)−A(℘)

)
� τM(g(℘))− ωη(℘, h(℘)).

Therefore, ℘ ∈ B is a solution of NOMVIP (3).

Now, we are equipped to prove the following existence result for NOMVIP (3).

Theorem 1
Let h, g,A,G : B → B and η : B × B → B be the single-valued comparison mappings such that h is δh-ordered
compression mapping, g is δg-ordered compression mapping, A is δA-ordered compression mapping, G is δG-
ordered compression mapping with respect to g and γG-ordered non-extended mapping, and η is (κ, ν)-ordered
Lipschitz continuous mapping with respect to g, respectively. Let M : B⇒ B be an ordered (αG, λ)-weak-
GNODD multi-valued mapping with respect to g.
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In addition, if G,A, g, h, η,M and RGλ,M are compared to each other, the following conditions are satisfied:
λ
((

|ξ|
γ(λαG−1) + δA

)
⊕
(
|ω|(κ+ νδh)

))
< τδg(γλαG − (γ + δG)) min{ 1

δK
, 1},

αG > 1
λ > 0,

(5)

then, NOMVIP (3) admits a unique solution ℘∗ ∈ B, which is a fixed point of the mapping F (℘∗) = ℘∗ − g(℘∗)⊕
RGλ,M

[
G(g(℘∗)) + λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)]
.

Proof
Using Lemma 2 and Lemma 3, we have

0 ≤ F (℘)⊕ F (℘̂)

≤
[
℘− g(℘)⊕RGλ,M

(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

))]
⊕
[
℘̂− g(℘̂)⊕RGλ,M

(
G(g(℘̂)) +

λ

τ

((
ξRGλ,M (℘̂)−A(℘̂)

)
� ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂) +

[
g(℘)⊕RGλ,M

(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

))]
⊕
[
g(℘̂) +RGλ,M

(
G(g(℘̂))⊕ λ

τ

((
ξRGλ,M (℘̂)−A(℘̂)

)
� ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂) + (g(℘)⊕ g(℘̂))⊕

[
RGλ,M

(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
�ωη(℘, h(℘))

))
⊕RGλ,M

(
G(g(℘̂)) +

λ

τ

((
ξRGλ,M (℘̂)−A(℘̂)

)
� ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂) + δg(℘⊕ ℘̂)⊕Υ

[(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

))
⊕
(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘̂)−A(℘̂)

)
� ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂) + δg(℘⊕ ℘̂)⊕Υ

[
G(g(℘))⊕G(g(℘̂)) +

λ

τ

(((
ξRGλ,M (℘)−A(℘)

)
�ωη(℘, h(℘))

)
⊕
((
ξRGλ,M (℘̂)−A(℘̂)

)
� ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂)− δg(℘⊕ ℘̂)�Υ

[
δGδg(℘⊕ ℘̂) +

λ

τ

(
−
((
ξRGλ,M (℘)−A(℘)

)
⊕ωη(℘, h(℘))

)
⊕
(
−
(
ξRGλ,M (℘̂)−A(℘̂)

)
⊕ ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂)− δg(℘⊕ ℘̂)�Υ

[
δGδg(℘⊕ ℘̂) +

λ

τ

(((
ξRGλ,M (℘)−A(℘)

)
⊕ωη(℘, h(℘))

)
⊕
((
ξRGλ,M (℘̂)−A(℘̂)

)
⊕ ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂)− δg(℘⊕ ℘̂)�Υ

[
δGδg(℘⊕ ℘̂) +

λ

τ

(((
ξRGλ,M (℘)−A(℘)

)
⊕
(
ξRGλ,M (℘̂)−A(℘̂)

))
⊕
(
ωη(℘, h(℘))⊕ ωη(℘̂, h(℘̂))

))]
≤ (℘⊕ ℘̂)− δg(℘⊕ ℘̂)�Υ

[
δGδg(℘⊕ ℘̂) +

λ

τ

(
|ξ|
(
RGλ,M (℘)⊕RGλ,M (℘̂)

)
+A(℘)⊕A(℘̂)

)
⊕ |ω|

(
η(℘, h(℘))⊕ η(℘̂, h(℘̂))

))]
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≤ (℘⊕ ℘̂)− δg(℘⊕ ℘̂)�Υ
[
δGδg(℘⊕ ℘̂) +

λ

τ

((
|ξ|Υ + δA

)
⊕
(
|ω|(κ+ νδh)

))
(℘⊕ ℘̂)

]
≤

[
1− δg �Υ

(
δGδg +

λ

τ

((
|ξ|Υ + δA

)
⊕
(
|ω|(κ+ νδh)

)))]
(℘⊕ ℘̂),

where
Υ =

1

γ(αGλ− 1)
.

which implies that

0 ≤ F (℘)⊕ F (℘̂) ≤ ψ(℘⊕ ℘̂),

where
ψ =

[
1− δg �Υ

(
δGδg +

λ

τ

((
|ξ|Υ + δA

)
⊕
(
|ω|(κ+ νδh)

)))]
.

By Definition 1 (i) and Lemma 2, we conclude that

‖F (℘)− F (℘̂)‖ ≤ |ψ|δK‖℘− ℘̂‖. (6)

Using the condition (5), we can see that δK |ψ| < 1. It follows from (6) that the resolvent operator F (.) is contraction
mapping. Hence, there exists a unique ℘∗ ∈ B such that

℘∗ = ℘∗ − g(℘∗)⊕RGλ,M
[
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)]
,

which implies that

g(℘∗)�RGλ,M
[
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)]
= 0.

From Lemma 4, ℘∗ is a unique solution of NOMVIP (3).

4. Stability and Convergence Analysis

In this section, we first describe the three-step iterative schemes based on Lemma 4 for approximating a solution
of NOMVIP (3) and reveal the convergence and stability analysis of the suggested iterative schemes.

Algorithm 1
Let h, g,A,G : B → B and η : B × B → B be the single-valued comparison mappings. Let M : B⇒ B be an
ordered (αG, λ)-weak-GNODD multi-valued mapping. Given any initial point ℘0 ∈ B, assume that ℘1 ∝ ℘0. We
define the sequence {℘n} and let ℘n+1 ∝ ℘n such that

℘m+1 = (1− %m)℘m + %m

(
℘̂m − g(℘̂m)⊕RGλ,M

(
G(g(℘̂m)) + λ

τ

((
ξRGλ,M (℘̂m)

−A(℘̂m)
)
� ωη(℘̂m, h(℘̂m))

)))
+ %mdm

℘̂m = (1− σm)℘m + σm

(
q̂m − g(q̂m)⊕RGλ,M

(
G(g(q̂m)) + λ

τ

((
ξRGλ,M (q̂m)

−A(q̂m)
)
� ωη(q̂m, h(q̂m))

)))
+ σmem

q̂m = (1− ωm)℘m + ωm

(
℘m − g(℘m)⊕RGλ,M

(
G(g(℘m)) + λ

τ

((
ξRGλ,M (℘m)

−A(℘m)
)
� ωη(℘m, h(℘m))

)))
+ ωmfm

.



(7)
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Suppose {zm} is an arbitrary sequence in B and the sequence {ϕm} is define by

ϕm =
∥∥∥zm+1 −

[
(1− %m)zm + %m

(
am − g(am)⊕RGλ,M

(
G(g(am))

+ λ
τ

((
ξRGλ,M (am)−A(am)

)
� ωη(am, h(am))

)))
+ %mdm

]∥∥∥
am = (1− σm)zm + σm

(
bm − g(bm)⊕RGλ,M

(
G(g(bm)) + λ

τ

((
ξRGλ,M (bm)

−A(bm)
)
� ωη(bm, h(bm))

)))
+ σmem

bm = (1− ωm)zm + ωm

(
zm − g(zm)⊕RGλ,M

(
G(g(zm)) + λ

τ

((
ξRGλ,M (zm)

−A(zm)
)
� ωη(zm, h(zm))

)))
+ ωmfm



(8)

where 0 ≤ %m, σm, ωm ≤ 1,∀m ≥ 0 and
∞∑
m=0

%m diverge. Let {dm}, {em} and {fm} be the sequences in B to take

into account the possible inexact computation provided that dm ⊕ 0 = dm, em ⊕ 0 = em and fm ⊕ 0 = fm, ∀m ≥
0.

Theorem 2
Suppose all the mappings h, g,A,G, η and M are similar as in Theorem 1 such that all the hypotheses of Theorem
1 are satisfied. Besides, admit that the following assumptions hold:

λ
((

|ξ|
γ(λαG−1) + δA

)
⊕
(
|ω|(κ+ νδh)

))
< τδg(γλαG − (γ + δG)) min{ 1

δK
, 1},

αG > 1
λ > 0,

(9)

If limm→∞ ‖dm ∨ (−dm)‖ = limm→∞ ‖em ∨ (−em)‖ = limm→∞ ‖fm ∨ (−fm)‖ = 0, then

(I) The sequence {℘m} generated by the suggested Algorithm 1 converges strongly to the unique solution ℘∗ of
NOMVIP (3).

(II) Furthermore, if 0 < ε < %m, then limm→∞ zm = ℘∗ if and only if limm→∞ ϕm = 0, where ϕm is given in
(8) i.e., the sequence {℘m} generated by (7) is RGλ,M -stable.

Proof
(I). Suppose ℘∗ is a unique solution of NOMVIP (3). Then, we have

℘∗ = (1− %m)℘∗ + %m

(
℘∗ − g(℘∗)⊕RGλ,M

(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)

−A(℘∗)
)
� ωη(℘∗, h(℘∗))

)))
= (1− σm)℘∗ + σm

(
℘∗ − g(℘∗)⊕RGλ,M

(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)

−A(℘∗)
)
� ωη(℘∗, h(℘∗))

)))
= (1− ωm)℘∗ + ωm

(
℘∗ − g(℘∗)⊕RGλ,M

(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)

−A(℘∗)
)
� ωη(℘∗, h(℘∗))

)))
. (10)
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Using Algorithm 1, Lemma 2, Lemma 3, and (10) it follows that

0 ≤ ℘m+1 ⊕ ℘∗

=
[
(1− %m)℘m + %m

(
℘̂m − g(℘̂m)⊕RGλ,M

(
G(g(℘̂m)) +

λ

τ

((
ξRGλ,M (℘̂m)

−A(℘̂m)
)
� ωη(℘̂m, h(℘̂m))

)))
+ %mdm

]
⊕
[
(1− %m)℘∗ + %m

(
℘∗ − g(℘∗)

⊕RGλ,M
(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)))]
≤ (1− %m)(℘m ⊕ ℘∗) + %m

[(
℘̂m − g(℘̂m)⊕RGλ,M

(
G(g(℘̂m)) +

λ

τ

((
ξRGλ,M (℘̂m)

−A(℘̂m)
)
� ωη(℘̂m, h(℘̂m))

)))
⊕
(
℘∗ − g(℘∗)⊕RGλ,M

(
G(g(℘∗))

+
λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)))]
+ %m(dm ⊕ 0)

≤ (1− %m)(℘m ⊕ ℘∗) + %mψ(℘̂m ⊕ ℘∗) + %m(dm ⊕ 0), (11)

where

ψ =
[
1− δg �

1

γ(λαG − 1)

(
δGδg +

λ

τ

(( |ξ|
γ(λαG − 1)

+ δA

)
⊕
(
|ω|(κ+ νδh)

)))]
.

Using the same argument as for (11), we calculate

0 ≤ ℘̂m ⊕ ℘∗

=
[
(1− σm)℘m + σm

(
q̂m − g(q̂m)⊕RGλ,M

(
G(g(q̂m)) +

λ

τ

((
ξRGλ,M (q̂m)

−A(q̂m)
)
� ωη(q̂m, h(q̂m))

)))
+ σmem

]
⊕
[
(1− σm)℘∗ + σm

(
℘∗ − g(℘∗)

⊕RGλ,M
(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)))]
≤ (1− σm)(℘m ⊕ ℘∗) + σmψ(q̂m ⊕ ℘∗) + σm(em ⊕ 0). (12)

Using the same argument as for (11), we calculate

0 ≤ q̂m ⊕ ℘∗

=
[
(1− ωm)℘m + ωm

(
℘m − g(℘m)⊕RGλ,M

(
G(g(℘m)) +

λ

τ

((
ξRGλ,M (℘m)

−A(℘m)
)
� ωη(℘m, h(℘m))

)))
+ σmfm

]
⊕
[
(1− ωm)℘∗ + ωm

(
℘∗ − g(℘∗)

⊕RGλ,M
(
G(g(℘∗)) +

λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

)))]
≤ (1− ωm)(℘m ⊕ ℘∗) + ωmψ(℘m ⊕ ℘∗) + σm(fm ⊕ 0)

≤ (1− ωm(1− ψ))(℘m ⊕ ℘∗) + ωm(fm ⊕ 0)

≤ (℘m ⊕ ℘∗) + ωm(fm ⊕ 0), since (1− ωm(1− ψ)) ≤ 1. (13)
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Combining (12), (13) and (11) becomes

0 ≤ ℘m+1 ⊕ ℘∗

≤ (1− %m)(℘m ⊕ ℘∗) + ψ%m
[
(℘m ⊕ ℘∗) + ψωm(fm ⊕ 0)

+σm(em ⊕ 0)
]

+ %m(dm ⊕ 0)

≤ (1− %m(1− ψ))(℘m ⊕ ℘∗) + ψ%m
[
ψωm(fm ⊕ 0) + σm(em ⊕ 0)

]
+%m(dm ⊕ 0)

≤ (1− %m(1− ψ))(℘m ⊕ ℘∗) +
[
ψ2%mωm(fm ⊕ 0) + ψ%mσm(em ⊕ 0)

+%m(dm ⊕ 0)
]
.

By Definition 1 (i) and Lemma 2, we have

‖℘m+1 − ℘∗‖ ≤ (1− δK%m(1− ψ))‖℘m − ℘∗‖+ δK%m(1− ψ)(
ψ2ωm‖fm ∨ (−fm)‖+ ψσm‖em ∨ (−em)‖+ ‖dm ∨ (−dm)‖

(1− ψ)

)
(14)

On setting cm = ψ2ωm‖fm∨(−fm)‖+ψσm‖em∨(−em)‖+‖dm∨(−dm)‖
(1−ψ) , am = ‖℘m − ℘∗‖, and bm = δK%m(1− ψ), (14)

can be rewrite as

am+1 ≤ (1− bm)am + bmcm. (15)

By Lemma 1 and the assumptions lim
n→∞

‖dm ∨ (−dm)‖ = lim
n→∞

‖em ∨ (−em)‖ = lim
n→∞

‖fm ∨ (−fm)‖ = 0,we can

conclude that am → 0, as n→∞, and so {℘m} converges strongly to a unique solution ℘∗ of NOMVIP (3).

Proof of (II). Let S(℘∗) = ℘∗ − g(℘∗)⊕RGλ,M
(
G(g(℘∗)) + λ

τ

((
ξRGλ,M (℘∗)−A(℘∗)

)
� ωη(℘∗, h(℘∗))

))
. Using

Algorithm 1, Lemma 2 and Lemma 3, we obtain

0 ≤ zm+1 ⊕ ℘∗

≤ zm+1 ⊕ ((1− %m)℘∗ + %mS(℘∗))

≤ zm+1 ⊕ ((1− %m)zm + %mS(am) + %mdm)

+ ((1− %m)zm + %mS(am) + %mdm)⊕ ((1− %m)℘∗ + %mS(℘∗))

≤ zm+1 ⊕ ((1− %m)zm + %mS(am) + %mdm)

+(1− %m)(zm ⊕ ℘∗) + %m (S(am)⊕ S(℘∗)) + %m(dm ⊕ 0)

≤ zm+1 ⊕ ((1− %m)zm + %mS(am) + %mdm)

+(1− %m)(zm ⊕ ℘∗) + %mψ(am ⊕ ℘∗) + %m(dm ⊕ 0), (16)

From (16), we have

0 ≤ am ⊕ ℘∗

= [(1− σm)zm + σmS(bm) + σmem]⊕ [(1− σm)℘∗ + σmS(℘∗)]

≤ (1− σm)(zm ⊕ ℘∗) + σm(S(bm)⊕ S(℘∗)) + σm(em ⊕ 0)

≤ (1− σm)(zm ⊕ ℘∗) + σmψ(bm ⊕ ℘∗) + σm(em ⊕ 0). (17)
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From (17), we have

0 ≤ bm ⊕ ℘∗

= [(1− ωm)zm + ωmS(zm) + ωmfm]⊕ [(1− σm)℘∗ + σmS(℘∗)]

≤ (1− ωm)(zm ⊕ ℘∗) + ωm(S(zm)⊕ S(℘∗)) + ωm(fm ⊕ 0)

≤ (1− ωm)(zm ⊕ ℘∗) + ωmψ(zm ⊕ ℘∗) + ωm(fm ⊕ 0)

≤ (1− ωm(1− ψ))(zm ⊕ ℘∗) + ωm(fm ⊕ 0)

≤ (zm ⊕ ℘∗) + ωm(fm ⊕ 0), since (1− ωm(1− ψ)) ≤ 1. (18)

Combining (17) and (18), we have

0 ≤ am ⊕ ℘∗

≤ (1− σm)(zm ⊕ ℘∗) + σmψ
(
(zm ⊕ ℘∗) + ωm(fm ⊕ 0)

)
+ σm(em ⊕ 0)

≤ (1− σm(1− ψ))(zm ⊕ ℘∗) + σmωm(fm ⊕ 0) + σm(em ⊕ 0)

≤ (zm ⊕ ℘∗) + σmωm(fm ⊕ 0) + σm(em ⊕ 0), since (1− σm(1− ψ)) ≤ 1. (19)

Using (19), (16) becomes as

0 ≤ zm+1 ⊕ ℘∗

≤ [zm+1 ⊕ ((1− %m)zm + %mS(am) + %mdm)]

+(1− %m(1− ψ))(zm ⊕ ℘∗) + %m
[
ψ2ωm(fm ⊕ 0) + ψσm(em ⊕ 0)

+(dm ⊕ 0)
]
.

By Definition 1 (i) and Lemma 2, we have

‖zm+1 − ℘∗‖ ≤ δK ‖zm+1 − [(1− %m)zm + %mS(am) + %mdm]‖
+δK(1− %m(1− ψ))‖un − ℘∗‖+ %mδK(1− ψ)(
ψ2ωm‖fm ∨ (−fm)‖+ ψσm‖em ∨ (−em)‖+ ‖dm ∨ (−dm)‖

(1− ψ)

)
≤ δKϕm + δK(1− %m(1− ψ))‖un − ℘∗‖+ %mδK(1− ψ)(

ψ2ωm‖fm ∨ (−fm)‖+ ψσm‖em ∨ (−em)‖+ ‖dm ∨ (−dm)‖
(1− ψ)

)
.

(20)

Since 0 < ε ≤ %m, (20) becomes as

‖zm+1 − ℘∗‖ ≤ (1− δK%m(1− ψ))‖un − ℘∗‖+ %mδK(1− ψ)

[
ϕm

ε(1− ψ)

+

(
ψ2ωm‖fm ∨ (−fm)‖+ ψσm‖em ∨ (−em)‖+ ‖dm ∨ (−dm)‖

(1− ψ)

)]
.

(21)

Assume that limm→∞ ϕm = 0, hence
lim
m→∞

zm = ℘∗,

where
lim
m→∞

‖dm ∨ (−dm)‖ = lim
m→∞

‖em ∨ (−em)‖ = lim
m→∞

‖fm ∨ (−fm)‖ = 0.
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Conversely, assume that limm→∞ zm = ℘∗. From (10) and limm→∞ ‖dm ∨ (−dm)‖ = limm→∞ ‖em ∨ (−em)‖ =
limm→∞ ‖fm ∨ (−fm)‖ = 0, we have

0 ≤ zm+1 ⊕ [(1− %m)zm + %mS(am) + %mdm]

≤ (zm+1 ⊕ ℘∗) + [((1− %m)zm + %mS(am) + %mdm)⊕ ℘∗]
= (zm+1 ⊕ ℘∗) + [((1− %m)zm + %mS(am) + %mdm)

⊕ ((1− %m)℘∗ + %mS(℘∗))]

≤ zm+1 ⊕ ℘∗ + (1− %m)(zm ⊕ ℘∗) + %m (S(am)⊕ S(℘∗)) + %m(dm ⊕ 0)

≤ zm+1 ⊕ ℘∗ + (1− %m)(zm ⊕ ℘∗) + ℘mψ(am ⊕ ℘∗)
+%m(dm ⊕ 0)

≤ zm+1 ⊕ ℘∗ + (1− %m(1− ψ))(zm ⊕ ℘∗) + %m
[
ψ2ωm(fm ⊕ 0)

+ψ℘̂m(em ⊕ 0) + (dm ⊕ 0)
]
. (22)

Applying again Definition 1 (i) and Lemma 2, it follows that

ϕm = ‖zm+1 − [(1− %m)zm + %mS(am) + %mem]‖
≤ δK ‖zm+1 − ℘∗‖+ δK (1− %m(1− ψ)) ‖zm − ℘∗‖

+%mδK
[
ψ2ωm‖fm ∨ (−fm)‖+ ψσm‖em ∨ (−em)‖+ ‖dm ∨ (−dm)‖

]
,

which implies that

lim
m→∞

ϕm = 0.

Hence, the generated sequence {zm} by (8) is RGλ,M -stable.

Remark 1
As a various selection of the mappings G, g,A, h, η and M , and the constants ω, ξ and τ , we can propose some
another class of three-step iterative scheme to reveal the convergence and stability analysis of the various known
problems which investigated by several authors (see [3, 13, 14, 15, 17, 18, 4]) as special cases of Theorem 1 and
Theorem 2.

5. Numerical Example

In this segment, we utilize the following numerical example to demonstrate Algorithm 1 and defend our main
problem.

Example 1
Suppose B = R is the set of real numbers with standard inner product and norm, and let the normal cone C = {℘ ∈
B : 0 ≤ ℘ ≤ 3} with normal constant δK = 3. Let G, g,A, h : B → B and η : B × B → B be the mappings defined
by

G(℘) = −℘
2

+ 1, g(℘) =
℘

3
, A(℘) =

1− ℘
4

, h(℘) =
℘

24
and η(℘, h(℘)) = (4h(℘)− ℘).

For each ℘, ℘̂ ∈ B, ℘ ∝ ℘̂. Then, it is simple to verify that G is 1
6 -ordered non-extended mapping and 3

4 -ordered
compression mapping, g is 1

2 -ordered compression mapping, A is 1
3 -ordered compression mapping and h is 1

12 -
ordered compression mapping, respectively.
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For ℘, ℘̂, q, q̂ ∈ B, ℘ ∝ q, ℘̂ ∝ q̂, we calculate

η(℘, h(q))⊕ η(℘̂, h(q̂)) = (4h(℘)− ℘)⊕ (4h(q̂)− ℘̂)

≤
(
(4h(q))⊕ (4h(q̂))

)
+
(
(−℘)⊕ (−℘̂)

)
= (℘⊕ ℘̂) + 4

((
q

24
+

1

2

)
⊕
(
q̂

24
+

1

2

))
= (℘⊕ ℘̂) +

1

6
(q ⊕ q̂),

i.e.,

η(℘, g(q))⊕ η(℘̂, g(q̂)) ≤ (℘⊕ ℘̂) +
1

6
(q ⊕ q̂).

Hence, η is (1, 16 )-ordered Lipschitz continuous mapping with respect to h.

Suppose the multi-valued mapping M : B → B is defined by

M(℘) = {9℘}, ∀℘ ∈ B.

It is simple to conclude that M is a comparison mapping, M is 18-weak non-ordinary difference mapping and
1
3 -XOR-ordered different comparison mapping. Moreover, it is obvious that for λ = 1

3 , [A+ λM ](B) = B. So, M
is an

(
1
3 , 18

)
-weak-GNODD multi-valued mapping. The resolvent operator defined by (1) associated with G and

M is given by

RGλ,M (℘) =
2(℘− 1)

5
, ∀℘ ∈ B.

It is simple to check that RGλ,M is a comparison and single-valued mapping. In particular for µ = 1, we obtain

RGλ,M (℘)⊕RGλ,M (℘̂) =

[
2(℘− 1)

5

]
⊕
[

2(℘̂− 1)

5

]
≤ 2

5
(℘⊕ ℘̂) +

(
2

5
⊕ 2

5

)
=

2

5
(℘⊕ ℘̂)

≤ 6

5
(℘⊕ ℘̂),

i.e.
RGλ,M (℘)⊕RGλ,M (℘̂) ≤ 6

5
(℘⊕ ℘̂), ∀℘, ℘̂ ∈ B.

Hence, RGλ,M is 6
5 -ordered Lipschitz type continuous.

On taking ω = 1, τ = 9 and ξ = −1, we calculate

F (℘) =
[
℘− g(℘)⊕RGλ,M

(
G(g(℘)) +

λ

τ

((
ξRGλ,M (℘)−A(℘)

)
� ωη(℘, h(℘))

))]
=

[
℘− g(℘)⊕RGλ,M

(
− ℘

6
+ 1 + 3

((
− 17℘

30

)
�
(
− 5℘

6

)))]
=

[
℘− g(℘)⊕RGλ,M

(
− 29℘

30
+ 1
)]

=
[
℘−

(℘
3

)
⊕
(
− 58℘

150

)]
=

42℘

150
.
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Evidently, 0 is a fixed point of F (℘). It is confirmed that the condition (9) is fulfilled. Therefore, all the hypotheses
of Theorem 1 are satisfied.

Let %m = 1
3m+7 , σm = 1

2m2+1 , ωm = m
m3+m2+1 , dm = − 1

m+m2 , em = m2−1
m3+2 and fm = m−2

m2−m+1 . It is easy to
show that the sequences {%m}, {σm}, {ωm}, {dm}, {em} and {fm} satisfying the conditions 0 ≤ %m, ωm, σm ≤ 1,
∞∑
m=0

%m =∞, dm ⊕ 0 = dm, em ⊕ 0 = em, fm ⊕ 0 = fm.

Now, we can determine the sequences {℘m}, {℘̂m} and {q̂m} as:

℘m+1 =

(
3m+ 6

3m+ 7

)
℘m +

(
3m+ 6

3m+ 7

)(
42℘̂m
150

)
−
(

1

3m+ 7

)(
1

m2 +m

)
,

℘̂m =

(
2m2

2m2 + 1

)
℘m +

(
1

2m2 + 1

)(
42q̂m
150

)
+

(
1

2m2 + 1

)(
m2 − 1

m3 + 2

)
,

q̂m =

(
m3 +m2 −m+ 1

m3 +m2 + 1

)
℘m +

( m

m3 +m2 + 1

)(42℘m
150

)
+
( m

m3 +m2 + 1

)( m− 2

m2 −m+ 1

)
,

It is also confirmed that assumption (5) is fulfilled. So, all the conditions of Theorem 2 are satisfied. Therefore, the
sequence {℘m} converges strongly to the unique solution ℘∗ = 0 of the NOMVIP (3).

All codes are given in MATLAB version R2019a, for a different choice of initial values ℘0 = 5, 10 and 15
which reveals that the sequence {℘m} converge to ℘∗ = 0.

Table 1. The values of ℘m with initial values ℘0 = 5, ℘0 = 10 and ℘0 = 15

No. of For ℘0 = 5 For ℘0 = 10 For ℘0 = 15

Iteration ℘m ℘m ℘m
m=1 5 10 15
m=2 -2.64919019157088 -5.36938881226054 -8.08958743295020
m=3 -0.681376233372378 -1.43077589209397 -2.14819637010015
m=4 2.69201299070253 5.44856667193379 8.18625764630015
m=5 -2.39868122239568 -4.79510289932239 -7.21309495322547
m=6 0.656547967211196 1.22213909691756 1.84079312502577
m=7 1.02614222324223 2.14978955539579 3.22810035447828
m=8 -1.57443680084547 -3.17726620027428 -4.77732623330388
m=9 0.961963976920110 1.85848845505862 2.79575386165318
m=10 0.0992418599415578 0.299210765650301 0.447069810112438
m=15 0.490354997519306 0.996984027201863 1.49861331397862
m=20 0.108331086025402 0.178530404331916 0.268739941015830
m=25 -0.0663999735322326 -0.149652163453438 -0.224933199569455
m=28 0 0 -0.000194296441690925
m=30 0 0 0
m=35 0 0 0
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Figure 1. The convergence of ℘m with initial values ℘0 = 5, ℘0 = 10 and ℘0 = 15

Remark 2
We adopt similar mappings as in Example 1 and compare our suggested Algorithm 1 with the Ishikawa-type
Algorithm and Manntype Algorithm.

On taking ωm = 0,∀m ≥ 0, then our proposed Algorithm 1 becomes Ishikawa-type Algorithm, we can determine
the sequences {℘m} and {℘̂m} by the following Ishikawa-type iterative schemes:

℘m+1 =

(
3m+ 6

3m+ 7

)
℘m +

(
3m+ 6

3m+ 7

)(
42℘̂m
150

)
−
(

1

3m+ 7

)(
1

m2 +m

)
,

℘̂m =

(
2m2

2m2 + 1

)
℘m +

(
1

2m2 + 1

)(
42q̂m
150

)
+

(
1

2m2 + 1

)(
m2 − 1

m3 + 2

)
.

Also, on taking ωm = ρm = 0,∀ m ≥ 0, then our proposed Algorithm 1 becomes Mann-type Algorithm, we can
determine the sequence {℘n} by the following Mann-type iterative scheme:

℘m+1 =

(
3m+ 6

3m+ 7

)
℘m +

(
3m+ 6

3m+ 7

)(
42℘̂m
150

)
−
(

1

3m+ 7

)(
1

m2 +m

)
.

The iterative schemes will be suspended when the stopping criteria ‖℘m+1 − ℘m‖ ≤ 10−7 is fulfilled. Figure 2
and Table 2 show the comparisons of our recommended Algorithm, Ishikawa-type Algorithm, and Mann-type
Algorithm on taking initial value ℘0 = 10.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



454 THREE-STEP ITERATIVE ALGORITHM WITH ERROR TERMS OF CONVERGENCE...

Table 2. The values of ℘m with initial value ℘0 = 10.

No. of Proposed Algorithm Ishikawa-type Algorithm Mann-type Algorithm
Iteration ℘m ℘m ℘m

m=1 10 10 10
m=2 -5.36938881226054 -5.96866039707419 -6.16277483424535
m=3 -1.43077589209397 -1.11212811675287 -0.882788772565949
m=4 5.44856667193379 6.27190168501902 6.44489035131048
m=5 -4.79510289932239 -6.57446088093008 -7.24447314676890
m=11 0.299210765650301 0.741538833008721 1.622613995187101
m=20 0.178530404331916 1.43269358463089 2.40552101052545
m=28 0 0.384685286039858 1.12054858914816
m=35 0 -0.289596577331598 -0.798022642435171
m=45 0 0.149332546280771 0.245659597107873
m=55 0 -0.0274723743225643 0.0673564657329054
m=65 0 0 -0.0877701132102605
m=70 0 0 -0.00231912786917975

m=74 0 0 0.000832378092252251

m=80 0 0 0

Figure 2. The convergence of ℘m with initial value ℘0 = 10.

The numerical result in Table 2 and Graph 2 indicates that our suggested three-step iterative scheme has a better
performance and shows to have an ambitious advantage. We can decide that our algorithm fast, efficient and stable,
and it takes an average of iterations to converge.
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6. Conclusion

In this work, we introduced and analyzed a NOMVIP involving XNOR operation and proved the existence of the
solution to our main problem. We constructed three-step iterative schemes based on the fixed point formulation with
XNOR operation and discussed the convergence of the iterative sequences generated by the proposed algorithms
which suggested that algorithms converge to a solution to our proposed problem. Also, we discussed the stability
of the convergence. Finally, we created a numerical example to verify that convergence of the suggested algorithm
in support of our considered problem has better convergence as compare to Mann-type and Ishikawa-type iterative
algorithms. The achieved results in this article are an important and significant generalization to recent known
results in nonlinear analysis. Note that it needs further research on the forward-backward splitting method based
on the inertial technique for solving ordered inclusion problems and also it needs to develop the algorithms for
solving the image deblurring and image recovery problems by using the Tseng method and viscosity method in
real ordered Hilbert spaces with XOR and XNOR operations.
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