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Abstract
In this paper, we focus on the problem of signal smoothing and step-detection for piecewise constant signals. This
problem is central to several applications such as human activity analysis, speech or image analysis and anomaly
detection in genetics. We present a two-stage approach to approximate the well-known line process energy which
arises from the probabilistic representation of the signal and its segmentation. In the first stage, we minimize a
total variation (TV) least square problem to detect the majority of the continuous edges. In the second stage, we
apply a combinatorial algorithm to filter all false jumps introduced by the TV solution. The performances of the
proposed method were tested on several synthetic examples. In comparison to recent step-preserving denoising
algorithms, the acceleration presents a superior speed and competitive step-detection quality.
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1. Introduction

The problem of removing noise from piecewise constant (PWC) signals occurs naturally in several fields
of applied sciences like genomic [1, 2], nanotechnology [3], image analysis [4] and finance [5, 6]. The main
task is to recover the true signal from a noisy measurement without losing the important information of
the abrupt jumps. Being a PWC implies that the denoising task could be interpreted in two different
ways. First, the values of each plateau constitute a reconstruction of the true signal. Second, the position
of jumps gives a direct segmentation of the true signal. Therefore, the solution is a joint restoration and
segmentation, which leads to better performance compared to executing each task separately [7].

We focus on the numerical implementation of recovering one-dimensional discrete PWC signal from
noisy measurements. The observed signal is defined as y = u+ ε, where y = (y0, . . . , yn)

T ∈ Rn+1,
u = (u0, . . . , un) ∈ Rn+1 is a PWC signal, and ε = (ε0, . . . , εn) ∈ Rn+1 is i.i.d. Gaussian noise with
variance σ2. The goal is to restore efficiently the optimal PWC signal from the observed measurement y.

The relation between u and y alone is not sufficient to compute a solution [8]. It is mandatory to
take advantage of additional prior knowledge about the initial signal in order to fix a set of acceptable

∗Correspondence to: Anass Belcaid (Email: a.belcaid@ueuromed.org). Department of Mathematics, Euromed Fes.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2021 International Academic Press



436 NONCONVEX ENERGY MINIMIZATION

solutions. The prior knowledge is incorporated either by the means of regularization [9, 10] or by the
Markov Random Fields (MRF) [11, 12] framework. Both of which lead to the minimization of an energy
function in the form:

E(u) = ∥u− y∥22 + λϕ(u). (1)

The first term in the energy E represents the fidelity term, where the choice of the L2 norm corresponds
to the assumption that ε is a white Gaussian noise. The second term encodes the prior knowledge and
forces the solution u to exhibit a set of given features. Finally, the parameter λ > 0 is set to control the
trade-off between the fidelity term and the prior knowledge [13]. The choice of λ is a difficult problem
in itself [14]. Therefore, the energy in (1) needs to be minimized for different values of λ in order to find
the best restoration.

In the MRF framework, the prior is generally expressed as a sum of Interaction Penalties (IP) over
pairwise cliques (higher order cliques are also useful [15]). For PWC signals, the IP specify a smoothness
assumption on the homogeneous plateaus, while this constraint must be switched off for the abrupt jumps
so as to avoid over smoothing. Since the seminal work of Geman and Geman [16], several non-convex
IP have been considered [17, 13, 18] for PWC denoising. We emphasize on the truncated quadratic
interaction [12] V (up, uq) = min{α, (up − uq)

2} which is equivalent to the Line Process (LP) introduced
in [16]. With this choice, the regularizer tem ϕ(u) is given as sum ov IP V (ui, ui+1) over binary cliques in
the form of (i, i+ 1):

ϕ(u) =

n−1∑
i=0

V (ui+1, ui) =

n−1∑
i=0

min
{
α, λ(ui+1 − ui)

2
}
. (2)

The LP model adds a boolean variable l ∈ {0, 1}n that explicitly indicates the existence (li = 1) or
absence (li = 0) of a discontinuity. The state of variable li is defined by a threshold h called the sensitivity
as follows:

li =

{
li = 0 if |ui+1 − ui| > h
li = 1 otherwise. (3)

The energy is then given by:

E(u, l) = ∥u− y∥22 + λ

n−1∑
i=0

(
(ui+1 − ui)

2(1− li) + αli
)
, (4)

where α =
λh2

2
is the penalty for introducing a discontinuity [19].

The minimization of the energy in (4) is NP-hard [20], as it is non-convex, non-smooth at the
minimizer and involves mixed continuous and binary variables. Several algorithms have been proposed
to compute an approximation of the solution. We mention some convex relaxation techniques [21, 22],
Simulated Annealing approach [23], sequential tree-reweighted message passing [24] and graph cut based
algorithms [12, 25, 26]. We refer the reader to [27, 28] for a thorough investigation of the literature.

The main contributions of this paper are as follows:

• Minimize a total variation (TV) regularized least square problem with the L1 penalty in order to
find an approximation to (4).

• Make use of the fast Condat denoiser [29] to compute a solution û to the TV problem in a linear
time O(n).
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Figure 1. Flowchart of the proposed algorithm.

• Incorporate the finding in û, to propose an efficient pruning scheme for Discontinuity Position
Sweep (DPS) combinatorial search.

The main scheme of our method is depicted in (Fig. 1). We demonstrate the effectiveness of this
scheme by a series of simulation on synthetic signals proposed in [30, 31, 32]. The results show an
efficient increase in time and gain in robustness in the case of extremely corrupted signals.

2. Optimization algorithm

2.1. Total variation denoising for line process classification
TV denoising is widely used in noisy signal processing [33]. The solution is implicitly defined as the global
minimum of a convex energy function similar to (4) involving a data fidelity term and a regularizer. For
PWC signals, the most used choice of the regularizer is the gradient L1 norm and the resulting convex
optimization problem is:

min
u∈Rn+1

1

2

n∑
i=0

(ui − yi)
2 + λ

n−1∑
i=0

|ui+1 − ui|. (5)

In the MRF framework, the TV energy functional in (5) corresponds to an IP function given by
V (up, uq) = |up − uq|. Compared to the truncated quadratic function min{α, (up − uq)

2}, this interaction
potential is simpler as it is strongly convex and leads to a convex energy functional. This energy function
admits a unique minimizer u∗, whatever the data y.

For the choice of regularization parameter λ, it turned out that is a difficult problem by itself [3].
Several works have been proposed to study the properties and characteristics of this nonlinear TV
denoiser. We refer the reader to [34, 35, 36] for various insights on the topic.

The energy in (5) is generally tackled by fixed point methods [37] with optimal theoretical complexity.
Contrastingly, we choose the fast non-iterative TV denoising algorithm [29] with a higher theoretical
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complexity compared to fixed point methods. Experimentally, it achieves a competitive or even faster
linear complexity and can handle large bandwidth signals in a few milliseconds.

The proposed algorithm solves the (Frenchel-Moreau-Rockafellar) dual problem [38] to (5):

minv∈Rn+2

∑n+1
k=0 |yk − vk+1 + vk|

s.t. |vk| ≤ λ ∀k = 1, . . . , N and u0 = un = 0.
(6)

Once the solution v∗ is computed, we recover the primal solution u∗ by:

u∗
k = yk − v∗k+1 + v∗k ∀k = 0, . . . , n. (7)

The algorithm solves the dual problem (6) by defining the Karush-Kuhn-Tucker conditions [38, 29]:
v∗0 = v∗n = 0 and ∀k = 1, . . . , n

v∗k ∈ [−λ, λ] if u∗
k = u∗

k+1

v∗k = −λ if u∗
k < u∗

k+1

v∗k = λ if u∗
k > u∗

k+1.

(8)

The algorithm solves (6) by a non-iterative approach where it tries to construct the constant parts of
the signal while respecting the constraints in (8). In more details, the algorithm starts by defining an
index k0 representing the start of the current plateau (for the first plateau k0 = 0). Then for each point
k = k0 + 1, . . . , n, the algorithm tries to extend the current plateau by adding k to it. There are three
possible cases, corresponding to the comparison between u∗

k−1 and u∗
k. In case if the equality u∗

k−1 = u∗
k

respects the constraints in (8), it adds k and goes to the next index k + 1. In contrast, if the equality
can’t respect (8), it declares [k0, k − 1] as its own plateau, marks k0 = k as the start of a new plateau
and continue from there. The sign and the height of the jump between u∗

k−1 and u∗
k is computed from

an estimated value of v∗k. We refer the reader to [29] for a detailed description of the algorithm.

The solution u∗ to the problem in (5) is generally over fitted as it suffers from the well known stair case
effect which produces multiples jumps around the true discontinuity. To illustrate this effect, we used
the algorithm to restore a signal depicted in (Fig. 2). The signal has a length of 1000 and 10 plateaux.
The minimal jump between these plateaux is defined as H = mink |uk+1 − uk| and it equals to 4. We
considered two noisy versions with a white Gaussian noise with a known standard deviation σ. In the
first example (first row), the noise has a standard deviation σ = 4, and for the second example (second
row) we increased the value of σ to 8. For a PWC signal the Signal to Noise Ratio (SNR) is defined as H

σ
which gives a SNR of 1 in the first case and 0.5 in the second. In (Fig. 2), we present the results of with
a known standard deviation σ the two restorations in the first column. We could see that the solution
has multiple false jumps marked by a red plus in the second column of the figure. We also remark that
the number of this false jumps greatly increased with smaller values of the SNR.

The solution û to (5) is generally over fitted as it contains additional false jumps. This is due to the
use of the convex L1 regularizer which produces a stair-casing effect.

In order to filter all the false jumps produced by the TV solution u∗, we will store its segmentation
results and use our algorithm called Discontinuity Position Sweep (DPS) to refine these jumps. More
precisely, we will define a binary vector p = (p0, . . . , pn) ∈ {0, 1}n such as

pi =

{
0 if ûi+1 = ûi

1 otherwise. (9)

Any edge (ui, ui+1) such as pi = 0 will be considered as continuous and its state will never change. In
contrast, discontinuous edges (ui, ui+1), with pi = 1, are questionable and need further processing as
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Figure 2. Total variation denoising with the L1 prior. The signal contains 1000 data points, with a minimum
jump H = 4. In the first example (first row), where the SNR=1, the denoiser catches all the abrupt jumps but
produces additional false ones. All the produced jumps are marked by a red plus in the second column. For a
higher noise (second row), the noise level corresponds to a SNR = 0.5, we can see that the number of false jumps
increased considerably.

they could correspond to a false jump. Hence, when we apply our combinatorial algorithm DPS, we will
never question the state of a continuous edge but only try to refine the results on the discontinuous ones.

This method is efficient as the number of jumps is too small compared to the signal size. Therefore,
the number of positions considered by DPS will be greatly reduced. In more details, if we define K as the
number of reported jumps by the TV solution u∗, then K is quite small compared to n and the ratio the
of continuous edges

r =
(n−K)

n
(10)

is closer to 1. For example, for the two restorations in (Fig. 2), r is 97% for the first row and 93% for the
second.

2.2. Combinatorial line process search
Once we obtained the results of the TV denoiser segmentation p, will apply our algorithm DPS to filter
the false jumps. We transform (4) into a purely combinatorial optimization problem over the LP l. But
we will incorporate the results of the previous classifier as additional constraints to reduce the search
domain L.
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The main idea of DPS is to eliminate the continuous variable u in the mixed problem (4). We observe
that for a fixed line process l, the energy becomes

El(u) = ∥u− y∥22 + λ

n−1∑
i=0

(1− li)(ui+1 − ui)
2 + α

n−1∑
i=0

li. (11)

This energy is quadratic and strictly convex. Furthermore, finding its unique solution comes at a low
price, since it only involves solving a tridiagonal system. Given this fact, we rewrite (4) into a purely
combinatorial problem over l and we propose an efficient search strategy (Fig. 3) to seek the optimum
configuration.

The global unique minimum of (11) is characterized by the stationarity condition ∇El(u
∗) = 0 and is

given as the solution of the following linear system:

(I + λQTLlQ)u∗ = y, (12)
where Q is a n by n+ 1 circulant matrix representing the difference operator, and Ll is the n diagonal
matrix holding the coefficients of l′ = 1− l such as

Q =


−1 1

−1 1
. . . . . .

−1 1

 Ll =


l
′

0

l
′

1

. . .
l
′

n−1

 . (13)

Proof
Let’s compute the partial derivative of El(u) with respect to ui.

∂El

∂ui
= 2 (ui − yi) + 2λ

[
− (1− li)(ui+1 − ui) + (1− li−1)(ui − ui−1)

]
.

Hence each component of the optimal solution u∗
i is characterized by the following equation:

u∗
i + λ

[
− (1− li)u

∗
i+1 +

{
(1− li) + (1− li−1)

}
u∗
i − (1− li−1)u

∗
i−1

]
= yi. (14)

We show that this equation could be obtained in a compact matrix form as stated in (12). Hence, let’s
compute the coefficients of the matrix Rl = QTLlQ. We start by computing the coefficients of QTLl:

(
QTLl

)
ij
=

n−1∑
k=0

QT
ik(Ll)kj = QT

ij(1− lj). (15)

For the last equality, we used the fact that (Ll) is diagonal and the only nonzero element is (Ll)jj = (1− lj).
Now, we use the fact that only nonzero elements of QT are QT

i,i = 1 and QT
i+1,i = −1.

(
QTLl

)
ij
=


(1− li) j = i

−(1− li−1) j = i− 1

0 otherwise.
(16)

Finally, we could compute the coefficients of our matrix QTLlQ:

(
QTLlQ

)
ij

=

n−1∑
k=0

(
QTLl

)
ik
Qkj (17)

= (1− li)Qij − (1− li−1)Qi−1,j . (18)
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Those coefficients are null except for the three cases (i, i− 1), (i, i) and (i, i+ 1) with the following values:

(
QTLlQ

)
ij
=


−(1− li−1) i = j + 1

(1− li) + (1− li−1) i = j

−(1− li) i = j − 1

0 otherwise.

(19)

Hence our proof, as we could write the set of equations in (14) as matrix multiplication:(
I +QTLlQ

)
u∗ = y

We denote E∗
l the energy associated to u∗. The mixed problem (4) is equivalent to finding the LP

l ∈ L = {0, 1}n that minimizes E∗
l .

min
l∈L

E∗
l . (20)

An exhaustive search over all configurations of L has exponential complexity. Therefore, we structure
the domain L into an n-hypercube. We recall that an n-hypercube is a regular graph (each node has
exactly n edges) containing 2n nodes and 2n−1n edges [39]. The nodes of n-hypercube are encoded as
n-bits using Gray code which ensures that two neighboring LP differ only in one bit.

The first pruning strategy eliminates all the incompatible line processes with the denoising results.
That is, we only keep the configurations that are consistent with the previous segmentation p. First, we
define the set of continuous edges (ui, ui+1) positions:

C = {i | pi = 0}. (21)

According to the results of the TV segmentation, those edges are not candidates for a discontinuity. Hence
any LP l that has a one in an index in C is not consistent with the TV findings and will be discarded. As
a result, we denote the subset of the n-hypercube

LC = {l | lj = 0 , ∀j ∈ C} (22)

that regroups the set of line processes that are null in all the indices in C. And we reduce the search space
to this subset:

(P ) : min
l∈LC

E∗
l . (23)

Additionally, DPS performs a breadth first search strategy where the depth of the search tree is defined
by the levels of the hypercubes. For this purpose, we decompose the n-hypercube into disjoints sets Lk,
called levels. Each level Lk contains the line processes that have exactly k nonzero bits. Ultimately, we
rewrite the problem (23) as a sequence of subproblems

(
(Pk)

)
k∈{0,...,n} such as:

(Pk) : min
l∈
(
Lk∩LC

)E∗
l . (24)

The second pruning strategy, depicted in (Fig. 3), uses the information provided by the previous level to
limit the search into the neighbors of its optimal solution. Suppose we get the optimal configuration lk,∗

of the problem Pk, the solution lk,∗ already gives us the positions of k discontinuities. So, in the search
for the solution lk+1,∗ we keep those discontinuities, and we only seek to add a new one. This means that
we add the constraint that lk+1,∗ must be a neighbor for lk,∗. We denote V(lk,∗) the neighbors of lk,∗, and
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we transform the sequence
(
(Pk)

)
k∈{0,...,n} defined in (24) into a recursive sequence

(
(Qk)

)
k∈{0,...,n} as

follows: {
(Q0) minl∈L0 E

∗
l

(Qk) min
l∈
(
Lk∩LC∩V(lk−1,∗)

)E∗
l 0 ≤ k ≤ n (25)

visited ignored DPS ignored TV optimal

00000

00001 00010 00100 01000 10000

00011 00101 01001 10001 00110 01010 10010011001010011000

00111 01011 10011 01101 10101 11100 11010110011011001110

01111 10111 11011 11101 11110

1111

Figure 3. Pruning process of DPS: the example illustrates the search on 5-hypercube with the observation
C = {0, 4}, i.e., any line process with a 1 on the first or fifth position will be discarded. The set of LP that is
inconsistent with this observation is ignored (double drawn emtpy nodes). Single empty nodes are ignored by the
DPS pruning process and blue nodes are visited. The red ones represent optimal configurations on their levels.
The global optimum contains 2 steps 01010, but we must check the third level to verify if the energy could be
decreased. The remaining levels are ignored (after red dashed lines) since the energy increased from L2 to L3.

The resulting algorithm (Alg.1) follows a top-down paradigm which starts with no discontinuities and
at each level introduces a new step if the energy decreases. Otherwise, it stops the search and reports
the actual solution as optimal (Alg.1).

2.3. Complexity analysis
The complexity of the algorithm is O(emn2); n is the size of the signal; m is the number of jumps and
e = 1− r where r is the ratio of continuous edges in the TV denoiser (10). Indeed, to restore such a signal,
we call the TV denoiser, to attenuate the noise, that has a quadratic cost O(n2) in the worst case [29].
After that, DPS checks en nodes in the first level L0, en− 1 in the second L1, and so on so forth until
the level Lm+1 is reached. The energy of each node involves solving a tridiagonal symmetric system (12)
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Algorithm 1 DPS algorithm with classified line process
Input: λ, h, y

Find û in (5) using the proposed TV denoiser.
Compute the set C of the classified continuous positions.
l∗ = 0 #initial line process with zeros: l∗k = 0 ∀k ∈ {0, . . . , n− 1}

α =
λh2

2
, k = 0 #initialization

u∗
0 solution of Q0 #Continuous solution

E∗
0 = E(u∗

0, l) # initial energy.
repeat

k = k + 1 #next level
(u∗

k, l
∗) = argmin

l∈
(
Lk∩LC∩V(l∗)

) ∥u− y∥22 +
∑n−1

i=0 (1− li)(ui+1 − ui)
2 + αli #optimum

E∗
k = E(u∗

k, l
∗) #compute the optimal energy

until
(
E∗

k > E∗
k−1

)
Output: u∗

k−1 #the restored signal

by applying an adapted solver that costs O(n). The complexity of the two stages is:

O(n2) +

m+1∑
i=0

O
(
(en− i)n

)
= O(emn2). (26)

As a result, the worst-case complexity of the algorithm is O(n2) (the TV denoiser fails to classify any
continuous edges). In practical situations, the elimination rate is very significant (Fig. 4), since the number
of jumps is small compared to the number of observations. Practically, we could achieve a linear complexity
O(mn).

0 1 2 5

0.2

0.4
0.5

0.8
0.9

SNR

r

Ratio of continuous edges r

Figure 4. Ratio of continuous edges as a function of the SNR. The signal contains 200 data points with 10 equally
distributed jumps.

3. Numerical experiments

In this section, we test the performances of our algorithm against a set of state of the art algorithms for
jump detection and PWC signals reconstruction.

3.1. Example 1
In the first example, we apply our algorithm for a synthetic example depicted in (Fig. 5). The example
is taken from [30] to exemplify the stair-casing effect that emerges from using the L1 norm in the prior
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term. The signal y ∈ Rn contains n = 1024 observations with an additive white Gaussian noise with a
standard deviation (σ = 0.5). The PWC original signal is produced by the function MakeSignal from the
WaveLab framework using the ‘blocks’ option (Fig. 5a). For the two stages, we set λ = 3 and for DPS we
choose a sensitivity h = 1.

0 128 256 512 1,024

−2
0
2
4
6

σ = 0.5

(a) Noised data

0 128 256 512 1,024

−2

0

2

4

λ = 3 MRSE= 0.124

(b) TV denoising

0 128 256 512 1,024

−2

0

2

4

λ = 3 h = 1 MRSE= 0.035

(c) DPS denoising

Figure 5. DPS denoising for the example in [30].

Figure 5c displays the improvement by the DPS algorithm, as all the false jumps produced by the TV
denoiser (Fig. 5b) are eliminated. This is reflected by the Root Mean Square Error (RMSE) as DPS
get a lower RMSE compared to TV denoiser. Furthermore, the DPS error is less than the one reported
in [30] with nonconvex penalties. Table 1 shows the RMSE values of each algorithm.

DPS Condat TV denoiser TV denoiser in [30]
RMSE 0.035 0.124 0.245

Table 1. RMSE comparison between DPS and a TV denoiser with nonconvex regularization ([30])

3.2. Example 2
In the second example, we consider the signal in [31] where the authors use a class of nonconvex penalties
that tightly penalizes the sparsity of the signal than L1 norm. The signal is synthetically generated to
illustrate the stair-casing problem with two monotonous positive jumps with height a, y ∈ R200 and
y[1:50] = a , y[51:100] = 2a and y[101:200] = 3a (Fig. 6a). The noise is drawn from independently white
Gaussian noise distribution with variance (σ = 1). DPS successfully filters all the false jumps generated
by the TV denoiser (Fig. 6b) and produces the correct value of each plateau. In addition to that,
we successfully repeat the experience for higher values of noise variance up to a standard deviation
(σ = 12) (Fig. 6c).
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Figure 6. DPS denoising for the example in [31].

3.3. Example 3
In the third simulation, we apply the DPS algorithm to detect stepping motion in the trajectory of
molecular motors in biology [40]. The detection of these steps allows the analysis of physical and chemical
properties of single DNA based molecular machines such as polymerases [32]. The problem consists of
finding motion positions from measures of the length of a molecular machine in base pair (bp) [41].
A bp is a unit consisting of two nucleobases bound to each other (e.g., A–T or G–T) and a motion is
characterized by an abrupt change in the length of the molecular motor. We will use the example studied
in [32], it contains experimental data of RNA polymerase II. The initial signal, depicted in (Fig. 7),
contains n = 5 104 noisy measurements of the length of the polymerase in bp within a time interval
t ∈ [0, 2] in seconds.

We applied DPS to reconstruct and detect steps in this signal. We chose λ = 10 for the TV denoiser,
λ = 20 and h = 0.55 for DPS. The reconstruction took 45ms and is depicted in (Fig. 7). In the same
figure, we present the results with a state of the art algorithm called Energy Based Scheme (EBS) used
in the same paper [32]. As shown in (Fig. 7), our algorithm has higher step detection quality as it only
misses one hard jump in the middle while EBS missed several of them. Also in term of signal restoration,
we compared the Mean Square Error (MSE) for both methods. The results are presented in Table 2 and
shows that we obtained a lower MSE.
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Figure 7. Reconstruction of molecular motor data by the DPS algorithm combined with the line process classifier.

In order to assess the reconstruction and segmentation quality of our algorithm, we compared the three
classification metrics: precision, recall and f1-score with a set of state of art algorithms. To define these
metrics, we denote TP the number of correct jumps detected by the algorithm, FP the number of false
jumps, FN the number of missed jumps and finally TN the number of true continuous position. The
three metrics are expressed as follows:

precision =
TP

TP + FP
, recall = TP

TP + FN
, f1-score =

2 precision recall
(precision + recall . (27)

Precision represents the ratio of correct reported jumps, a perfect value of 1 means that all the reported
jumps are true. Recall measures the capacity of the algorithm in finding all the jumps. A perfect value
of 1 in recall means that the algorithm detected all the jumps. Finally, the f1-score leverages precision
and recall by taking the harmonic mean.

MSE Precision Recall f1 score
EBS 13.57 10−1 0.55 0.87 0.67
DPS 23.8410−2 0.71 0.97 0.82

Table 2. Reconstruction and Detection metrics for the recovery of the molecular motors mouvements

The compared algorithms are: PELT [42] which is a combinatorial algorithm with a pruning strategy
that gives the optimal solution with the L2 cost function. A Binary Segmentation scheme [43, 44] that
offers a recursive algorithm to detect the jumps one by one. A Window sliding algorithm [45] that considers
a local cost function over a window and slide it along the signal to detect the jumps one by one. Finally,
we consider a Bottom-Up algorithm [46] that takes a dual approach to binary segmentation and start
with a signal that has all the jumps and successively deletes the false ones. The results are depicted in
(Fig. 8) for a sequence of noise standard deviation σ varying from 10−2 to 1.8. The figure shows that
our algorithm offers the highest precision while keeping a stable recall. This superiority is reflected in
the combined f1 score where our algorithm kept a higher score f1 ≈ 0.8 for a high noise level σ = 1.8. In
contrast, the f1 score for the rest of the algorithms dropped significantly.
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Figure 8. Detection metrics for the compared algorithms. The x-axis represents the noise standard deviation σ.
The first figure (left) plots the precision. We could see from the figure that DPS has the highest precision. In the
second figure (center), we plot the recall, our algorithm has lower recall but keeps it consistent even with strong
noise. In the third figure (right), we combine the two metrics as the f1-score, the figure shows that DPS offers the
best detection quality.

3.4. Example 4
In the fourth example, we compare the classification results of the TV denoiser and the classical
implementation of DPS to illustrate the differences between them. We consider the mean shift in the
ruptures package [47]. Examples of these synthetic signals are depicted in (Fig 9). Each example is of
size N = 500 and has 10 jumps. The goal is to consider several noise levels and measure the classification
metrics. Hence, we generated a sequence of σi between [0.1, 2] with a step 0.1. For each case, we measure
the classification metrics for 10 corrupted signals. The results of those metrics are reported in (Fig. 10).

We could see that both algorithms have the same recall. This is the essence of our combination method
as a missed point by the TV denoiser will most likely be missed by DPS. For the precision, the algorithms
are different as DPS offers a better precision in low and moderate noise presence, σ ∈ [0.1, 1.4]. This is
not the case for higher noise presence σ > 1.4 as the TV denoiser offer a better precision.

0 200 400

20

40

0 200 400 0 200 400

Figure 9. Examples of the mean shift signal from [47]. The signals has a size n = 500 and contain 10 jumps. Each
one is corrupted with different noise standard deviation σ.
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Figure 10. Classification metrics comparison between DPS and the TV denoiser.

3.5. Example 5
In this example, we compare the performances and running time of DPS, with and without the LP
classifier.

In the first experience, we study the effect of the noise standard deviation σ on the f1-score for both
implementations. We considered a regular sequence of values σi ∈ [0.5, 5] with a step 0.2. For each values
σi, we generate 10 instances for the mean shift synthetic signal and we measure the f1-score by both
algorithms. The results of this simulation are depicted in (Fig.11) (left). We could see that for lower
noise presence, both algorithms have the same score. Nevertheless, as the noise power becomes more
important, the combined version is more robust with a higher score. This is due the TV denoiser that
eliminates some false jumps that will never be considered by DPS.

In the second experience, we fix the noise standard deviation σ = 1.4 for a moderate signal presence.
We also the fixed the sensitivity h = 0.8 to its best value and we study the effect of the regularization
coefficient λ on the f1-score. We thereby consider a sequence of λi ∈ [5, 90] with a step 20. Same a
previous experience, for each case of λi, we generate 10 examples of the mean shift synthetic signal and we
measure the performances of each algorithm. We present the result of this experience in (Fig.11)(middle).
We remark that for higher values of λ there is no difference between the two implementations. But
for lower values, The combined version with the TV denoiser is more precise as the it helps to prune
some false position from the LP hypercube. For the classical implementation of DPS, a lower λ would
encourage smaller plateaux [19] and therefore will increase the number of false jumps.

In the last experience, we compared the f1-score according to the sensitivity parameter h. We therefore
fixed the value of λ = 40 and σ = 1.4 and we considered a sequence hi ∈ [0.4, 6] with a step 0.2. The
results of this experience are depicted in (Fig.11)(right). Firstly, we see that both metrics follow the
classical shape (increasing and decreasing). The first regime (with lower sensitivity) corresponds to an
over fitted solution where DPS produces solutions with false jumps (lower precision). The second regime
(higher sensitivity), DPS become more conservative and only accepts jumps with higher gradient and
could therefore miss a true jump (lower recall). Secondly, we remark the same benefit of using TV
denoiser for lower sensitivity value as its helps eliminates those false jumps. This is reflected in the
f1-score which is higher in the first regime while they are the same in the second one.

In the second part of this example, we compare the running time of DPS, with and without the LP
classifier, as a function of the signal size, the number of jumps as well as the noise power. First, We
generate 20 realizations of a PWC signal with sizes n ranging from 100 to 103. Each realization has 10
randomly distributed jumps with a minimal height h = 10 and corrupted with white Gaussian noise with a
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Figure 11. F1-score comparison between DPS and our combined version on different hyper parameters and noise
power. For the first scenario (left), we fixed the best choice for the hyper parameters λ and h and measured the
f1-score for an ascending noise standard deviation σ. We could remark that the combined version is more robust
to noise as the TV denoiser helps to eliminate some false jumps. In the second simulation (middle), we tested the
effect of λ on the f1-score while fixing the sensitivity h and the noise power σ. Also in the situation, the combined
version is more robust especially for lower values of λ where DPS tends to accepts false jumps. The main reason
for this behavior is that λ also represents the length of the plateaux. Hence, a lower λ increases the number of
plateaux and jumps. Finally, in the last simulation (right), we study the robustness of both algorithms according
to the sensitivity parameter h. Here we observe a classical behavior, where the f1-score increases until we get the
best value h ≈ 0.8 and then starts to decreases as larger values of h would get a conservative algorithm that only
accepts larger jumps.

standard deviation σ = 8. (Fig 12a) plots the running time of each algorithm as a function of the signal size
in a logarithmic scale. For the classical DPS, the experimental slope is α1 = 2.002 and, by incorporating
the LP classifier, the slope goes down to α2 = 1.5702. Second, we fix the signal size to n = 103 and we
consider 20 examples wherein we change the number of jumps from 10 to 50. The jumps are uniformly
distributed over the signal and we keep the same noise power σ = 8. The outcome of the experiment is
displayed in (Fig 12b) where the left axis (red line) represents the running time of the classical DPS
with a experimental slope α1 = 0.9329 while the right axis (blue line) shows the running time using the
LP classifier, the slope is reduced to α2 = 0.6895. Finally, (Fig. (12c) illustrates the running time as a
function of the signal power. The figure confirms (in left axis) that the running time of the classical DPS
is independent of the SNR [26]. Conversely, this property is lost for the new implementation (axis in the
right), as the TV classifier is more sensible to noise and the rate of the predicted null processes decreases
with lower SNR (Fig. 4).

4. Conclusion

In this paper, we proposed a two-stage efficient algorithm to restore noisy PWC signals while preserving
their edges. The method uses TV denoising in the first stage to reduce the noise and classify the
continuous edges. In the second stage, we apply a combinatorial algorithm to refine the TV findings by
filtering false jumps. Compared to existing denoising schemes, our algorithm offers a blazingly fast time
while keeping a superior restoration and step-detection quality especially for high-noise data.

The findings might also be extended to higher dimension data like 2-D images. The MRF graph is
this case is the classical 2-D lattice with four neighbors system [17]. The generalization, called th weak
membrane, for the LP model to theses models was already studied in [19]. The model suffers from a great
computational complexity as the number of lines processes is exactly the number of edges the graph and
is quadratic in the image size n. In order to reduce this complexity, the TV denoising could be applied to
each row and column of the image to label the continuous edges. After that, we solve the week membrane
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Figure 12. DPS running time as a function of the signal size (first row), number of jumps (second row) and the
noise power (third row)

.

problem, but we never touch the labeled edges by the TV denoising. We are currently investigating this
solution.
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