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1. Introduction

A variety of non-stationary and long memory time series models are introduced and investigated by researchers in
the past decade (see, for example, papers by Dudek and Hurd [9], Johansen and Nielsen [24], Reisen et al.[44]).
Such models are used when analyzing data which arise in different field of economics, finance, climatology, air
pollution, signal processing.

Since the book by Box and Jenkins (1970), autoregressive moving average (ARMA) models integrated of order
d are standard models used for time series analysis. These models are described by the equation

ψ(B)(1−B)dxt = θ(B)εt, (1)

where εt, t ∈ Z, is a sequence of zero mean i.i.d. random variables, ψ(z), θ(z) are polynomials of p and q degrees
respectively with roots outside the unit circle. This integrated ARIMA model is generalized by adding a seasonal
component. A new model is described by the equation (see new edition of the book by Box and Jenkins [6] for
detailes)

Ψ(Bs)(1−Bs)Dxt = Θ(Bs)εt, (2)

where Ψ(z) and Θ(z) are polynomials of degrees of P and Q respectively which have roots outside the unit circle.
When an ARIMA sequence determined by equation (1) is inserted in relation (2) instead of εt we have general

multiplicative model
Ψ(Bs)ψ(B)(1−B)d(1−Bs)Dxt = Θ(Bs)θ(B)εt (3)
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with parameters (p, d, q)× (P,D,Q)s, d,D ∈ N∗, called SARIMA (p, d, q)× (P,D,Q)s model.
A good performance is shown by models which include fractional integration, that is when parameters d and D

are fractional. When |d+D| < 1/2 and |D| < 1/2, a process described by equation (3) is stationary and invertible.
We refer to the paper by Porter-Hudak [43] who studied seasonal ARFIMA models and applied them to the
monetary aggregates used by U.S. Federal Reserve.

Closely related to fractionally integrated ARMA and GARMA processes described by equation

(1− 2uB +B2)dxt = εt, |u| ≤ 1. (4)

is SARFIMA process. These processes were introduced and studied by Granger and Joyeux [15], Hosking [21],
Andel [1], Gray et al. [17] in order to model long-memory stationary time series. Fractionally integrated models are
a powerful tool for studying a variety of real world processes. For the resent works dedicated to statistical inference
for seasonal long-memory sequences, we refer to Arteche and Robinson [2], who applied the log-periodogram and
Gaussian or Whittle methods of memory parameters estimation for seasonal/cyclical asymmetric long memory
processes with application to UK inflation data, and also Tsai, Rachinger and Lin [48], who developed methods
of estimation of parameters in case of measurement errors. Baillie, Kongcharoen and Kapetanios [4] compared
MLE and semiparametric estimation procedures for prediction problems based on ARFIMA models. Based on
simulation study, they indicate better performance of MLE predictor than the one based on two-step local Whittle
estimation. Hassler and Pohle [20] (see also Hassler [19]) assess a predictive performance of various methods of
forecasting of inflation and return volatility time series and show strong evidences for models with a fractional
integration component.

Another type of non-stationarity is described by stochastic processes with time-dependent spectrum. A wide
class of processes with time-dependent spectrum is formed by periodically correlated, or cyclostationary, processes
introduced by Gladyshev [13]. These processes are widely used in signal processing and communications (see
Napolitano [39] for a review of recent works on cyclostationarity and its applications). Periodic time series may
be considered as an extension of a SARIMA model (see Lund [30] for a test assessing if a PARMA model is
preferable to a SARMA one) and are suitable for forecasting stream flows with quarterly, monthly or weekly
cycles (see Osborn [40]).

Baek, Davis and Pipiras [3] introduced a periodic dynamic factor model (PDFM) with periodic vector
autoregressive (PVAR) factors, in contrast to seasonal VARIMA factors.

The models mentioned above are used in estimation of model’s parameters and forecast issues. Meanwhile a
direct application of the developed results to real data may lead to significant increasing of errors of estimates due
to presence of outliers, measurement errors, incomplete information about the spectral, or model, structure etc.
From this point of view, we see an increasing interest to robust methods of estimation that are reasonable in such
cases. For example, Reisen, et al. [45] proposed a semiparametric robust estimator for fractional parameters in the
SARFIMA model and illustrated its application to forecast of sulfur dioxide SO2 pollutant concentrations. Solci at
al. [47] proposed robust estimates of periodic autoregressive (PAR) model.

Robust approaches are successfully applied to the problem of estimation of linear functionals from unobserved
values of stochastic processes. The paper by Grenander [16] should be marked as the first one where the minimax
extrapolation problem for stationary processes was formulated as a game of two players and solved. Hosoya
[22], Kassam [25], Franke [10], Vastola and Poor [49], Moklyachuk [33, 34] studied minimax extrapolation
(forecasting), interpolation (missing values estimation) and filtering (smoothing) problems for stationary sequences
and processes. Recent results of minimax extrapolation problems for stationary vector-valued processes and
periodically correlated processes belong to Moklyachuk and Masyutka [35, 36] and Moklyachuk and Golichenko
(Dubovetska) [7] respectively. Processes with stationary increments are investigated by Moklyachuk and Luz
[31, 32]. We also mention works by Moklyachuk and Sidei [37, 38], who derive minimax estimates of stationary
processes from observations with missed values. Moklyachuk and Kozak [29] studied interpolation problem for
stochastic sequences with periodically stationary increments.

In this article, we present results of investigation of stochastic sequences with periodically stationary long
memory multiple seasonal increments motivated by articles by Dudek [8], Gould et al. [14] and Reisen et al.
[44], who considered models with multiple seasonal patterns for inference and forecasting, and Hurd and Piparas
[23], who introduced two models of periodic autoregressive time series with multiple periodic coefficients.
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In Section 2, we give definition of generalized multiple (GM) increment sequence χ(d)
µ,s(ξ⃗(m)) and introduce

stochastic sequences ζ(m) with periodically stationary (periodically correlated, cyclostationary) GM increments.
Such kind of non-stationary stochastic sequence combines periodic structure of the covariation function of the
sequences as well as multiple seasonal factors, including the integrating one. The section also contains a short
review of the spectral theory of vector-valued GM increment sequences. Section 3 deals with the classical
estimation problem for linear functionals Aζ and ANζ which are constructed from unobserved values of the
sequence ζ(m) when the spectral structure of the sequence ζ(m) is known. Estimates are obtained by representing
the sequence ζ(m) as a vector sequence ξ⃗(m) with stationary GM increments and applying the Hilbert space
projection technique. An approach to forecasting in the presence of non-stationary fractional integration is
discussed in Section 4. Section 5 contains examples of forecasting of particular models of time series. In Section
6, we derive the minimax (robust) estimates in cases, where spectral densities of sequences are not exactly known
while some sets of admissible spectral densities are specified which are generalizations of the corresponding sets
of admissible spectral densities described in a survey article by Kassam and Poor [26] for stationary stochastic
processes.

2. Stochastic sequences with periodically stationary generalized multiple increments

2.1. Definition and spectral representation of a periodically stationary GM increment

In this section, we present definition, justification and a brief review of the spectral theory of stochastic sequences
with periodically stationary multiple seasonal increments. This type of stochastic sequences will allow us to deal
with a wide range of non-stationarity in time series analysis.

Consider a stochastic sequence {η(m),m ∈ Z}. By Bµ denote a backward shift operator with the step µ ∈ Z,
such that Bµη(m) = η(m− µ); B := B1. Recall the following definition [32, 42, 52].

Definition 2.1
For a given stochastic sequence {η(m),m ∈ Z}, the sequence

η(n)(m,µ) = (1−Bµ)
nη(m) =

n∑
l=0

(−1)l
(
n

l

)
η(m− lµ), (5)

where
(
n
l

)
= n!

l!(n−l)! , is called stochastic nth increment sequence with a step µ ∈ Z.

Note that in Definition 2.1, the step parameter µ is not fixed and varies over the set Z. The introduced increment
sequence (5) is applicable for describing the integrated stochastic sequence (1). The varying step µ provides a
flexibility of the integrated sequences. For instance, let a sequence xm satisfy the equation

xm = xm−1 + εm + aεm−1.

Then the µ-step increment

xm − xm−µ =

µ−1∑
k=0

(xm−k − xm−k−1)

is stationary as a sum of stationary 1-step increments. To deal with seasonal time series (2) we need to extend
definition of stochastic increment sequence as follows.

Definition 2.2
For a given stochastic sequence {η(m),m ∈ Z}, the sequence

η(n)s (m,µ) = (1−Bs
µ)

nη(m) =

n∑
l=0

(−1)l
(
n

l

)
η(m− lµs) (6)

is called stochastic seasonal increment sequence with a fixed seasonal parameter s ∈ N∗ = N \ {0} and a varying
step µ ∈ Z.
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Remark 2.1
For s = 1, under the seasonal increment η(n)1 (m,µ) we understand the increment η(n)(m,µ) from Definition 2.1.

We mention the following properties of the seasonal increment sequence η(n)s (m,µ), which will be used for
proving Theorem 2.2:

η(n)s (m,−µ) = (−1)nη(n)s (m+ nµs, µ), (7)

η(n)s (m,µ) =

(µ−1)n∑
l=0

Alη
(n)(m− ls, 1), µ > 0, (8)

where {Al, l = 0, 1, 2, . . . , (µ− 1)n} are coefficients from the representation

(1 + x+ . . .+ xµ−1)n =

(µ−1)n∑
l=0

Alx
l.

General multiplicative model (3) [6] indicates the necessity of dealing with increments of different seasonal
parameters. Moreover, for each season factor at each differencing order it is possible to make different steps
by applying the operator (1−Bs

µ1
) · . . . · (1−Bs

µn
) instead of (1−Bs

µ)
n. Thus, the following generalization is

reasonable.

Definition 2.3
For a given stochastic sequence {η(m),m ∈ Z}, the sequence

χ
(d)
µ,s(η(m)) := χ

(d)
µ,s(B)η(m) = (1−Bs1

µ1
)d1(1−Bs2

µ2
)d2 · . . . · (1−Bsr

µr
)drη(m)

=

d1∑
l1=0

. . .

dr∑
lr=0

(−1)l1+...+lr

(
d1
l1

)
· . . . ·

(
dr
lr

)
η(m− µ1s1l1 − · · · − µrsrlr) (9)

is called stochastic generalized multiple (GM) increment sequence of differentiation order d := d1 + d2 + . . .+ dr,
d = (d1, d2, . . . , dr) ∈ (N∗)r, with a fixed seasonal vector s = (s1, s2, . . . , sr) ∈ (N∗)r and a varying step µ =
(µ1, µ2, . . . , µr) ∈ (N∗)r or ∈ (Z \N)r.

Example 2.1
Seasonal autoregressive integrated moving average (SARIMA) model {xm,m ∈ Z} with multiple period is defined
by the difference equation

ϕ(B)(1−B)d
r∏

i=1

Φi(B
si)(1−Bsi)dixm = θ(B)

r∏
i=1

Θi(B
si)εm,

where all roots of polynomials ϕ(z), θ(z), Φi(z), Θi(z) lie outside the unit circle, 1 < s1 < . . . < sr. The sequence
ym = (1−B)d

∏r
i=1(1−Bsi)dixm is stationary in this case and we can define a GM increment sequence

χ
(d)
µ,s(xm) such that χ(d)

1,s
(xm) = ym, m ∈ Z.

Let γ denotes a triple (µ, s, d). For i = 1, 2, . . . , r, j ∈ Z define coefficients M j
i :=

[
j

µisi

]
and Iji := I{j

mod µisi = 0}, where I{·} is the indicator function, and notations ni := µisidi, ⟨s, µ, d⟩k :=
∑k

i=1 µisidi =∑k
i=1 ni, n(γ) := ⟨s, µ, d⟩r. Denote the maximun of two numbers as x ∨ y and the minimum as x ∧ y.

Lemma 2.1
The multiplicative increment operator χ(d)

µ,s(B) admits a representation

χ
(d)
µ,s(B) =

r∏
i=1

(1−Bsi
µi
)di =

n(γ)∑
k=0

eγ(k)B
k,
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eγ(k) =

⟨s,µ,d⟩r−1∧kr∑
kr−1=0∨kr−nr

⟨s,µ,d⟩r−2∧kr−1∑
kr−2=0∨kr−1−nr−1

. . .

⟨s,µ,d⟩1∧k2∑
k1=0∨k2−n2

(
(−1)

∑r
i=1 M

ki−ki−1
i

r∏
i=1

I
ki−ki−1

i

r∏
i=1

(
di

M
ki−ki−1

i

))
,

where k0 := 0, kr := k.

Proof
See Appendix.

Definition 2.4
A stochastic GM increment sequence χ(d)

µ,s(η(m)) generated by a stochastic sequence {η(m),m ∈ Z} is wide sense
stationary if the mathematical expectations

Eχ
(d)
µ,s(η(m0)) = c

(d)
s (µ),

Eχ
(d)
µ1,s

(η(m0 +m))χ
(d)
µ2,s

(η(m0)) = D
(d)
s (m;µ1, µ2)

exist for all m0,m, µ, µ1, µ2 and do not depend on m0. The function c(d)s (µ) is called mean value and the function
D

(d)
s (m;µ1, µ2) is called structural function of the stationary GM increment sequence.

The stochastic sequence {η(m),m ∈ Z} determining the stationary GM increment sequence χ(d)
µ,s(η(m)) by (9) is

called stochastic sequence with stationary GM increments (or GM increment sequence of order d).

The following theorem is a generalization of the corresponding theorem for stochastic increment sequence
η(d)(m,µ) [32, 51].

Theorem 2.1
The mean value and the structural function of the stochastic stationary GM sequence χ(d)

µ,s(η(m)) can be represented
in the forms

c
(d)
s (µ) = c

r∏
i=1

µdi

i , (10)

D
(d)
s (m;µ1, µ2) =

∫ π

−π

eiλmχ
(d)
µ1

(e−iλ)χ
(d)
µ2

(eiλ)
1

|β(d)(iλ)|2
dF (λ), (11)

where

χ
(d)
µ (e−iλ) =

r∏
j=1

(1− e−iλµjsj )dj , β(d)(iλ) =

r∏
j=1

[sj/2]∏
kj=−[sj/2]

(iλ− 2πikj/sj)
dj ,

c is a constant, F (λ) is a left-continuous nondecreasing bounded function. The constant c and the function F (λ)
are determined uniquely by the GM increment sequence χ(d)

µ,s(η(m)).

On the other hand, a function c(d)s (µ) which has form (10) with a constant c and a function D(d)
s (m;µ1, µ2) which

has form (11) with a function F (λ) satisfying the indicated conditions are the mean value and the structural function
of a stationary GM increment sequence χ(d)

µ,s(η(m)).

Proof
See Appendix.

Note that by the spectral function and the spectral density of a stochastic sequence with stationary GM
increments, we will call the spectral function and the spectral density of the corresponding stationary GM
increment sequence. Representation (11) and the Karhunen theorem [27, 11] imply the spectral representation
of the stationary GM increment sequence χ(d)

µ,s(η(m)):

χ
(d)
µ,s(η(m)) =

∫ π

−π

eimλχ
(d)
µ (e−iλ)

1

β(d)(iλ)
dZη(d)(λ), (12)
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where Zη(d)(λ) is a stochastic process with uncorrelated increments on [−π, π) connected with the spectral function
F (λ) by the relation

E|Zη(d)(λ2)− Zη(d)(λ1)|2 = F (λ2)− F (λ1) <∞, −π ≤ λ1 < λ2 < π.

Finally, we are ready to give a definition of periodically stationary GM increment sequence.

Definition 2.5
A stochastic sequence {ζ(m),m ∈ Z} is called stochastic sequence with periodically stationary (periodically
correlated) GM increments with period T if the mathematical expectations

Eχ
(d)
µ,Ts(ζ(m+ T )) = Eχ

(d)
µ,Ts(ζ(m)) = c

(d)
Ts (m,µ),

Eχ
(d)
µ1,Ts(ζ(m+ T ))χ

(d)
µ2,Ts(ζ(k + T )) = D

(d)
Ts (m+ T, k + T ;µ1, µ2) = D

(d)
Ts (m, k;µ1, µ2)

exist for every m, k, µ1, µ2 and T > 0 is the least integer for which these equalities hold.

It follows from Definition 2.5 that the sequence

ξp(m) = ζ(mT + p− 1), p = 1, 2, . . . , T ; m ∈ Z (13)

forms a vector-valued sequence ξ⃗(m) = {ξp(m)}p=1,2,...,T ,m ∈ Z with stationary GM increments as follows:

χ
(d)
µ,s(ξp(m)) =

d1∑
l1=0

. . .

dr∑
lr=0

(−1)l1+...+lr

(
d1
l1

)
· . . . ·

(
dr
lr

)
ξp(m− µ1s1l1 − . . .− µrsrlr)

=

d1∑
l1=0

. . .

dr∑
lr=0

(−1)l1+...+lr

(
d1
l1

)
· . . . ·

(
dr
lr

)
ζ((m− µ1s1l1 − . . .− µrsrlr)T + p− 1)

= χ
(d)
µ,Ts(ζ(mT + p− 1)), p = 1, 2, . . . , T,

where χ(d)
µ,s(ξp(m)) is the GM increment of the p-th component of the vector-valued sequence ξ⃗(m). The following

theorem describes a spectral representation of the sequence ξ⃗(m).

Example 2.2
Define a periodic seasonal autoregressive integrated moving average model (PSARIMA) {Xm,m ∈ Z}, with
multiple seasonal patterns by relation

ϕm(B)(1−BT )d
r∏

i=1

Φi,m(B)(1−BTsi)diXm = θm(B)

r∏
i=1

Θi,m(B)εm,

where all polynomials ϕm(z), θm(z), Φi,m(z), Θi,m(z) are T -periodic by parameter m functions, 1 < s1 < . . . <
sr. Define

Φm(z) := ϕm(z)

r∏
i=1

Φi,m(z) =

q1∑
k=0

Φm(k)zk,

Θm(z) := θm(z)

r∏
i=1

Θi,m(z) =

q2∑
k=0

Θm(k)zk

and put Φm(k) = 0 for k > q1, Θm(k) = 0 for k > q2. Then the increment sequence

Ym = (1−BT )d
r∏

i=1

(1−BTsi)diXm
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is periodically stationary and allows a stationary vector representation

Ym = (1−B)d
r∏

i=1

(1−Bsi)diXm

with
Ym = (YmT , YmT+1, . . . , YmT+T−1)

⊤, Xm = (XmT , XmT+1, . . . , XmT+T−1)
⊤,

εm = (εmT , εmT+1, . . . , εmT+T−1)
⊤. We can write the relation

ΠYm +

q∗1∑
l=1

ΠlYm−l = Ξεm +

q∗2∑
l=1

Ξlεm−l,

where Π(k, j) = Φk(k − j), Ξ(k, j) = Θk(k − j) for k ≥ j, Π(k, j) = 0, Ξ(k, j) = 0 otherwise. Πl(k, j) =

Φk(lT + k − j), Ξl(k, j) = Θk(lT + k − j) [9], provided det(Π+
∑q∗1

l=1 Πlz
l) ̸= 0 for |z| ≤ 1 [18]. A GM

increment sequence is defined as

χ
(d)
µ,s(Xm) = (1−Bµ0)d

r∏
i=1

(1−Bsiµi)diXm, m ∈ Z.

Theorem 2.2
The structural function D

(d)
s (m;µ1, µ2) of the vector-valued stochastic stationary GM increment sequence

χ
(d)
µ,s(ξ⃗(m)) can be represented in the form

D
(d)
s (m;µ1, µ2) =

∫ π

−π

eiλmχ
(d)
µ1

(e−iλ)χ
(d)
µ2

(eiλ)
1

|β(d)(iλ)|2
dF (λ), (14)

where F (λ) is the matrix-valued spectral function of the stationary stochastic sequence χ(d)
µ,s(ξ⃗(m)). The stationary

GM increment sequence χ(d)
µ,s(ξ⃗(m)) admits the spectral representation

χ
(d)
µ,s(ξ⃗(m)) =

∫ π

−π

eimλχ
(d)
µ (e−iλ)

1

β(d)(iλ)
dZ⃗ξ(d)(λ), (15)

where Z⃗ξ(d)(λ) = {Zp(λ)}Tp=1 is a (vector-valued) stochastic process with uncorrelated increments on [−π, π)
connected with the spectral function F (λ) by the relation

E(Zp(λ2)− Zp(λ1))(Zq(λ2)− Zq(λ1)) = Fpq(λ2)− Fpq(λ1),

−π ≤ λ1 < λ2 < π, p, q = 1, 2, . . . , T.

2.2. Moving average representation of periodically stationary GM increment

Denote by H = L2(Ω,F ,P) the Hilbert space of random variables ζ with zero first moment, Eζ = 0, finite second
moment, E|ζ|2 <∞, endowed with the inner product ⟨ζ, η⟩ = Eζη. Denote by H(ξ⃗(d)) the closed linear subspace
of the space H generated by components {χ(d)

µ,s(ξp(m)), p = 1, . . . , T ; m ∈ Z} of the stationary stochastic GM

increment sequence ξ⃗(d) = {χ(d)
µ,s(ξp(l))}Tp=1, µ > 0, and denote by Hq(ξ⃗(d)) the closed linear subspace generated

by components {χ(d)
µ,s(ξp(m)), p = 1, . . . , T ; m 6 q}, q ∈ Z. Define a subspace

S(ξ⃗(d)) =
∩
q∈Z

Hq(ξ⃗(d))
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of the Hilbert space H(ξ⃗(d)). Then the space H(ξ⃗(d)) admits a decomposition

H(ξ⃗(d)) = S(ξ⃗(d))⊕R(ξ⃗(d)),

where R(ξ⃗(d)) is the orthogonal complement of the subspace S(ξ⃗(d)) in the space H(ξ⃗(d)).

Definition 2.6
A stationary (wide sense) stochastic GM increment sequence χ(d)

µ,s(ξ⃗(m)) = {χ(d)
µ,s(ξp(m))}Tp=1 is called regular if

H(ξ⃗(d)) = R(ξ⃗(d)), and it is called singular if H(ξ⃗(d)) = S(ξ⃗(d)).

Theorem 2.3
A stationary stochastic GM increment sequence χ(d)

µ,s(ξ⃗(m)) = {χ(d)
µ,s(ξp(m))}Tp=1 is uniquely represented in the

form
χ
(d)
µ,s(ξp(m)) = χ

(d)
µ,s(ξS,p(m)) + χ

(d)
µ,s(ξR,p(m)), (16)

where χ(d)
µ,s(ξR,p(m)), p = 1, . . . , T is a regular stationary GM increment sequence and χ(d)

µ,s(ξS,p(m)), p = 1, . . . , T

is a singular stationary GM increment sequence. The GM increment sequences χ(d)
µ,s(ξR,p(m)), p = 1, . . . , T and

χ
(d)
µ,s(ξS,p(m)), p = 1, . . . , T are orthogonal for all m, k ∈ Z. They are defined by the formulas

χ
(d)
µ,s(ξS,p(m)) = E[χ

(d)
µ,s(ξp(m))|S(ξ⃗(d))],

χ
(d)
µ,s(ξR,p(m)) = χ

(d)
µ,s(ξp(m))− χ

(d)
µ,s(ξS,p(m)), p = 1, . . . , T.

Consider an innovation sequence ε⃗(u) = {εk(u)}qk=1, u ∈ Z for a regular stationary GM increment
χ
(d)
µ,s(ξR,p(m)), p = 1, . . . , T , namely, a sequence of uncorrelated random variables such that Eεk(u)εj(v) =

δkjδuv, E|εk(u)|2 = 1, k, j = 1, . . . , q;u ∈ Z, and Hr(ξ⃗(d)) = Hr(ε⃗) holds true for all r ∈ Z, where Hr(ε⃗) is the
Hilbert space generated by elements {εk(u) : k = 1, . . . , q;u ≤ r}, δkj and δuv are Kronecker symbols.

Theorem 2.4
A stationary GM increment sequence χ(d)

µ,s(ξ⃗(m)) is regular if and only if there exists an innovation sequence

ε⃗(u) = {εk(u)}qk=1, u ∈ Z and a sequence of matrix-valued functions φ(d)(k, µ) = {φ(d)
ij (k, µ)}j=1,q

i=1,T
, k ≥ 0, such

that
∞∑
k=0

T∑
i=1

q∑
j=1

|φ(d)
ij (k, µ)|2 <∞, χ

(d)
µ,s(ξ⃗(m)) =

∞∑
k=0

φ(d)(k, µ)ε⃗(m− k). (17)

Representation (17) is called the canonical moving average representation of the stochastic stationary GM
increment sequence χ(d)

µ,s(ξ⃗(m)).

The spectral function F (λ) of a stationary GM increment sequence χ(d)
µ,s(ξ⃗(m)) which admits the canonical

representation (17) has the spectral density f(λ) = {fij(λ)}Ti,j=1 admitting the canonical factorization

f(λ) = Φ(e−iλ)Φ∗(e−iλ), (18)

where the function Φ(z) =
∑∞

k=0 φ(k)z
k has analytic in the unit circle {z : |z| ≤ 1} components Φij(z) =∑∞

k=0 φij(k)z
k; i = 1, . . . , T ; j = 1, . . . , q. Based on moving average representation (17) define

Φµ(z) =

∞∑
k=0

φ(d)(k, µ)zk =

∞∑
k=0

φµ(k)z
k.

Then the following relation holds true:

Φµ(e
−iλ)Φ∗

µ(e
−iλ) =

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
f(λ) =

r∏
j=1

∣∣1− e−iλµjsj
∣∣2dj∏[sj/2]

kj=−[sj/2]
|λ− 2πkj/sj |2dj

f(λ). (19)

We will use the one-sided moving average representation (17) and relation (19) for finding the mean square
optimal estimates of unobserved values of vector-valued sequences with stationary GM increments.
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3. Hilbert space projection method of forecasting

3.1. Forecasting of vector-valued stationary GM increment

Consider a vector-valued stochastic sequence with stationary GM increments ξ⃗(m) constructed from the
sequence ζ(m) with the help of transformation (13). Let the stationary GM increment sequence χ(d)

µ,s(ξ⃗(m)) =

{χ(d)
µ,s(ξp(m))}Tp=1 has an absolutely continuous spectral function F (λ) and the spectral density f(λ) =

{fij(λ)}Ti,j=1. Without loss of generality we will assume that Eχ(d)
µ,s(ξ⃗(m)) = 0 and µ > 0.

Consider the problem of mean square optimal linear estimation of the functionals

Aξ⃗ =

∞∑
k=0

(⃗a(k))⊤ξ⃗(k), AN ξ⃗ =

N∑
k=0

(⃗a(k))⊤ξ⃗(k), (20)

which depend on unobserved values of the stochastic sequence ξ⃗(k) = {ξp(k)}Tp=1 with stationary GM increments.
Estimates are based on observations of the sequence ξ⃗(k) at points k = −1,−2, . . ..

We will suppose that the following conditions are satisfied:

• conditions on coefficients a⃗(k) = {ap(k)}Tp=1, k ≥ 0, and a linear transformationDµ to be defined in Lemma
3.1

∞∑
k=0

∥a⃗(k)∥ <∞,

∞∑
k=0

(k + 1)∥a⃗(k)∥2 <∞, (21)

∞∑
k=0

∥(Dµa)k∥ <∞,

∞∑
k=0

(k + 1)∥(Dµa)k∥2 <∞, (22)

• the minimality condition on the spectral density f(λ)∫ π

−π

Tr

[
|β(d)(iλ)|2

|χ(d)
µ (e−iλ)|2

f−1(λ)

]
dλ <∞. (23)

The latter one is the necessary and sufficient condition under which the mean square errors of estimates of
functionals Aξ⃗ and AN ξ⃗ are not equal to 0.

The classical Hilbert space estimation technique proposed by Kolmogorov [28] can be described as a 3-stage
procedure: (i) define a target element of the space H = L2(Ω,F ,P) to be estimated, (ii) define a subspace of H
generated by observations, (iii) find an estimate of the target element as an orthogonal projection on the defined
subspace.

Stage i. Neither functional Aξ⃗ nor AN ξ⃗ belongs to the space H . With the help of the following lemma and the
corresponding corollary, we describe representations of these functionals as sums of functionals with finite second
moments belonging to H and functionals depending on observed values of the sequence ξ⃗(k) (“initial values”).

Lemma 3.1
The functional Aξ⃗ admits a representation

Aξ⃗ = Bχξ⃗ − V ξ⃗,

where

Bχξ⃗ =

∞∑
k=0

(⃗b(k))⊤χ
(d)
µ,s(ξ⃗(k)), V ξ⃗ =

−1∑
k=−n(γ)

(v⃗(k))⊤ξ⃗(k),

v⃗(k) =

k+n(γ)∑
l=0

diagT (eν(l − k))⃗b(l), k = −1,−2, . . . ,−n(γ),

b⃗(k) =

∞∑
m=k

diagT (dµ(m− k))⃗a(m) = (Dµa)k, k = 0, 1, 2, . . . ,
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b⃗(k) = (b1(k), b2(k), . . . , bT (k))
⊤, a = ((⃗a(0))⊤, (⃗a(1))⊤, (⃗a(2))⊤, . . .)⊤, v⃗(k) = (v1(k), v2(k), . . . , vT (k))

⊤, Dµ

is a linear transformation determined by a matrix with T × T entries Dµ(k, j), k, j = 0, 1, 2, . . . such that
Dµ(k, j) = diagT (dµ(j − k)) if 0 ≤ k ≤ j and Dµ(k, j) = diagT (0) for 0 ≤ j < k; diagT (x) denotes a T × T
diagonal matrix with the entry x on its diagonal, coefficients {dµ(k) : k ≥ 0} are determined by the relationship

∞∑
k=0

dµ(k)x
k =

r∏
i=1

( ∞∑
ji=0

xµisiji

)di

.

Proof
See Appendix.

Corollary 3.1
The functional AN ξ⃗ allows a representation

AN ξ⃗ = BNχξ⃗ − VN ξ⃗,

BNχξ⃗ =

N∑
k=0

(⃗bN (k))⊤χ
(d)
µ,s(ξ⃗(k)), VN ξ⃗ =

−1∑
k=−n(γ)

(v⃗N (k))⊤ξ⃗(k),

where the coefficients b⃗N (k) = {bN,p(k)}Tp=1, k = 0, 1, . . . , N and v⃗N (k) = {vN,p(k)}Tp=1, k =
−1,−2, . . . ,−n(γ) are calculated by the formulas

v⃗N (k) =

N∧k+n(γ)∑
l=0

diagT (eν(l − k))⃗bN (l), k = −1,−2, . . . ,−n(γ), (24)

b⃗N (k) =

N∑
m=k

diagT (dµ(m− k))⃗a(m) = (Dµ
NaN )k, k = 0, 1, . . . , N, (25)

Dµ
N is the linear transformation determined by an infinite matrix with the entries (Dµ

N )(k, j) = diagT (dµ(j − k))

if 0 ≤ k ≤ j ≤ N , and (Dµ
N )(k, j) = 0 if j < k or j, k > N ; aN = ((⃗a(0))⊤, (⃗a(1))⊤, . . . , (⃗a(N))⊤, 0⃗ . . .)⊤.

So that, Lemma 3.1 provides a representation of the functional Aξ⃗ as a sum of an element Bχξ⃗ from the space
H = L2(Ω,F ,P) under conditions (21) – (22) and linear combination V ξ⃗ of a finite number of initial values ξ⃗(k),
k = −1,−2, . . . ,−n(γ), which are observed. Thus, the following equality hold true

Âξ⃗ = B̂χξ⃗ − V ξ⃗. (26)

Denote by ∆(f, Âξ⃗) := E|Aξ⃗ − Âξ⃗|2 the mean square error of the optimal estimate Âξ⃗ of the functional Aξ⃗ and let
∆(f, B̂χξ⃗) := E|Bχξ⃗ − B̂χξ⃗|2 denote the mean square error of the optimal estimate B̂χξ⃗ of the functional Bχξ⃗.
Then

∆
(
f ; Âξ⃗

)
= E

∣∣∣Aξ⃗ − Âξ⃗
∣∣∣2 = E

∣∣∣Bχξ⃗ − V ξ⃗ − B̂χξ⃗ + V ξ⃗
∣∣∣2 = E

∣∣∣Bχξ⃗ − B̂χξ⃗
∣∣∣2 = ∆

(
f ; B̂χξ⃗

)
.

Thus, we have defined the functional Bχξ⃗ to be used in finding the optimal linear estimate of the functional Aξ⃗.
At stage ii, we recall the subspace H0−(ξ⃗(d)) := H−1(ξ⃗(d)) of the Hilbert space H = L2(Ω,F ,P) defined in

Subsection 2.2, which is generated by observations {χ(d)
µ,s(ξp(k)), p = 1, . . . , T ; k ≤ −1}. Denote by L0−

2 (f) the
closed linear subspace of the Hilbert space L2(f) of vector-valued functions endowed with the inner product
⟨g1; g2⟩ =

∫ π

−π
(g1(λ))

⊤f(λ)g2(λ)dλ which is generated by functions

eiλkχ
(d)
µ (e−iλ)(β(d)(iλ))−1δl, δl = {δlp}Tp=1, l = 1, . . . , T ; k 6 −1,
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where δlp are Kronecker symbols. The relation

χ
(d)
µ,s(ξp(m)) =

∫ π

−π

eiλmχ
(d)
µ (e−iλ)

1

β(d)(iλ)
dZp(λ), p = 1, 2, . . . , T, (27)

implies a relation between elements χ(d)
µ,s(ξp(m)) of the spaceH(ξ⃗(d)) and elements eiλmχ(d)

µ (e−iλ)(β(d)(iλ))−1δp

of the space L2(f). The spectral representation of the functional Bχξ⃗ can be written in the form

Bχξ⃗ =

∫ π

−π

(
B⃗µ(e

iλ)
)⊤ χ

(d)
µ (e−iλ)

β(d)(iλ)
dZ⃗ξ(d)(λ),

where

B⃗µ(e
iλ) =

∞∑
k=0

b⃗(k)eiλk =

∞∑
k=0

(Dµa)ke
iλk.

Thus, at stage iii, the problem is equivalent to finding a projection of the element B⃗µ(e
iλ)

χ
(d)
µ (e−iλ)

β(d)(iλ)
of the Hilbert

space L2(f) on the subspace L0−
2 (f).

Relation (26) implies that every linear estimate Âξ⃗ of the functional Aξ⃗ can be written in the form

Âξ⃗ =

∫ π

−π

(⃗hµ(λ))
⊤dZ⃗ξ(d)(λ)−

−1∑
k=−n(ν)

(v⃗(k))⊤ξ⃗(k), (28)

where h⃗µ(λ) = {hp(λ)}Tp=1 is the spectral characteristic of the estimate B̂ξ⃗, which is a projection of the element

B⃗µ(e
iλ)

χ
(d)
µ (e−iλ)

β(d)(iλ)
on the subspace L0−

2 (f). This estimate is characterized by the following conditions:

h⃗µ(λ) ∈ L0−
2 (f) , (29)(

B⃗µ(e
iλ)

χ
(d)
µ (e−iλ)

β(d)(iλ)
− h⃗µ(λ)

)
⊥ L0−

2 (f) . (30)

Condition (30) implies the following relation holding true for all k 6 −1∫ π

−π

(
B⃗µ(e

iλ)
χ
(d)
µ (e−iλ)

β(d)(iλ)
− h⃗µ(λ)

)⊤

f(λ)e−iλk
χ
(d)
µ (eiλ)

β(d)(iλ)
dλ = 0⃗. (31)

Thus, the spectral characteristic of the estimate B̂χξ⃗ can be represented in the form

(⃗hµ(λ))
⊤ = (B⃗µ(e

iλ))⊤
χ
(d)
µ (e−iλ)

β(d)(iλ)
− β(d)(iλ)

χ
(d)
µ (eiλ)

(C⃗µ(e
iλ))⊤f−1(λ),

where

C⃗µ(e
iλ) =

∞∑
k=0

c⃗µ(k)e
iλk,

and c⃗(k) = {cp(k)}Tp=1, k > 0 are unknown coefficients to be found.
Condition (29) implies the following representation of the spectral characteristic h⃗µ(λ)

h⃗µ(λ) = h⃗(λ)χ
(d)
µ (e−iλ)

1

β(d)(iλ)
, h⃗(λ) =

∞∑
k=1

s⃗(k)e−iλk,
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which allows us to write the relations∫ π

−π

[
(B⃗µ(e

iλ))⊤ − |β(d)(iλ)|2

χ
(d)
µ (e−iλ)χ

(d)
µ (eiλ)

(C⃗µ(e
iλ))⊤f−1(λ)

]
e−ijλdλ = 0⃗, j > 0. (32)

Next we define the matrix-valued Fourier coefficients

Fµ(k, j) =
1

2π

∫ π

−π

eiλ(j−k) |β(d)(iλ)|2

|χ(d)
µ (e−iλ)|2

f−1(λ)dλ, k, j ≥ 0, (33)

and rewrite relation (32) as a system of linear vector equations

b⃗(j) =

∞∑
k=0

Fµ(j, k) c⃗µ(k), j ≥ 0,

determining the unknown coefficients c⃗µ(k), k ≥ 0. This system can be presented in the matrix form

Dµa = Fµcµ, (34)

where
cµ = ((c⃗µ(0))

⊤, (c⃗µ(1))
⊤, (c⃗µ(2))

⊤, . . .)⊤, a = ((⃗a(0))⊤, (⃗a(1))⊤, (⃗a(2))⊤, . . .)⊤,

Fµ is a linear operator in the space ℓ2 which is determined by a matrix with the T × T matrix entries Fµ(j, k) =
Fµ(j, k), j, k ≥ 0; the linear transformation Dµ is defined in Lemma 3.1.

To show that operator Fµ is invertible we note that the problem of projection of the element Bξ⃗ of the
Hilbert space H on the closed convex set H0−(ξ⃗

(d)
µ ) has a unique solution for each non-zero coefficients

{a⃗(0), a⃗(1)), a⃗(2), . . .}, satisfying conditions (21) – (22). Therefore, equation (34) has a unique solution for each
vector Dµa, which implies existence of the inverse operator F−1

µ .
Therefore, coefficients c⃗µ(k), k ≥ 0, which determine the spectral characteristic h⃗µ(λ), can be calculated as

c⃗µ(k) = (F−1
µ Dµa)k, k ≥ 0, (35)

where (F−1
µ Dµa)k, k ≥ 0, is the kth T -dimension vector element of the vector F−1

µ Dµa.
The spectral characteristic h⃗µ(λ) of the estimate B̂χξ⃗ is calculated by the formula

(⃗hµ(λ))
⊤ = (B⃗µ(e

iλ))⊤
χ
(d)
µ (e−iλ)

β(d)(iλ)
− β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ Dµa)ke

iλk

)⊤

f−1(λ). (36)

The value of the mean square error of the estimate Âξ⃗ is calculated by the formula

∆
(
f ; Âξ⃗

)
= ∆

(
f ; B̂χξ⃗

)
= E

∣∣∣Bχξ⃗ − B̂χξ⃗
∣∣∣2

=
1

2π

∫ π

−π

β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ Dµa)ke

iλk

)⊤

f(λ)

( ∞∑
k=0

(F−1
µ Dµa)keiλk

)
β(d)(iλ)

χ
(d)
µ (e−iλ)

dλ

=
⟨
Dµa,F−1

µ Dµa
⟩
. (37)

Next consider the problem in the case where the GM incremental sequence of the stochastic sequence ξ⃗(m)
admits moving-average representation (17) and its spectral density f(λ) = {fij(λ)}Ti,j=1 admits the canonical
factorization (18), (19), namely

f(λ) = Φ(e−iλ)Φ∗(e−iλ),
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f(λ) = Φµ(e

−iλ)Φ∗
µ(e

−iλ), (38)
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where

Φ(e−iλ) =

∞∑
k=0

φ(k)e−iλk, Φµ(e
−iλ) =

∞∑
k=0

φµ(k)e
−iλk,

and φµ(k) = {φij(k)}j=1,q

i=1,T
, k = 0, 1, 2, . . . . Let Eq denote the identity q × q matrix. Define the matrix-valued

function Ψµ(e
−iλ) = {Ψij(e

−iλ)}j=1,T

i=1,q
by the equation

Ψµ(e
−iλ)Φµ(e

−iλ) = Eq.

Formulas for calculating the spectral characteristic h⃗µ(λ) and the value of the mean square error ∆(f ; Âξ⃗)

of the estimate Âξ⃗ can be presented in terms of the function Ψµ(e
−iλ) and the factorization coefficients φµ(k),

k = 0, 1, 2, . . . . One can directly check that conditions (29) and (30) are satisfied by the function

h⃗µ(λ) =
χ
(d)
µ (e−iλ)

β(d)(iλ)

(
B⃗µ(e

iλ)− (Ψµ(e
−iλ))⊤r⃗µ(e

iλ)
)
, (39)

where

r⃗µ(e
iλ) =

∞∑
k=0

(DµAφµ)ke
iλk,

(DµAφµ)k =

∞∑
m=0

∞∑
l=m

(φµ(m))⊤Dµ(m, l)⃗a(l + k) =

∞∑
m=0

∞∑
l=k

(φµ(m))⊤a⃗(m+ l)dµ(l − k),

and A is a linear symmetric operator which is determined by a matrix with the entries A(k, j) = a⃗(k + j), k, j ≥ 0.
The defined operators DµA and A are compact under conditions (21) – (22). Then the value of the mean square
error is calculated by the formula

∆
(
f ; Âξ⃗

)
=

1

2π

∫ π

−π

( ∞∑
k=0

(DµAφµ)ke
iλk

)⊤( ∞∑
k=0

(DµAφµ)keiλk

)
dλ

=
1

2π

∫ π

−π

∥∥r⃗µ(eiλ)∥∥2 dλ =
∥∥DµAφµ

∥∥2 . (40)

The derived results are summarized in the following theorem.

Theorem 3.1
Let a vector-valued stochastic sequence {ξ⃗(m),m ∈ Z} determine a stationary stochastic GM increment sequence
χ
(n)
µ,s(ξ⃗(m)) with the spectral density matrix f(λ) = {fij(λ)}Ti,j=1 which satisfies the minimality condition (23).

Let coefficients a⃗(j), j > 0 satisfy conditions (21) – (22).
Then the optimal linear estimate Âξ⃗ of the functional Aξ⃗ based on observations of the sequence ξ⃗(m) at points
m = −1,−2, . . . is calculated by formula (28). The spectral characteristic h⃗µ(λ) = {hp(λ)}Tp=1 and the value of
the mean square error ∆(f ; Âξ⃗) of the estimate Âξ⃗ are calculated by formulas (36) and (37) respectively.
In the case where the spectral density f(λ) admits the canonical factorization (38) the spectral characteristic and the
value of the mean square error of the optimal estimate Âξ can be calculated by formulas (39) and (40) respectively.

3.2. Estimates of functional AN ξ⃗ and value ξp(N)

Theorem 3.1 allows us to find the optimal estimate ÂN ξ⃗ of the functional AN ξ⃗ which depends on the unobserved
values ξ⃗(m), m = 0, 1, 2, . . . , N , based on observations of the sequence ξ⃗(m) at points m = −1,−2, . . .. Put
a⃗(k) = 0 for k > N . Then we get that the spectral characteristic h⃗µ,N (λ) of the optimal estimate
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ÂN ξ⃗ =

∫ π

−π

(⃗hµ,N (λ))⊤dZ⃗ξ(d)(λ)−
−1∑

k=−n(γ)

(v⃗N (k))⊤ξ⃗(k), (41)

is calculated by the formula

(⃗hµ,N (λ))⊤ = (B⃗µ,N (eiλ))⊤
χ
(d)
µ (e−iλ)

β(d)(iλ)
− β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ Dµ

NaN )ke
iλk

)⊤

f−1(λ). (42)

where

Bµ,N (eiλ) =

N∑
k=0

(Dµ
NaN )ke

iλk,

and Dµ
N is defined in Corollary 3.1. The value of the mean square error of the estimate ÂNξ is

∆
(
f, ÂN ξ⃗

)
= ∆

(
f, B̂Nχξ⃗

)
= E

∣∣∣BNχξ⃗ − B̂Nχξ⃗
∣∣∣2

=
1

2π

∫ π

−π

β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ Dµ

NaN )ke
iλk

)⊤

f(λ)

( ∞∑
k=0

(F−1
µ Dµ

NaN )keiλk

)
β(d)(iλ)

χ
(d)
µ (e−iλ)

dλ

=
⟨
Dµ

NaN ,F
−1
µ Dµ

NaN

⟩
. (43)

In the case where the spectral density f(λ) admits the canonical factorization (38) the spectral characteristic can
be calculated as

h⃗µ,N (λ) =
χ
(d)
µ (e−iλ)

β(d)(iλ)

(
B⃗µ,N (eiλ)− (Ψµ(e

−iλ))⊤r⃗µ,N (eiλ)
)

(44)

where

r⃗µ,N (eiλ) =

N∑
k=0

(D̃µ
NANφµ,N )ke

iλk, (D̃µ
NANφµ,N )k =

N∑
m=0

N∑
l=k

(φµ(m))⊤a⃗(m+ l)dµ(l − k),

and φµ,N = (φµ(0), φµ(1), . . . , φµ(N)); AN is a linear operator determined by the coefficients a⃗(k), k =

0, 1, . . . , N , as follows: (AN )(k, j) = a⃗(k + j), 0 ≤ k + j ≤ N , (AN )(k, j) = 0, k + j > N , 0 ≤ k, j ≤ N ; D̃µ
N

is a matrix of the dimension (N + 1)× (N + 1) determined by the T × T entries D̃µ
N (k, j) = diagT (dµ(j − k)) if

0 ≤ k ≤ j ≤ N and D̃µ
N (k, j) = diagT (0) if 0 ≤ j < k ≤ N .

The value of the mean square error is calculated by the formula

∆
(
f ; ÂN ξ⃗

)
=

1

2π

∫ π

−π

(
N∑

k=0

(D̃µ
NANφµ,N )ke

iλk

)⊤ N∑
k=0

(D̃µ
NANφµ,N )keiλk

 dλ

=
1

2π

∫ π

−π

∥∥r⃗µ,N (eiλ)
∥∥2 dλ =

∥∥∥D̃µ
NANφµ,N

∥∥∥2 . (45)

Thus, the following theorem holds true.

Theorem 3.2
Let {ξ⃗(m),m ∈ Z} be a stochastic sequence which determine a stationary stochastic GM increment sequence
χ
(n)
µ,s(ξ⃗(m)) with the spectral density matrix f(λ) which satisfies the minimality condition (23). The optimal linear
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estimate ÂN ξ⃗ of the functional AN ξ⃗ based on observations of the sequence ξ⃗(m) at points m = −1,−2, . . . is
calculated by formula (41). The spectral characteristic h⃗µ,N (λ) = {hµ,N,p(λ)}Tp=1 and the value of the mean square
error ∆(f ; ÂN ξ⃗) are calculated by formulas (42) and (43) respectively. In the case where the spectral density f(λ)
admits the canonical factorization (38) the spectral characteristic h⃗µ,N (λ) and the value of the mean square error
of the estimate ÂN ξ⃗ can be calculated by formulas (44) and (45) respectively.

For the problem of the mean square optimal estimate of the unobserved value AN,pξ⃗ = ξp(N) = ξ⃗(N)δp,
p = 1, 2, . . . , T , N ≥ 0 of the stochastic sequence ξ⃗(m) with GM stationary increments based on its observations
at points m = −1,−2, . . . we have the following corollary from Theorem 3.2.

Corollary 3.2
The optimal linear estimate ξ̂p(N) of the value ξp(N), p = 1, 2, . . . , T , N ≥ 0, of the stochastic sequence with GM
stationary increments from observations of the sequence ξ⃗(m) at points m = −1,−2, . . . is calculated by formula

ξ̂p(N) =

∫ π

−π

(
h⃗µ,N,p(λ)

)⊤
dZ⃗ξ(d)(λ)−

−1∑
k=−n(γ)

(v⃗N,p(k))
⊤ξ⃗(k). (46)

The spectral characteristic h⃗µ,N,p(λ) of the estimate is calculated by the formula

(
h⃗µ,N,p(λ)

)⊤
=
χ
(d)
µ (e−iλ)

β(d)(iλ)

(
δp

N∑
k=0

dµ(N − k)eiλk

)⊤

− β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ dµ,N,p)ke

iλk

)⊤

f−1(λ). (47)

where dµ,N,p = (dµ(N)δ⊤p , dµ(N − 1)δ⊤p , . . . , dµ(0)δ
⊤
p , 0, . . .)

⊤. The value of the mean square error of the
estimate ξ̂p(N) is calculated by the formula

∆
(
f ; ξ̂p(N)

)
= ∆

(
f ;χ

(n)
µ,s(ξ̂p(m))

)
= E

∣∣∣χ(n)
µ,s(ξp(m))− χ

(n)
µ,s(ξ̂p(m))

∣∣∣2
=

1

2π

∫ π

−π

β(d)(iλ)

χ
(d)
µ (eiλ)

( ∞∑
k=0

(F−1
µ dµ,N,p)ke

iλk

)⊤

f(λ)

( ∞∑
k=0

(F−1
µ dµ,N,p)keiλk

)
β(d)(iλ)

χ
(d)
µ (e−iλ)

dλ

=
⟨
dµ,N,p,F

−1
µ dµ,N,p

⟩
. (48)

In the case where the spectral density f(λ) admits the canonical factorization (38), and the condition
mini=1,r µisi > N is satisfied, the spectral characteristic and the value of the mean square error of the estimate
ξ̂p(N) can be calculated by the formulas

h⃗µ,N,p(λ) =
χ
(d)
µ (e−iλ)

β(d)(iλ)
eiNλ

δp − (Ψµ(e
−iλ))⊤

(
N∑

k=0

φµ(k)e
−iλk

)⊤

δp

 (49)

and

∆
(
f ; ξ̂p(N)

)
=

1

2π

∫ π

−π

[
(δp)

⊤
N∑

k=0

φµ(k)e
−iλk

][
(δp)

⊤
N∑

k=0

φµ(k)e
−iλk

]∗
dλ =

N∑
k=0

q∑
j=1

|φµ,p,j(k)|2. (50)

Remark 3.1
Since for all d ≥ 1 and µ ≥ 1 the condition∫ π

−π

∣∣∣∣∣ln |χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2

∣∣∣∣∣ dλ <∞
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holds true, there exists a function

wµ(z) =

∞∑
k=0

wµ(k)z
k,

∞∑
k=0

|wµ(k)|2 <∞

such that [18]

|wµ(e
−iλ)|2 =

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
,

which can be calculated by the formula

wµ(z) = exp

{
1

4π

∫ π

−π

eiλ + z

eiλ − z
ln

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
dλ

}
. (51)

For this reason the following relation holds true:

Φµ(e
−iλ) = wµ(e

−iλ)Φ(e−iλ). (52)

which implies

φµ(k) =

k∑
m=0

wµ(k −m)φ(m), k = 0, 1, . . .

that is

φµ,ij(k) =

k∑
m=0

wµ(k −m)φij(m), i = 1, . . . , T ; j = 1, . . . , q; k = 0, 1, . . . .

This relation can be represented in the form
φµ = Wµφ, (53)

where φµ = (φµ(0), φµ(1), φµ(2), . . .)
⊤ and φ = (φ(0), φ(1), φ(2), . . .)⊤ are vectors composed from matrices

φµ(k) = {φµ,ij(k)}j=1,q

i=1,T
, k = 0, 1, 2, . . . , and φ(k) = {φij(k)}j=1,q

i=1,T
, k = 0, 1, 2, . . . , and where Wµ is a linear

operator with the entries (Wµ)j,k = wµ(j − k) if 0 ≤ k ≤ j, and (Wµ)j,k = 0 if 0 ≤ j < k.

3.3. Forecasting of periodically stationary GM increment

Consider the problem of mean square optimal linear estimation of the functionals

Aζ =

∞∑
k=0

a(ζ)(k)ζ(k), AMζ =

N∑
k=0

a(ζ)(k)ζ(k) (54)

which depend on unobserved values of the stochastic sequence ζ(m) with periodically stationary increments.
Estimates are based on observations of the sequence ζ(m) at points m = −1,−2, . . ..

The functional Aζ can be represented in the form

Aζ =

∞∑
k=0

a(ζ)(k)ζ(k) =

∞∑
m=0

T∑
p=1

a(ζ)(mT + p− 1)ζ(mT + p− 1)

=

∞∑
m=0

T∑
p=1

ap(m)ξp(m) =

∞∑
m=0

(⃗a(m))⊤ξ⃗(m) = Aξ⃗,

where
ξ⃗(m) = (ξ1(m), ξ2(m), . . . , ξT (m))⊤, ξp(m) = ζ(mT + p− 1); p = 1, 2, . . . , T ; (55)
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a⃗(m) = (a1(m), a2(m), . . . , aT (m))⊤, ap(m) = a(ζ)(mT + p− 1); p = 1, 2, . . . , T. (56)

Making use of the introduced notations and statements of Theorem 3.1 we can claim that the following theorem
holds true.

Theorem 3.3
Let a stochastic sequence ζ(k) with periodically stationary increments generate by formula (55) a vector-valued
stochastic sequence ξ⃗(m) which determine a stationary stochastic GM increment sequence χ

(n)
µ,s(ξ⃗(m)) with

the spectral density matrix f(λ) = {fij(λ)}Ti,j=1 that satisfy the minimality condition (23). Let the coefficients
a⃗(k), k > 0 determined by formula (56) satisfy conditions (21) – (22).
Then the optimal linear estimate Âζ of the functional Aζ based on observations of the sequence ζ(m) at points
m = −1,−2, . . . is calculated by formula (28). The spectral characteristic h⃗µ(λ) = {hp(λ)}Tp=1 and the value of
the mean square error ∆(f ; Âζ) of the estimate Âζ are calculated by formulas (36) and (37) respectively.
In the case where the spectral density matrix f(λ) admits the canonical factorization (38), the spectral characteristic
and the value of the mean square error of the estimate Âξ can be calculated by formulas (39) and (40) respectively.

The functional AMζ can be represented in the form

AMζ =

M∑
k=0

a(ζ)(k)ζ(k) =

N∑
m=0

T∑
p=1

a(ζ)(mT + p− 1)ζ(mT + p− 1)

=

N∑
m=0

T∑
p=1

ap(m)ξp(m) =

N∑
m=0

(⃗a(m))⊤ξ⃗(m) = AN ξ⃗,

where N = [MT ], the sequence ξ⃗(m) is determined by formula (55),

(⃗a(m))⊤ = (a1(m), a2(m), . . . , aT (m))⊤,

ap(m) = aζ(mT + p− 1); 0 ≤ m ≤ N ; 1 ≤ p ≤ T ; mT + p− 1 ≤M ;

ap(N) = 0; M + 1 ≤ NT + p− 1 ≤ (N + 1)T − 1; 1 ≤ p ≤ T. (57)

Making use of the introduced notations and statements of Theorem 3.2 we can claim that the following theorem
holds true.

Theorem 3.4
Let a stochastic sequence ζ(k) with periodically stationary GM increments generate by formula (55) a vector-
valued stochastic sequence ξ⃗(m) which determine a stationary GM increment sequence χ

(n)
µ,s(ξ⃗(m)) with the

spectral density matrix f(λ) = {fij(λ)}Ti,j=1 that satisfy the minimality condition (23). Let coefficients a⃗(k), k >
0 be determined by formula (57). The optimal linear estimate ÂMζ of the functional AMζ = AN ξ⃗ based
on observations of the sequence ζ(m) at points m = −1,−2, . . . is calculated by formula (41). The spectral
characteristic h⃗µ,N (λ) = {hµ,N,p(λ)}Tp=1 and the value of the mean square error ∆(f ; ÂMζ) are calculated by
formulas (42) and (43) respectively. In the case where the spectral density matrix f(λ) admits the canonical
factorization (38), then the spectral characteristic h⃗µ,N (λ) and the value of the mean square error of the estimate
ÂMζ can be calculated by formulas (44) and (45) respectively.

As a corollary from Theorem 3.4, one can obtain the mean square optimal estimate of the unobserved value
ζ(M), M ≥ 0 of a stochastic sequence ζ(m) with periodically stationary GM increments based on observations of
the sequence ζ(m) at pointsm = −1,−2, . . .Making use of the notations ζ(M) = ξp(N) = (ξ⃗(N))⊤δp,N = [MT ],
p =M + 1−NT , and the obtained results we can conclude that the following corollary holds true.

Corollary 3.3
Let a stochastic sequence ζ(m) with periodically stationary GM increments generate by formula (55) a vector-
valued stochastic sequence ξ⃗(m) which determine a stationary GM increment sequence χ

(n)
µ,s(ξ⃗(m)) with the
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spectral density matrix f(λ) = {fij(λ)}Ti,j=1 that satisfy the minimality condition (23). The optimal linear
estimate ζ̂(M) of the unobserved value ζ(M), M ≥ 0, based on observations of the sequence ζ(m) at points
m = −1,−2, . . . is calculated by formula (46). The spectral characteristic h⃗µ,N,p(λ) of the estimate is calculated
by the formula (47). The value of the mean square error of the estimate ζ̂(M) is calculated by the formula (48).
In the case where the spectral density f(λ) admits the canonical factorization (38), then the spectral characteristic
and the value of the mean square error of the estimate ζ̂(M) can be calculated by the formulas (49), (50).

4. Forecasting of GM fractional increments

In the previous section, we solved the forecasting problem for the increment sequence χ(d)
µ,s(ξ⃗(m)) of positive

integer orders (d1, . . . , dr). Here we consider the forecasting problem in the case of fractional increment orders di.
Within the section, we consider the step µ = (1, 1, . . . , 1) and represent the increment operator χ(d)

s (B) in the
form

χ
(R+D)
s (B) = (1−B)R0+D0

r∏
j=1

(1−Bsj )Rj+Dj , (58)

where (1−B)R0+D0 is the integrating component, Rj , j = 0, 1, . . . , r, are non-negative integer numbers, 1 <
s1 < . . . < sr. The goal is to find representations dj = Rj +Dj , j = 0, 1, . . . , r, of the increment orders under
some conditions on the fractional parts Dj , such that the increment sequence

y⃗(m) := (1−B)R0

r∏
j=1

(1−Bsj )Ri ξ⃗(m)

to be a stationary fractionally integrated seasonal stochastic sequence. For example, in case of single increment
pattern (1−Bs∗)R

∗+D∗
this condition is |D∗| < 1/2.

We will call a sequence χ(R+D)
s (ξ⃗(m)) fractional multiple (FM) increment sequence.

Lemma 4.1
The increment operator χ(D)

s (B) := (1−B)D0
∏r

j=1(1−Bsj )Dj admits a representation

χ
(D)
s (B) =

r∏
j=0

[sj/2]∏
kj=0

(1− 2 cos νkjB +B2)Dkj = (1−B)D0+D1+...+Dr

r∏
j=1

[sj/2]∏
kj=1

(1− 2 cos νkjB +B2)Dkj ,

where s0 = 1, νkj = 2πkj/sj , kj = 0, 1, . . . , [sj/2], Dkj = D0/2 for kj = 0, Dkj = Dj for kj = 1, 2, . . . , [sj/2]−
1, D[sj/2] = Dj for odd sj and D[sj/2] = Dj/2 for even sj ,

Note that Lemma 4.1 follows from the representation

(1−Bsj )Dr =

[sj/2]∏
kj=0

(zkj −B)Dkj (z−kj −B)Dkj ,

where zkj = exp(iνkj ), kj = 0, 1, . . . , sj − 1, are solutions of the equation 1−Bsj = 0.
Lemma 4.1 implies the following statement.

Lemma 4.2
Define the sets Mj = {νkj = 2πkj/sj : kj = 0, 1, . . . , [sj/2]}, j = 0, 1, . . . , r, and the set M =

∪r
j=0 Mj . Then

χ
(D)
s (B) =

∏
ν∈M

(1− 2 cos νB +B2)D̃ν

= (1−B)D0+D1+...+Dr (1 +B)Dπ

∏
ν∈M\{0,π}

(1− 2 cos νB +B2)Dν ,
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where Dν =
∑r

j=0DjI{ν ∈ Mj}, D̃ν = Dν for ν ∈ M \ {0, π}, D̃ν = Dν/2 for ν = 0 and ν = π.

Lemma 4.2 shows that a multiple seasonal increment process can be represented as a k-factor Gegenbauer
process

k∏
i=1

(1− 2uiB +B2)dix(m) = ξ(m). (59)

In the case where ξ(m) is an ARMA(p, q) sequence, the model x(m) defined by (59) is called k-factor
GARMA(p, di, ui, q) sequence. It is stationary and invertible if |di| < 1/2 for |ui| < 1 and |di| < 1/4 for |ui| = 1.
If additionally di > 0, then the model exhibits a long memory behavior [50]. The function (1− 2uiB +B2)−di is
a generating function of the Gegenbauer polynomial:

(1− 2uB +B2)−d =

∞∑
n=0

C(d)
n (u)Bn,

where

C(d)
n (u) =

[n/2]∑
k=0

(−1)k(2u)n−2kΓ(d− k + n)

k!(n− 2k)!Γ(d)
.

Thus, denoting k∗ = |M|, we obtain

(χ
(D)
s (B))−1 =

∏
ν∈M

(1− 2 cos νB +B2)−D̃ν =

∞∑
m=0

G+
k∗(m)Bm =

( ∞∑
m=0

G−
k∗(m)Bm

)−1

,

where

G+
k∗(m) =

∑
0≤n1,...,nk∗≤m,n1+...+nk∗=m

∏
ν∈M

C(D̃ν)
nν

(cos ν), (60)

G−
k∗(m) =

∑
0≤n1,...,nk∗≤m,n1+...+nk∗=m

∏
ν∈M

C(−D̃ν)
nν

(cos ν). (61)

The derived representations of the increment operator χ(D)
s (B) imply the following theorem.

Theorem 4.1
Assume that for a stochastic vector sequence ξ⃗(m) and fractional differencing orders dj = Rj +Dj , j =
0, 1, . . . , r, the FM increment sequence χ

(R+D)

1,s
(ξ⃗(m)) generated by increment operator (58) is a stationary

sequence with a bounded from zero and infinity spectral density f̃1(λ). Then for the non-negative integer numbers
Rj , j = 0, 1, . . . , r, the GM increment sequence χ(R)

1,s
(ξ⃗(m)) is stationary if −1/2 < Dν < 1/2 for all ν ∈ M,

where Dν are defined by real numbers Dj , j = 0, 1, . . . , r, in Lemma 4.2, and it is long memory if 0 < Dν < 1/2
for at least one ν ∈ M, and invertible if −1/2 < Dν < 0. The spectral density f(λ) of the stationary GM increment
sequence χ(R)

1,s
(ξ⃗(m)) admits a representation

f(λ) = |β(R)(iλ)|2
∣∣∣χ(R)

1
(e−iλ)

∣∣∣−2 ∣∣∣χ(D)

1
(e−iλ)

∣∣∣−2

f̃1(λ) =:
∣∣∣χ(D)

1
(e−iλ)

∣∣∣−2

f̃(λ),

where∣∣∣χ(D)

1
(e−iλ)

∣∣∣−2

=

∣∣∣∣∣
∞∑

m=0

G+
k∗(m)e−iλm

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

m=0

G−
k∗(m)e−iλm

∣∣∣∣∣
−2

=
∏
ν∈M

∣∣(e−iν − eiλ)(eiν − eiλ)
∣∣−2D̃ν

,

coefficients G+
k∗(m), G−

k∗(m) are defined by (60), (61).

Stat., Optim. Inf. Comput. Vol. 8, September 2020



MAKSYM LUZ, MIKHAIL MOKLYACHUK 703

The spectral density f(λ) and the structural function D
(R)
s (m, 1, 1) of a stationary GM increment sequence

χ
(R)

1,s
(ξ⃗(m)) exhibit the following behavior in the case of constant matrices C and K:

• |β(R)(iλ)|−2|χ(R)

1
(e−iλ)|2f(λ) ∼ C|ν − λ|−2D̃ν as λ→ ν, ν ∈ M, thus, the minimality condition (23) is

satisfied (for properties of eigenvalues of generalized fractional process, we refer to Palma and Bondon [41])
• D

(R)
s (m, 1, 1) ∼ K

∑
ν∈M:D̃ν>0 |m|2D̃ν−1 cos(mν), as m→ ∞ (see Giraitis and Leipus [12]).

Example 4.1
1. Consider an increment operator (1−B)R0+D0(1−B2)R1+D1 which represents a fractional integrated
component and a fractional seasonal components. In this case M0 = {0}, M1 = {0, π}, M = {0, π}. The
Gegenbauer representation of the increment is (1−B)D0+D1(1 +B)D1 . Stationarity conditions are the following:
|D| = |D0 +D1| < 1/2, |Dπ| = |D1| < 1/2.

2. Consider an increment operator (1−B2)R1+D1(1−B3)R2+D2 which represents two fractional seasonal
components. In this case M0 = {0, π}, M1 = {0, 2π/3}, M = {0, 2π/3, π}. The Gegenbauer representation of
the increment is (1−B)D1+D2(1− 2 cos(2π/3)B +B2)D2(1 +B)D1 . Stationarity conditions are the following:
|D| = |D1 +D2| < 1/2, |D2π/3| = |D2| < 1/2, |Dπ| = |D1| < 1/2.

3. Consider an increment operator (1−B2)R1+D1(1−B4)R2+D2 . In this case M0 = {0, π}, M1 = {0, π/2, π},
M = {0, π/2, π}. The Gegenbauer representation of the increment is (1−B)D1+D2(1 +B2)D2(1 +B)D1+D2 .
Stationarity conditions are the following: |D| = |Dπ| = |D1 +D2| < 1/2, |Dπ/2| = |D2| < 1/2.

In the following remarks we provide some additional details with the help of which we can use theorems
proposed in the previous section in finding solution of the forecasting problem for stochastic sequences with
periodically stationary (periodically correlated) FM increments.

Remark 4.1
Theorem 4.1 implies that the Fourier coefficients (33) of the function

|β(R)(iλ)|2|χ(R)

1
(e−iλ)|−2f−1(λ)

are calculated by the formula

F 1(k, j) =
1

2π

∫ π

−π

eiλ(j−k)
∣∣∣χ(D)

1
(e−iλ)

∣∣∣2 f̃−1
1

(λ)dλ, k, j ≥ 0.

Remark 4.2
Assume that the spectral density f̃1(λ) admits a factorization

f̃1(λ) =
∣∣∣Φ̃1(e

−iλ)
∣∣∣2 =

∣∣∣∣∣
∞∑
k=0

φ̃1(k)(e
−iλ)

∣∣∣∣∣
2

,

where φ̃1(k) = {φ1,ij(k)}
j=1,q

i=1,T
, k = 0, 1, 2, . . . . Then coefficients {φ1,ij}

j=1,q

i=1,T
, k = 0, 1, 2, . . . from factorization

(38) are calculated by the formula

φ1,ij(k) =

k∑
m=0

G+
k∗(k −m)φ̃1,ij(m) = (G+

k∗ ∗ φ̃1,ij)(k).

Remark 4.3
Define a matrix-valued function Ψ̃1(e

−iλ) = {Ψ̃1,ij(e
−iλ)}j=1,T

i=1,q
by the equation Ψ̃1(e

−iλ)Φ̃1(e
−iλ) = Eq, where

Eq is the identity q × q matrix. Then Ψ1(e
−iλ) = χ

(D)

1
(e−iλ)Ψ̃1(e

−iλ).

Stat., Optim. Inf. Comput. Vol. 8, September 2020



704 FORECASTING OF SEQUENCES WITH PERIODICALLY STATIONARY SEASONAL INCREMENTS

5. Examples of forecasting for some special models

Example 5.1
Basawa et al. [5] consider a so-called first-order seasonal periodic autoregressive process (SPAR(1,1)) defined by
the difference equation

XnT+ν = ϕ(ν)XmT+ν−1 + α(ν)X(m−1)T+ν − ϕ(ν)α(ν)X(m−1)T+ν−1 + εmT+ν , (62)

where εmT+ν is an uncorrelated periodic white noise process with E(εmT+ν) = 0 and Var(εmT+ν) = σ2(ν),
1 ≤ ν ≤ T (we follow notations from [5]). Depending on coefficients ϕ(ν), α(ν) model (62) has the following
properties:

• if ϕ(ν) ≡ ϕ, α(ν) ≡ α, σ2(ν) ≡ σ2 for 1 ≤ ν ≤ T , then model (62) reduces to Box-Jenkins SAR(1,1) model,
• if α(ν) ≡ 0 for 1 ≤ ν ≤ T , then model (62) reduces to PAR(1) model,
• if

∏T
ν=1 |ϕ(ν)| < 1 and |α(ν)| < 1 for all ν, then model (62) admits a causal and stationary T -dimensional

VAR representation
Φ0Xm = Φ1Xm−1 +Φ2Xm−2 + εn,

where

Xm = (XmT+1, XmT+2, . . . , XmT+T )
⊤, εm = (εmT+1, εmT+2, . . . , εmT+T )

⊤.

Here we consider another case where
∏T

ν=1 |ϕ(ν)| < 1 and α(ν) ≡ 1 for all ν. Without loss of generality assume
that σ2(ν) ≡ 1 for all ν. Then, taking into account BTXmT+ν = X(m−1)T+ν , model (62) reduces to integrated
PAR, or PARIMA, model

(1−BT )(XmT+ν − ϕ(ν)XmT+ν−1) = εmT+ν ,

which admits a VARIMA(1,1,0) representation

Ψ0∆Xm +Ψ1∆Xm−1 = εm,

where Ψ0(r, s) = 1 for r = s, Ψ0(r, s) = −ϕ(s) for r = s+ 1 and Ψ0(r, s) = 0 otherwise; Ψ1(1, T ) = −ϕ(T ) and
Ψ1(r, s) = 0 otherwise, 1 ≤ r, s ≤ T . Note that ∆Xm = (1−B)Xm = χ

(1)
1,1(Xm) in terms of GM increments. The

spectral density of the one-step increment sequence ∆Xm is the following:

f(λ) =
λ2

|1− e−iλ|2
∣∣Ψ0 +Ψ1e

−iλ
∣∣−2

.

Consider the following estimation problem. Let us assume that we observe a time series XmT+ν at points
m ≤ −1, 1 ≤ ν ≤ T . It is necessary to find an estimate ÂX of the functional which depends on future values
of XmT+ν , m ≥ 0, 1 ≤ ν ≤ T , with a discount factor ρ, 0 < ρ < 1:

AX =

∞∑
m=0

T∑
ν=1

ρmT+νXmT+ν =

∞∑
m=0

a⊤mXm =: AX,

where am = ρmT (ρ, ρ2, . . . , ρT )⊤ = ρmTa, a = (ρ, ρ2, . . . , ρT )⊤. Coefficients bm, m ≥ 0 and v−1 from the
representation AX = B∆X− VX are the following: bm = ρmT

1−ρT a, v−1 = b0 = − 1
1−ρT a. Since ∥am∥2 =

c1(T )ρ
mT , ∥bm∥2 = c2(T )ρ

mT , conditions (21) and (22) are satisfied. Thus, we apply Theorem 3.3 to find the
spectral characteristic of the estimate ÂX . We have

Φ(1)(e
−iλ) = Ψ−1

0

∞∑
k=0

(−1)k(Ψ1Ψ
−1
0 )ke−iλk, Ψ(1)(e

−iλ) = Ψ0 +Ψ1e
−iλ,
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and

r⃗(1)(e
iλ) =

1

1− ρT
Θ⊤a

∞∑
k=0

ρkT eiλk,

where Θ := (Ψ0 + ρTΨ1)
−1,

(Ψ(1)(e
−iλ))⊤r⃗(1)(e

iλ) =
1

1− ρT
Ψ⊤

1 Θ
⊤ae−iλ +

1

1− ρT
a

∞∑
k=0

ρkT eiλk,

Then, the optimal estimate of the value of the functional AX is calculated by the formula

ÂX = − 1

1− ρT
a⊤ΘΨ1∆X−1 +

1

1− ρT
a⊤X−1 =

1

1− ρT
a⊤ ((ET −ΘΨ1)X−1 +ΘΨ1X−2) .

The value of the mean square error of the estimate is calculated by the formula

∆
(
f ; ÂX

)
=

1

(1− ρT )3(1 + ρT )
∥Θ⊤a∥2.

Example 5.2
To illustrates a forecasting technique developed in Chapters 3 and 4 we consider a seasonal time series x(t), t ∈ Z,
exhibiting two fractional seasonal patterns and a periodic covariance behavior

(1−Bs)d0(1−Bus)d1ξ(t) = ε(t)− a0ε(t− 1)− ai(t)ε(t− s), i(t) = (t mod s) + 1,

where d0 = 1 +D0, d1 = 1 +D1, ε(t), t ∈ Z, are i.i.d. random variables with Eε(t) = 0, E|ε(t)|2 = 1. The first
cycle s may refer to 7 days within a week, and this pattern shows different correlation structure for each
‘season”, namely, day of a week. The second seasonal pattern us may describe a year period assuming that
u = 52 corresponds to weeks within a year. Under the conditions stated below, the increment w(t) = (1−Bs)(1−
Bus)ξ(t) is cyclostationary since coefficients ai(t) are periodic with the period T = s.

Define the vector-valued sequences ξ⃗(m) = (ξ1(m), ξ2(m), . . . , ξs(m))⊤, where ξp(m) = ξ(sm+ p− 1),
and ε⃗(m) = (ε1(m), ε2(m), . . . , εs(m))⊤, where εp(m) = ε(sm+ p− 1). Consider an increment function
χ
(2)
(1,1),(1,u)(B) = (1−B)(1−Bu) with the step µ = (1, 1). The GM increment sequence χ(2)

(1,1),(1,u)(ξ⃗(m)) admits
the representation

(1−B)D0(1−Bu)D1χ
(2)
(1,1),(1,u)(ξ⃗(m)) = Φ0ε⃗(m) + Φ1ε⃗(m− 1),

Φ0 =


1 0 0 . . . 0

−a0 1 0 . . . 0

0 −a0 1
. . . 0

...
...

. . . . . .
...

0 0 0 . . . 1

 , Φ1 =


−a1 0 0 . . . −a0
0 −a2 0 . . . 0

0 0 −a3
. . . 0

...
...

. . . . . .
...

0 0 0 . . . −as

 .

It is stationary under conditions |D0 +D1| < 1/2, |D1| < 1/2. For instance, if d0 = 0.7, d1 = 1.2, thenD0 = −0.3,
D1 = 0.2 and the process exhibits a long-memory behavior.

The spectral density f(λ) of the GM increment sequence χ(2)
(1,1),(1,d)ξ⃗(m) is

f(λ) =
|β(2)(iλ)|2

|χ(2)
(1,1)(e

−iλ)|2|χ(D)
(1,1)(e

−iλ)|2
∣∣Φ(1,1)(e

−iλ)
∣∣2

=
λ2
∏[u/2]

k=−[u/2](λ− 2πk/u)2

|1− e−iλ|2|1− e−iuλ|2|1− e−iλ|2D0 |1− e−iuλ|2D1

∣∣Φ0 +Φ1e
−iλ
∣∣2 ,

Stat., Optim. Inf. Comput. Vol. 8, September 2020



706 FORECASTING OF SEQUENCES WITH PERIODICALLY STATIONARY SEASONAL INCREMENTS

where

(χ
(D)
(1,1)(e

−iλ))−1 = (1− e−iλ)−D0(1− e−iuλ)−D1

= (1− e−iλ)−D0−D1

[u/2]∏
k=1

(1− 2 cos(2πk/u)e−iλ + e−2iλ)−D̃k

=

∞∑
k=0

G+
k∗(k)e

−iλk =

( ∞∑
k=0

G−
k∗(k)e

−iλk

)−1

,

k∗ = [u/2] + 1, G+
k∗(m) and G−

k∗(m), m ≥ 0, are defined by (60) and (61) respectively, D̃k = D1 for 1 ≤ k ≤
[u/2]− 1, D̃[u/2] = D1 for odd u and D̃[u/2] = D1/2 for even u. Note, G+

k∗(0) = G−
k∗(0) = 1.

Let us find an estimate of a weighted sum of two average weekly values of the time series ξ(t)

A2sξ = α

(
1

s

s−1∑
k=0

ξ(k)

)
+ (1− α)

(
1

s

2s−1∑
k=s

ξ(k)

)
based on observations of ξ(t) at points t = −1,−2, . . . .

In terms of the sequence ξ⃗(m), the functional A2sξ is rewritten as

A2ξ⃗ = (⃗a(0))⊤ξ⃗(0) + (⃗a(1))⊤ξ⃗(1),

where a⃗(0) = (αs−1, αs−1, . . . , αs−1)⊤, a⃗(1) = ((1− α)s−1, (1− α)s−1, . . . , (1− α)s−1)⊤, and admits a
representation

A2ξ⃗ = B2χξ⃗ − V2ξ⃗ = (⃗b(0))⊤χ(ξ⃗(0)) + (⃗b(1))⊤χ(ξ⃗(1))−
−1∑

k=−u−1

(v⃗2(k))
⊤ξ⃗(k).

Here b⃗(0) = a⃗(0) + a⃗(1) = (s−1, s−1, . . . , s−1)⊤ = s−11, b⃗(1) = a⃗(1) = ((1− α)s−1, (1− α)s−1, . . . , (1−
α)s−1)⊤ = (1− α)s−11; and further v⃗2(k) = 0 for k = −1,−2, . . . ,−u+ 2, v⃗2(−u+ 1) = −b⃗(1) =
−(1− α)s−11, v⃗2(−u) = −b⃗(0) + b⃗(1) = −αs−11, v⃗2(−u− 1) = b⃗(0) = s−11. By 1 we denote a vector
(1, 1, . . . , 1)⊤ of dimension s. Note that

(1−B)−1(1−Bu)−1 =

∞∑
k=0

d(k)Bk =

∞∑
k=0

(
1 +

[
k

u

])
Bk.

We find the spectral characteristic h⃗(1,1),2(λ) of the estimate Â2ξ⃗ using Theorem 3.2 as well as remarks to
Theorem 4.1. First we obtain

Φ(1,1)(e
−iλ) =

∞∑
k=0

(G+
k∗ ∗ Φ)(k)e−iλk = G+

k∗(0)Φ0 +

∞∑
k=1

(G+
k∗(k)Φ0 +G+

k∗(k − 1)Φ1)e
−iλk,

Ψ(1,1)(e
−iλ) =

∞∑
k=0

(G−
k∗ ∗Ψ)(k)e−iλk = Φ−1

0

∞∑
k=0

(G−
k∗ ∗ Ψ̃)(k)e−iλk,

where (G−
k∗ ∗Ψ)(k), k ≥ 0, is a convolution of two sequences G−

k∗(k) and Ψk, k ≥ 0, Ψk = (−1)kΦ−1
0 (Φ1Φ

−1
0 )k,

Ψ̃k = Φ−1
0 Ψk = (−1)k(Φ1Φ

−1
0 )k,

Φ1Φ
−1
0 =


−a1 − as0 −as−1

0 −as−2
0 . . . −a0

−a2a0 −a2 0 . . . 0
−a3a20 −a3a0 −a3 . . . 0

...
...

...
. . .

...
−asas−1

0 −asas−2
0 −asas−3

0 . . . −as

 .
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Then

(Ψ(1,1)(e
−iλ))⊤r⃗(1,1),2(e

iλ) = b⃗(1)eiλ + b⃗(0)

+

∞∑
k=1

(
(G−

k∗ ∗ Ψ̃⊤)(k)(⃗b(0) +G+
k∗(1)⃗b(1)) +G−

k∗(k + 1)⃗b(1)
)
e−iλk

= χ(D)
(1,u)

(e−iλ)(Ψ̃(e−iλ))⊤
(⃗
b(0) +D0⃗b(1)

)
+ b⃗(1)eiλχ(D)

(1,u)
(e−iλ),

and

h⃗(1,1),2(λ) = −
χ
(2)
(1,1)(e

−iλ)

β(2)(iλ)

∞∑
k=1

s−1
(
(1 + (1− α)D0)(G

−
k∗ ∗ Ψ̃⊤)(k) + (1− α)G−

k∗(k + 1)ET

)
1e−iλk

=
χ
(2)
(1,1)(e

−iλ)

β(2)(iλ)

∞∑
k=1

h(k).

The optimal estimate of the functional A2sξ is calculated by the formula

Â2ξ⃗ = −s−1(1)⊤ξ⃗(−u− 1) + αs−1(1)⊤ξ⃗(−u) + (1− α)s−1(1)⊤ξ⃗(−u+ 1)

+

∞∑
k=1

h⊤(k)
(
ξ⃗(−k)− ξ⃗(−k − 1)− ξ⃗(−k − u) + ξ⃗(−k − u− 1)

)
.

The value of the mean square error of the estimate is calculated by the formula

∆
(
f ; Â2ξ⃗

)
= s−2∥(Φ0 + (1− α)(D0Φ0 +Φ1))

⊤1∥2 + (1− α)2s−2∥Φ⊤
0 1∥2.

In a particular case d0 = 1, d1 = 1 and, respectively,D0 = 0,D1 = 0, we have χ(D)
(1,u)

(e−iλ) ≡ 1, andG±
k∗(k) = 0

for k ≥ 1. In this case the estimate of the functional A2sξ and the value of the its mean square error are calculated
by the formulas

Â2ξ⃗ = −s−1(1)⊤ξ⃗(−u− 1) + αs−1(1)⊤ξ⃗(−u) + (1− α)s−1(1)⊤ξ⃗(−u+ 1)

+s−1
∞∑
k=1

(−1)k+1(1)⊤(Φ1Φ
−1
0 )k

(
ξ⃗(−k)− ξ⃗(−k − 1)− ξ⃗(−k − u) + ξ⃗(−k − u− 1)

)
,

and

∆
(
f ; Â2ξ⃗

)
= s−2

(
s∑

k=1

(
1− (1− α)δksa0 − (1− α)ak

)2
+ (1− α)2(s− 1)(1− a0)

2 + (1− α)2

)
.

6. Minimax (robust) method of forecasting

Values of the mean square errors and spectral characteristics of the optimal estimates of functionals Aξ⃗ and AN ξ⃗
constructed from unobserved values of stochastic sequence ξ⃗(m) which determine a stationary stochastic GM
increment sequence χ(d)

µ,s(ξ⃗(m)) with the spectral density matrix f(λ) based on its observations ξ⃗(m) at points
m = −1,−2, . . . can be calculated by formulas (37), (36) and (43), (42) respectively, in the case where the spectral
density matrix f(λ) is exactly known. In the case where the spectral density f(λ) admits the canonical factorization
(38), formulas (71), (39) and (45), (44) are derived for calculating values of the mean square errors and spectral
characteristics, respectively.
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In many practical cases, however, complete information about the spectral density matrix is impossible while
some sets D of admissible spectral densities can be defined. In this case the minimax method of estimation of
functionals from unobserved values of stochastic sequences is reasonable. This method consists in finding an
estimate that minimizes the maximal values of the mean square errors for all spectral densities from a given class
D of admissible spectral densities simultaneously.

Definition 6.1
For a given class of spectral densities D a spectral density f0(λ) ∈ D is called the least favourable in D for the
optimal linear estimation of the functional Aξ⃗ if the following relation holds true:

∆(f0) = ∆(hµ(f0); f0) = max
f∈D

∆(hµ(f); f).

Definition 6.2
For a given class of spectral densities D a spectral characteristic h0(λ) of the optimal linear estimate of the
functional Aξ is called minimax-robust if the following conditions are satisfied

h0(λ) ∈ HD =
∩
f∈D

L0−
2 (f), min

h∈HD
max
f∈D

∆(h; f) = sup
f∈D

∆(h0; f).

Taking into account the introduced definitions and the relations derived in the previous sections we can verify
that the following lemmas hold true.

Lemma 6.1
A spectral density f0(λ) ∈ D satisfying the minimality condition (23) is the least favourable density in the class
D for the optimal linear estimation of the functional Aξ⃗ based on observations of the sequence ξ⃗(m) at points
m = −1,−2, . . . if the operator F0

µ defined by the Fourier coefficients of the function

|β(d)(iλ)|2|χ(d)
µ (e−iλ)|−2f−1

0 (λ), (63)

determines a solution to the constrained optimization problem

max
f∈D

(⟨
Dµa,F−1

µ Dµa
⟩)

=
⟨
Dµa, (F0

µ)
−1Dµa

⟩
. (64)

The minimax spectral characteristic h0 = hµ(f
0) is calculated by formula (36) if hµ(f0) ∈ HD.

Lemma 6.2
A spectral density f0(λ) ∈ D which admits the canonical factorization (38) is the least favourable density in the
class D for the optimal linear estimation of the functional Aξ⃗ based on observations of the sequence ξ⃗(m) at points
m = −1,−2, . . . if coefficients {φ0(k) : k ≥ 0} of the canonical factorization

f0(λ) =

( ∞∑
k=0

φ0(k)e−iλk

)( ∞∑
k=0

φ0(k)e−iλk

)∗

(65)

of the spectral density f0(λ) determine a solution to the constrained optimization problem

∥∥DµAφµ

∥∥2 → max, f(λ) =

( ∞∑
k=0

φ(k)e−iλk

)( ∞∑
k=0

φ(k)e−iλk

)∗

∈ D. (66)

The minimax spectral characteristic h0 = hµ(f0) is calculated by formula (39) if hµ(f0) ∈ HD.

Lemma 6.3
A spectral density f0(λ) ∈ D which admits the canonical factorization (38) is the least favourable density in the
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class D for the optimal linear extrapolation of the functional AN ξ⃗ based on observations of the sequence ξ⃗(m) at
points m = −1,−2, . . . if coefficients {φ0(k) : k = 0, 1, . . . , N} from the canonical factorization

f0(λ) =

(
N∑

k=0

φ0(k)e−iλk

)(
N∑

k=0

φ0(k)e−iλk

)∗

(67)

of the spectral density f0(λ) determine a solution to the constrained optimization problem∥∥∥Dµ
NANφµ,N

∥∥∥2 → max, f(λ) =

(
N∑

k=0

φ(k)e−iλk

)(
N∑

k=0

φ(k)e−iλk

)∗

∈ D. (68)

The minimax spectral characteristic h0 = hµ(f0) is calculated by formula (44) if hµ,N (f0) ∈ HD.

For more detailed analysis of properties of the least favorable spectral densities and the minimax-robust spectral
characteristics we observe that the minimax spectral characteristic h0 and the least favourable spectral density f0
form a saddle point of the function ∆(h; f) on the set HD ×D. The saddle point inequalities

∆(h; f0) ≥ ∆(h0; f0) ≥ ∆(h0; f) ∀f ∈ D, ∀h ∈ HD

hold true if h0 = hµ(f0), hµ(f0) ∈ HD and f0 is a solution of the constrained optimization problem

∆̃(f) = −∆(hµ(f0); f) → inf, f ∈ D, (69)

where the functional ∆(hµ(f0); f) is calculated by the formula

∆(hµ(f0); f) =
1

2π

∫ π

−π

β(d)(iλ)

χ
(d)
µ (e−iλ)

( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)⊤

f−1
0 (λ)f(λ)

×f−1
0 (λ)

( ∞∑
k=0

((F0
µ)

−1Dµa)keiλk

)
β(d)(iλ)

χ
(d)
µ (e−iλ)

dλ (70)

or by the formula

∆(hµ(f0); f) =
1

2π

∫ π

−π

χ
(d)
µ (e−iλ)

β(d)(iλ)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)⊤

(Ψ0
µ(e

−iλ))f(λ)

×(Ψ0
µ(e

−iλ))∗

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)
χ
(d)
µ (e−iλ)

β(d)(iλ)
dλ (71)

in the case where the spectral density admits the canonical factorization (38).
The constrained optimization problem (69) is equivalent to the unconstrained optimization problem

∆D(f) = ∆̃(f) + δ(f |D) → inf,

where δ(f |D) is the indicator function of the set D, namely δ(f |D) = 0 if f ∈ D and δ(f |D) = +∞ if f /∈ D. A
solution f0 of this unconstrained optimization problem is characterized by the condition 0 ∈ ∂∆D(f0), which is the
necessary and sufficient condition under which a point f0 belongs to the set of minimums of the convex functional
∆D(f) [10, 35, 33, 46]. This condition makes it possible to find the least favourable spectral densities in some
special classes of spectral densities D.

The form of the functional ∆̃(f) allows us to apply the Lagrange method of indefinite multipliers for
investigating the constrained optimization problem (69). The complexity of optimization problem is determined by
the complexity of calculating the subdifferentials of the indicator functions of sets of admissible spectral densities.
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6.1. Least favorable spectral density in classes D0

Consider the forecasting problem for the functional Aξ⃗ which depends on unobserved values of a sequence
ξ⃗(m) with stationary GM increments based on observations of the sequence at points m = −1,−2, . . . under the
condition that sets of admissible spectral densities Dk

0 , k = 1, 2, 3, 4 are defined as follows:

D1
0 =

{
f(λ)

∣∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
f(λ)dλ = P

}
,

D2
0 =

{
f(λ)

∣∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
Tr [f(λ)]dλ = p

}
,

D3
0 =

{
f(λ)

∣∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
fkk(λ)dλ = pk, k = 1, T

}
,

D4
0 =

{
f(λ)

∣∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
⟨B1, f(λ)⟩ dλ = p

}
,

where p, pk, k = 1, T are given numbers, P,B1, are given positive-definite Hermitian matrices.
From the condition 0 ∈ ∂∆D(f0) we find the following equations which determine the least favourable spectral

densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D1

0 we have equation

( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
α⃗ · α⃗∗

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (72)

where α⃗ is a vector of Lagrange multipliers.
For the second set of admissible spectral densities D2

0 we have equation( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

= α2

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)2

, (73)

where α2 is a Lagrange multiplier.
For the third set of admissible spectral densities D3

0 we have equation

( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

){
α2
kδkl

}T
k,l=1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (74)

where α2
k are Lagrange multipliers, δkl are Kronecker symbols.
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For the fourth set of admissible spectral densities D4
0 we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

= α2

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
B⊤

1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (75)

where α2 is a Lagrange multiplier.
In the case where the spectral density admits the canonical factorization (38) we have the following equations,

correspondingly ( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤α⃗ · α⃗∗Φ0
µ(e

−iλ), (76)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= α2(Φ0
µ(e

−iλ))⊤Φ0
µ(e

−iλ). (77)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤
{
α2
kδkl

}T
k,l=1

Φ0
µ(e

−iλ), (78)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= α2(Φ0
µ(e

−iλ))⊤B⊤
1 Φ0

µ(e
−iλ), (79)

The following theorem holds true.

Theorem 6.1
Let the minimality condition (23) hold true. The least favorable spectral densities f0(λ) in the classes Dk

0 ,
k = 1, 2, 3, 4, for the optimal linear estimation of the functional Aξ⃗ from observations of the sequence ξ⃗(m) at
points m = −1,−2, . . . are determined by equations (72), (73), (74), (75), (or equations (76), (77), (78), (79) in the
case where the spectral densities admit the canonical factorization (38), respectively), the constrained optimization
problem (64) and restrictions on densities from the corresponding classes Dk

0 , k = 1, 2, 3, 4. The minimax-robust
spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the formula (36).

6.2. Least favorable spectral density in classes DU
V

Consider the forecasting problem for the functional Aξ⃗ which depends on unobserved values of a sequence
ξ⃗(m) with stationary GM increments based on observations of the sequence at points m = −1,−2, . . . under the
condition that sets of admissible spectral densities DU

V
k
, k = 1, 2, 3, 4 are defined as follows:

DU
V

1
=

{
f(λ)

∣∣∣∣V (λ) ≤ f(λ) ≤ U(λ),
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
f(λ)dλ = Q

}
,

DU
V

2
=

{
f(λ)

∣∣∣∣Tr [V (λ)] ≤ Tr [f(λ)] ≤ Tr [U(λ)],
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
Tr [f(λ)]dλ = q

}
,

DU
V

3
=

{
f(λ)

∣∣∣∣vkk(λ) ≤ fkk(λ) ≤ ukk(λ),
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
fkk(λ)dλ = qk, k = 1, T

}
,

DU
V

4
=

{
f(λ)

∣∣∣∣ ⟨B2, V (λ)⟩ ≤ ⟨B2, f(λ)⟩ ≤ ⟨B2, U(λ)⟩ , 1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
⟨B2, f(λ)⟩ dλ = q

}
.
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Here the spectral densities V (λ), U(λ) are known and fixed, q, qk, k = 1, T are given numbers, Q,B2 are given
positive definite Hermitian matrices.

From the condition 0 ∈ ∂∆D(f0) we find the following equations which determine the least favourable spectral
densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities DU
V
1 we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (80)

where β⃗ is a vector of Lagrange multipliers, Γ1(λ) ≤ 0 and Γ1(λ) = 0 if f0(λ) > V (λ), Γ2(λ) ≥ 0 and Γ2(λ) = 0
if f0(λ) < U(λ).

For the second set of admissible spectral densities DU
V
2 we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

= (β2 + γ1(λ) + γ2(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)2

, (81)

where β2 is Lagrange multiplier, γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [f0(λ)] > Tr [V (λ)], γ2(λ) ≥ 0 and γ2(λ) = 0 if
Tr [f0(λ)] < Tr [U(λ)].

For the third set of admissible spectral densities DU
V
3 we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

){
(β2

k + γ1k(λ) + γ2k(λ))δkl
}T
k,l=1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (82)

where β2
k are Lagrange multipliers, δkl are Kronecker symbols, γ1k(λ) ≤ 0 and γ1k(λ) = 0 if f0kk(λ) > vkk(λ),

γ2k(λ) ≥ 0 and γ2k(λ) = 0 if f0kk(λ) < ukk(λ).

For the fourth set of admissible spectral densities DU
V
4 we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

= (β2 + γ′1(λ) + γ′2(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
B⊤

2

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
(83)

where β2 is Lagrange multiplier, γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B2, f0(λ)⟩ > ⟨B2, V (λ)⟩, γ′2(λ) ≥ 0 and γ′2(λ) = 0
if ⟨B2, f0(λ)⟩ < ⟨B2, U(λ)⟩.

In the case where the spectral density admits the canonical factorization (38) we have the following equations,
correspondingly( ∞∑

k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ)) Φ0
µ(e

−iλ), (84)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (β2 + γ1(λ) + γ2(λ))(Φ
0
µ(e

−iλ))⊤ Φ0
µ(e

−iλ), (85)
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( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

=

= (Φ0
µ(e

−iλ))⊤
{
(β2

k + γ1k(λ) + γ2k(λ))δkl
}T
k,l=1

Φ0
µ(e

−iλ), (86)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (β2 + γ′1(λ) + γ′2(λ))(Φ
0
µ(e

−iλ))⊤B⊤
2 Φ0

µ(e
−iλ), (87)

The following theorem holds true.

Theorem 6.2
Let the minimality condition (23) hold true. The least favorable spectral densities f0(λ) in the classes DU

V
k,

k = 1, 2, 3, 4, for the optimal linear estimation of the functional Aξ⃗ from observations of the sequence ξ⃗(m) at
points m = −1,−2, . . . are determined by equations (80), (81), (82), (83) (or equations (84), (85), (86), (87) in the
case where the spectral densities admit the canonical factorization (38), respectively), the constrained optimization
problem (64) and restrictions on densities from the corresponding classes DU

V
k, k = 1, 2, 3, 4. The minimax-robust

spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the formula (36).

6.3. Least favorable spectral density in classes Dε

Consider the forecasting problem for the functional Aξ⃗ which depends on unobserved values of a sequence
ξ⃗(m) with stationary GM increments based on observations of the sequence at points m = −1,−2, . . . under the
condition that sets of admissible spectral densities Dk

ε , k = 1, 2, 3, 4 are defined as follows:

D1
ε =

{
f(λ)

∣∣∣∣Tr [f(λ)] = (1− ε)Tr [f1(λ)] + εTr [W (λ)],
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
Tr [f(λ)]dλ = p

}
;

D2
ε =

{
f(λ)

∣∣∣∣fkk(λ) = (1− ε)f1kk(λ) + εwkk(λ),
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
fkk(λ)dλ = pk, k = 1, T

}
;

D3
ε =

{
f(λ)

∣∣∣∣ ⟨B1, f(λ)⟩ = (1− ε) ⟨B1, f1(λ)⟩+ ε ⟨B1,W (λ)⟩ , 1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
⟨B1, f(λ)⟩ dλ = p

}
;

D4
ε =

{
f(λ)

∣∣∣∣f(λ) = (1− ε)f1(λ) + εW (λ),
1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
f(λ)dλ = P

}
.

Here f1(λ) is a fixed spectral density, W (λ) is an unknown spectral density, p, pk, k = 1, T , are given numbers, P
is a given positive-definite Hermitian matrices.

From the condition 0 ∈ ∂∆D(f0) we find the following equations which determine the least favourable spectral
densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities D1
ε we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

= (α2 + γ1(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)2

, (88)

where α2 is Lagrange multiplier, γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [f0(λ)] > (1− ε)Tr [f1(λ)].
For the second set of admissible spectral densities D2

ε we have equation( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

){
(α2

k + γ1k(λ))δkl
}T
k,l=1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (89)
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where α2
k are Lagrange multipliers, γ1k(λ) ≤ 0 and γ1k(λ) = 0 if f0kk(λ) > (1− ε)f1kk(λ).

For the third set of admissible spectral densities D3
ε we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

= (α2 + γ′1(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
B⊤

1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (90)

where α2 is a Lagrange multiplier, γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B1, f0(λ)⟩ > (1− ε)⟨B1, f1(λ)⟩.
For the fourth set of admissible spectral densities D4

ε we have equation( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
(α⃗ · α⃗∗ + Γ(λ))

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (91)

where α⃗ is a vector of Lagrange multipliers, Γ(λ) ≤ 0 and Γ(λ) = 0 if f0(λ) > (1− ε)f1(λ).
In the case where the spectral density admits the canonical factorization (38) we have the following equations,

correspondingly( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (α2 + γ1(λ))(Φ
0
µ(e

−iλ))⊤Φ0
µ(e

−iλ), (92)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤
{
(α2

k + γ1k(λ))δkl
}T
k,l=1

Φ0
µ(e

−iλ), (93)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (α2 + γ′1(λ))(Φ
0
µ(e

−iλ))⊤B⊤
1 Φ0

µ(e
−iλ), (94)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤(α⃗ · α⃗∗ + Γ(λ))Φ0
µ(e

−iλ), (95)

The following theorem holds true.

Theorem 6.3
Let the minimality condition (23) hold true. The least favorable spectral densities f0(λ) in the classes Dk

ε , k =

1, 2, 3, 4 for the optimal linear estimation of the functional Aξ⃗ from observations of the sequence ξ⃗(m) at points
m = −1,−2, . . . are determined by the equations (88), (89), (90), (91) (or equations (92), (93), (94), (95) in the
case where the spectral densities admit the canonical factorization (38), respectively), the constrained optimization
problem (64) and restrictions on densities from the corresponding classes Dk

ε , k = 1, 2, 3, 4. The minimax-robust
spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the formula (36).

6.4. Least favorable spectral density in classes D1δ

Consider the forecasting problem for the functional Aξ⃗ which depends on unobserved values of a sequence
ξ⃗(m) with stationary GM increments based on observations of the sequence at points m = −1,−2, . . . under the
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condition that the sets of admissible spectral densities Dk
1δ, k = 1, 2, 3, 4 are defined as follows:

D1
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
|Tr(f(λ)− f1(λ))| dλ ≤ δ

}
;

D2
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
∣∣fkk(λ)− f1kk(λ)

∣∣ dλ ≤ δk, k = 1, T

}
;

D3
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
|⟨B2, f(λ)− f1(λ)⟩| dλ ≤ δ

}
;

D4
1δ =

{
f(λ)

∣∣∣∣ 12π
∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
∣∣fij(λ)− f1ij(λ)

∣∣ dλ ≤ δji , i, j = 1, T

}
.

Here f1(λ) is a fixed spectral density, δ, δk, k = 1, T , δji , i, j = 1, T , are given numbers.
From the condition 0 ∈ ∂∆D(f0) we find the following equations which determine the least favourable spectral

densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D1

1δ we have equation( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

= β2γ2(λ)

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)2

, (96)

1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
|Tr (f0(λ)− f1(λ))| dλ = δ, (97)

where β2 is Lagrange multiplier, |γ2(λ)| ≤ 1 and

γ2(λ) = sign (Tr (f0(λ)− f1(λ))) : Tr (f0(λ)− f1(λ)) ̸= 0.

For the second set of admissible spectral densities D2
1δ we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

){
β2
kγ

2
k(λ)δkl

}T
k,l=1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (98)

1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
∣∣f0kk(λ)− f1kk(λ)

∣∣ dλ = δk, (99)

where β2
k are Lagrange multipliers,

∣∣γ2k(λ)∣∣ ≤ 1 and

γ2k(λ) = sign (f0kk(λ)− f1kk(λ)) : f
0
kk(λ)− f1kk(λ) ̸= 0, k = 1, T .

For the third set of admissible spectral densities D3
1δ we have equation( ∞∑

k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

= β2γ′2(λ)

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
B⊤

2

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (100)
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1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
|⟨B2, f0(λ)− f1(λ)⟩| dλ = δ, (101)

where β2 is a Lagrange multiplier, |γ′2(λ)| ≤ 1 and

γ′2(λ) = sign ⟨B2, f0(λ)− f1(λ)⟩ : ⟨B2, f0(λ)− f1(λ)⟩ ̸= 0.

For the fourth set of admissible spectral densities D4
1δ we have equation

( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)( ∞∑
k=0

((F0
µ)

−1Dµa)ke
iλk

)∗

=

=

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
{βij(λ)γij(λ)}Ti,j=1

(
|χ(d)

µ (e−iλ)|2

|β(d)(iλ)|2
f0(λ)

)
, (102)

1

2π

∫ π

−π

|χ(d)
µ (e−iλ)|2

|β(d)(iλ)|2
∣∣f0ij(λ)− f1ij(λ)

∣∣ dλ = δji , (103)

where βij are Lagrange multipliers, |γij(λ)| ≤ 1 and

γij(λ) =
f0ij(λ)− f1ij(λ)∣∣f0ij(λ)− f1ij(λ)

∣∣ : f0ij(λ)− f1ij(λ) ̸= 0, i, j = 1, T .

In the case where the spectral density admits the canonical factorization (38) we have the following equations,
correspondingly( ∞∑

k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= β2γ2(λ)(Φ
0
µ(e

−iλ))⊤Φ0
µ(e

−iλ), (104)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤
{
β2
kγ

2
k(λ)δkl

}T
k,l=1

Φ0
µ(e

−iλ), (105)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= β2γ′2(λ)(Φ
0
µ(e

−iλ))⊤B⊤
2 Φ0

µ(e
−iλ), (106)

( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)( ∞∑
k=0

(DµAφ0
µ)ke

iλk

)∗

= (Φ0
µ(e

−iλ))⊤ {βij(λ)γij(λ)}Ti,j=1 Φ
0
µ(e

−iλ), (107)

The following theorem holds true.

Theorem 6.4
Let the minimality condition (23) hold true. The least favorable spectral densities f0(λ) in the classes Dk

1δ, k =

1, 2, 3, 4 for the optimal linear estimation of the functional Aξ⃗ from observations of the sequence ξ⃗(m) at points
m = −1,−2, . . . are determined by equations (96), (97); (98), (99); (100), (101); (102), (103) (or equations (104),
(105), (106), (107) in the case where the spectral densities admit the canonical factorization (38), respectively),
the constrained optimization problem (64) and restrictions on densities from the corresponding classes Dk

1δ, k =

1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by
the formula (36).
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7. Conclusions

In this article, we present results of investigation of stochastic sequences with periodically stationary long memory
multiple seasonal increments. We give definition of generalized multiple increment sequence and introduce
stochastic sequences ζ(m) with periodically stationary (periodically correlated, cyclostationary) generalized
multiple increments. These non-stationary stochastic sequences combine periodic structure of covariation functions
of sequences as well as multiple seasonal factors, including the integrating one. A short review of the spectral theory
of vector-valued generalized multiple increment sequences is presented. We describe methods of solution of the
classical forecasting problem for linear functionals which are constructed from unobserved values of a sequence
with periodically stationary generalized multiple increments in the case where the spectral structure of the sequence
is exactly known. Estimates are obtained by representing the sequence under investigation as a vector-valued
sequence with stationary generalized multiple increments and applying the Hilbert space projection technique. An
approach to forecasting in the presence of non-stationary fractional integration is discussed. Examples of solution
of the forecasting problem for particular models of time series are proposed. The minimax-robust approach to
forecasting problem is applied in the case of spectral uncertainty where densities of sequences are not exactly
known while, instead, sets of admissible spectral densities are specified. We propose a representation of the
mean square error in the form of a linear functional in L1 with respect to spectral densities, which allows us
to solve the corresponding constrained optimization problem and describe the minimax (robust) estimates of
the functionals. Relations are described which determine the least favourable spectral densities and the minimax
spectral characteristics of the optimal estimates of linear functionals for a collection of specific classes of admissible
spectral densities.

Appendix

Proof of Lemma 2.1
We have

r∏
i=1

(1−Bsi
µi
)di =

r∏
i=1

(
di∑

ji=0

(−1)ji
(
di
ji

)
Bjiµisi

)

=

r∏
i=1

(
diµisi∑
ji=0

(−1)[ji/µisi]

(
di

[ji/µisi]

)
I{ji mod µisi = 0}Bji

)

=

n1∑
j1=0

. . .

nr∑
jr=0

(
(−1)

∑r
i=1 M

ji
i

r∏
i=1

Ijii

r∏
i=1

(
di
M ji

i

))
B

∑r
i=1 ji .
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By replacing consequently j1 → k1, k1 + j2 → k2, k2 + j3 → k3, . . . , kr−1 + jr → kr := k, we obtain

r∏
i=1

(1−Bsi
µi
)di =

n1+n2∑
k2=0

n1∧k2∑
k1=0∨k2−n2

n3∑
j3=0

. . .

nr∑
jr=0

(−1)M
k2−k1
2 +M

k1
1 Ik2−k1

2 Ik1
1

×
(

d2
Mk2−k1

2

)(
d1
Mk1

1

)(
(−1)

∑r
i=3 M

ji
i

r∏
i=3

Ijii

r∏
i=3

(
di
M ji

i

))
Bk2+

∑r
i=3 ji

=

n1+n2+n3∑
k3=0

n1+n2∧k3∑
k2=0∨k3−n3

n1∧k2∑
k1=0∨k2−n2

n−4∑
j4=0

. . .

nr∑
jr=0

(−1)
∑3

i=1 M
ki−ki−1
i

3∏
i=1

I
ki−ki−1

i

×
3∏

i=1

(
di

M
ki−ki−1

i

)(
(−1)

∑r
i=4 M

ji
i

r∏
i=3

Ijii

r∏
i=3

(
di
M ji

i

))
Bk3+

∑r
i=4 ji

=

n(γ)∑
k=0

eγ(k)B
k,

where eγ(k) are coefficients from the lemma statement. �

Proof of Theorem 2.2
We follow the idea proposed by Yaglom [51] for continuous time stationary increments. Consider a GM

increment sequence with one seasonal factor χ(d)
µ,s(η(m)) = η

(d)
s (m,µ) = (1−Bs

µ)
dη(m). Formula (8) implies

c(d)s (µ) = Eη(d)s (m,µ) = (A0 +A1 + . . .+A(µ−1)d)c
(d)
s (1) = µdc(d)s (1) = cµd,

where c = c
(d)
s (1) does not depend on µ.

Since D(n)
s (m;µ, µ) is a positive-definite function with respect to variable m, one can define a function Fµ,s(λ)

depending on the parameter µ, which is a real bounded non-decreasing left-continuous with respect to λ ∈ [−π, π)
function, such that

D(d)
s (m;µ, µ) =

∫ π

−π

eiλmdFµ,s(λ). (108)

Again, formula (8) implies

Eη(d)s (m1 +m,µ)η
(d)
s (m,µ) =

(µ−1)d∑
p=0

(µ−1)d∑
q=0

ApAqEη
(d)
s (m1 +m− ps, 1)η

(d)
s (m2 − qs, 1)

=

∫ π

−π

(µ−1)d∑
p=0

(µ−1)d∑
q=0

ApAqe
iλ(m−(p−q)s)dF1,s(λ)

=

∫ π

−π

eiλm
(k−1)d∑
p=0

Ape
−ipsλ

(µ−1)d∑
q=0

Aqe
iqsλdF1,s(λ)

=

∫ π

π

eimλ (1− e−iµsλ)d

(1− e−isλ)d
(1− eiµsλ)d

(1− eisλ)d
dF1,s(λ).

Thus, ∫ π

π

eimλdFµ,s(λ) =

∫ π

−π

eimλ (1− cosµsλ)d

(1− cos sλ)d
F1,s(λ). (109)

The latter equality implies

Fµ,s(λ) =

∫ λ

0

(1− cosµsu)d

(1− cos su)d
F1,s(u),
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and ∫ λ

0

|β(d)(iu)|2

(1− cosµsu)d
dFµ,s(u) =

∫ λ

0

|β(d)(iu)|2

(1− cos su)d
dF1,s(u), (110)

where the function β(d)(iu) is to be chosen in the way that the integrals are defined for λ ∈ [−π, π) and converge at
the neighborhoods of the points cos su = 1, u ∈ [−π, π], namely, the points u = 2πk/s for |k| ≤ s/2, k ∈ Z. Thus,
we choose the function β(d)(iu) =

∏[s/2]
k=−[s/2](iu− 2πik/s)d.

The right side of equality (110) doesn’t depend on k, thus, put

F (λ) =
1

2d

∫ λ

0

|β(d)(iu)|2

(1− cosµsu)d
dFµ,s(u) (111)

The function F (λ) is real-valued non-decreasing bounded function defined on [−π, π), such that F (0) = 0.
Consider the function F (λ) as left-continuous. This function is the one stated in the theorem.

Relation (11) for r = 1 is obtained by considering the following equality for positive µ1, µ2:

D(n)
s (m,µ1, µ2) =

∫ π

−π

eimλ (1− e−iµ1sλ)d

(1− e−isλ)d
(1− eiµ2sλ)d

(1− eisλ)d
dF1,s(λ)

=

∫ π

−π

eimλ(1− e−iµ1sλ)d(1− eiµ2sλ)d
1

|β(d)(iλ)|2
dF (λ).

For negative µ1, µ2, equality (7) is applied.
By generalizing for r > 1 the given reasonings, we obtain the relations (10) and (11). �

Proof of Lemma 3.1
Using Definition 2.3 we obtain the formal equality

ξp(k) =
1

(1−Bµ)n
χ
(n)
µ,s(ξp(k)) =

k∑
j=−∞

dµ(k − j)χ
(n)
µ,s(ξp(j)),

which imply

∞∑
k=0

ap(k)ξp(k) = −
−1∑

i=−n(γ)

vp(i)ξp(i) +

∞∑
i=0

( ∞∑
k=i

ap(k)dµ(k − i)

)
χ
(n)
µ,s(ξp(i)), (112)

∞∑
i=0

bp(i)χ
(n)
µ,s(ξp(i)) =

−1∑
k=−n(γ)

ξp(k)

k+n(γ)∑
l=0

eν(l − k)bp(k) +

∞∑
k=0

ξp(k)

k+n(γ)∑
l=k

eν(l − k)bp(k), (113)

Relations (112) and (113) imply a representation Aξ⃗ = Bξ⃗ − V ξ⃗ and relations which prove the lemma:

vp(k) =

k+n(γ)∑
l=0

eν(l − k)bp(l), k = −1,−2, . . . ,−n(γ), p = 1, 2, . . . , T,

bp(k) =

∞∑
m=k

dµ(m− k)ap(m), k = 0, 1, 2, . . . , p = 1, 2, . . . , T. �
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