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1. Introduction

Semi-infinite Programming (SIP) deals with optimization problems, which have an infinite number of constraints.
SIP has always been a topic of a special interest due to the numerous theoretical and practical applications such as
robotic, classical engineering, optimal design, the Chebyshev approximations, etc. (see [6, 7, 8], and the references
therein). Nowadays, SIP models are efficiently used in dynamic processes, biomedical and chemical engineering,
biology, tissue engineering, polymer reaction engineering, etc. (see [1, 16], and others). A general SIP problem can
be formulated as

min
κ∈Rn

c(κ) s.t. f(κ, τ) ≤ 0 ∀τ ∈ T,

where κ ∈ Rn is a decision variable, τ is a constraint’ index, T ⊂ Rp is an infinite index set. When, additionally,
the index set T depends on the decision variable κ, one gets a problem of the generalized SIP (see [9]). We say that
a SIP problem is continuous whenever the index set T is a compact Hausdorff topological space and the functions
c(κ) and f(κ, τ) are continuous w.r.t. their variables. The compactness of the index set T ensures the existence of
global maximizers of the so-called lower level problem: max

t∈T
f(κ, τ). The continuity of the functions defining the

SIP problem is a natural condition, which permits to apply the methods of continuous optimization. Usually, it is
assumed that a SIP problem is continuous. However, it should be noted that there are some classes of problems, for
which noncompact index set is commonplace. Without the compactness of T and/or the continuity of the inequality
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constraint function with respect to the index variable, the properties of SIP problems change dramatically and the
known SIP theory and methods may fail.

In this paper, we explore a class of SIP problems, in which the corresponding index sets have a conic structure
and hence are not compact. Such problems arise in nonlinear parametric SIP when the differential properties of the
solutions are being studied, and therefore, it is important to study these problems, which is the main purpose of this
paper.

The rest of the paper is organized as follows. In Section 2, we state an optimization problem arising in nonlinear
parametric SIP, and formulate the main aims of the paper. In Section 3, we show that the optimization problem
formulated in Section 2 can be reduced to a convex SIP problem of special form with noncompact index set. In
Section 4, for the special class of convex SIP problems with noncompact index sets, we present the existence
theorem and discuss a possibility of its strengthening, and in Section 5, we formulate and prove the optimality
conditions. Section 6 contains an example, which illustrates that the results obtained in the paper can be applied
in situations, where the classical optimality results are not efficient due to noncompactness of the index set. The
conclusions and final remarks are done in the final Section 7. In Appendix, we prove Proposition 1, which is need
for the proof of the main results of the paper.

2. Problem statement

Let finite index sets J ⊂ N, S∗ ⊂ N, and S ⊂ N, such that S∗ ∩ S = ∅, as well as matrices, vectors and numbers

W̄j ∈ Rn×n, d̄j ∈ Rn, r̄j ∈ R, gj ∈ Rn, j ∈ J, c ∈ Rn,

W0 ∈ Rn×n, d0 ∈ Rn, r0 ∈ R; qj ∈ Rn, ωj ∈ R, j ∈ S∗ ∪ S,

Dj ∈ Rp×p, Aj ∈ Rn×p, Bj ∈ Rmj×p, cj ∈ Rp, j ∈ J,

be given. Define the following sets:

Y = {y = (yj , j ∈ J) :
∑
j∈J

gjyj = c, yj ≥ 0, j ∈ J},

X = {x ∈ Rn : qTj x+ ωj = 0, j ∈ S∗, qTj x+ ωj ≤ 0, j ∈ S},
K(j) = {t ∈ Rp : Bjt ≤ 0}, j ∈ J,

and suppose that

1) the (polyhedral) set Y is nonempty and bounded;

2) the set X is nonempty;

3) the following inequalities are satisfied:

xTW0x ≥ 0, xT W̄jx ≥ 0, ∀x ∈ Rn, tTDjt ≥ 0 ∀t ∈ K(j), j ∈ J.

Consider the following optimization problem:

min
x∈X

[
Ω0(x) + max

y∈Y

∑
j∈J

yj

(
Ωj(x)− min

t∈K(j)
Ψj(x, t)

)]
, (1)

where
Ω0(x) :=

1

2
xTW0x+ dT0 x+ r0, Ωj(x) :=

1

2
xT W̄jx+ d̄Tj x+ r̄j , j ∈ J ;

Ψj(x, t) :=
1

2
tTDjt+ (cTj − xTAj)t, j ∈ J.
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Note that in (1), functions Ωj(x), j ∈ J ∪ {0}, are convex w.r.t. x ∈ Rn, and functions Ψj(x, t), j ∈ J, are linear
w.r.t. x ∈ Rn, and, in general, are non-convex w.r.t. t ∈ K(j), j ∈ J.

The problems in the form (1) arise in nonlinear parametric SIP when the differential properties of solutions are
being studied [10, 12]. Therefore, it is important to study the properties of these optimization problems.

The main aims of this paper are as follows:

• to show that the optimization problem (1) is equivalent to some special SIP problem;
• to study the issues connected with conditions, which guarantee the existence of optimal solutions of the special

SIP problem (it should be mentioned that, at the moment, such conditions are not very well studied in SIP);
• to formulate the optimality conditions for the special SIP problem.

3. Semi-infinite formulation

Let y(i) = (y
(i)
j , j ∈ J), i ∈ I, be the vertices (the extremal points) of the polyhedral set Y defined in Section 2. In

what follows, we suppose that these vertices are known.
Let us show that

max
y∈Y

yT f = max
i∈I

y(i)
T
f (2)

for any f ∈ R|J|.

In fact, since y(i) ∈ Y , i ∈ I, then max
y∈Y

yT f ≥ max
i∈I

y(i)
T
f . Suppose that

max
y∈Y

yT f = y0
T
f > max

i∈I
y(i)

T
f, (3)

where y0 ∈ Y. Consequently,
y0

T
f > y(i)

T
f, i ∈ I. (4)

Since y0 ∈ Y , then there exist numbers λi ≥ 0, i ∈ I,
∑
i∈I

λi = 1, such that y0 =
∑
i∈I

λiy
(i).

Hence, y0T f =
∑
i∈I

λiy
(i)T f. From the last equality and (4), it follows that

y0
T
f =

∑
i∈I

λiy
(i)T f <

∑
i∈I

λiy
0T f = y0

T
f.

The resulting contradiction proves that (3) is false, and hence (2) holds.
Taking into account equality (2), we conclude that the optimization problem (1) is equivalent to the following

one:

min
x∈X

[
Ω0(x) + max

i∈I

∑
j∈J

y
(i)
j

(
Ωj(x)− min

t∈K(j)
Ψj(x, t)

)]
. (5)

Denote Wi :=
∑
j∈J

y
(i)
j W̄j , di :=

∑
j∈J

y
(i)
j d̄j , ri :=

∑
j∈J

y
(i)
j r̄j , i ∈ I, and

ρj(x) := min
t∈K(j)

(
1

2
tTDjt+ (cTj − xTAj)t), j ∈ J. (6)

Then, problem (5) can be rewritten in the form

min
x,β

1

2
xTW0x+ dT0 x+ β

s.t.
1

2
xTWix+ dTi x+ ri −

∑
j∈J

y
(i)
j ρj(x) ≤ β, i ∈ I; x ∈ X .
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Taking into account that y(i)j ≥ 0, i ∈ I, j ∈ J, one can show that the last problem is equivalent to the following
SIP problem:

min
x, ρj ,j∈J, β

1

2
xTW0x+ dT0 x+ β

s.t.
1

2
xTWix+ dTi x+ ri −

∑
j∈J

y
(i)
j ρj ≤ β, i ∈ I; x ∈ X ,

ρj ≤
1

2
tTj Djtj + (cTj − xTAj)tj , ∀ tj ∈ K(j), j ∈ J.

(7)

In problem (7), the decision variables form the vector ϕ = (x ∈ Rn, ρj ∈ R, j ∈ J, β ∈ R). Without loss of
generality, we may suppose that ∑

i∈I

y
(i)
j > 0, j ∈ J ;

∑
j∈J

y
(i)
j > 0, i ∈ I. (8)

Let us make some observations concerning problem (7).

• The constraints and the cost function of this problem are linear-quadratic w.r.t. decision variables x ∈
Rn, ρj ∈ R, j ∈ J, and β. Hence, it is evident that this problem is convex, and each its local optimal solution
is a global one.

• If problem (7) is consistent, then its linear constraints (infinite number)

−1

2
tTj Djtj − (cj −AT

j x)
T tj + ρj ≤ 0, ∀tj ∈ K(j), j ∈ J,

and linear-quadratic constraints (finite number)

xTWix+ dTi x+ ri −
∑
j∈J

y
(i)
j ρj − β ≤ 0, i ∈ I,

satisfy the Slater condition (i.e. these constraints are strictly satisfied for some x̄ ∈ X , ρ̄ ∈ R|J|, β̄ ∈ R).
• Since tj = 0 ∈ K(j), it is evident that

ρj ≤ 0, j ∈ J. (9)

• In problem (7), the index sets K(j), j ∈ J, are not compacts.
• For any feasible solution (x, ρj , j ∈ J, β), the following relations take place:

(cTj − xTAj)τj ≥ 0 ∀τj ∈ ∆K(j) := {τ ∈ K(j) : τTDjτ = 0}, j ∈ J. (10)

Let us define the function

β(x) := max
i∈I

(1
2
xTWjx+ dTj x+ rj −

∑
j∈J

y
(i)
j ρj(x)

)
. (11)

Note that for any feasible solution (x, ρj , j ∈ J, β) of problem (7), there exists a feasible solution

(x, ρj(x), j ∈ J, β(x)), (12)

such that β(x) satisfies (11) and β(x) ≤ β. Hence, without loss of generality, in what follows, we can consider only
feasible solutions in the form (12).

As it was revealed above, our interest to the problems in the form (7) arose from the study of the solutions’
properties in parametric SIP problems w.r.t. perturbations of parameters. Though, it is worth mentioning that
problem (7) is an interesting subject itself. Similar SIP problems were considered, for example, in [3, 5], et al.
The references that one can find in these papers, indicate also on other areas, where such problems appear.
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4. On existence of optimal solutions of problem (7)

4.1. Sufficient conditions guaranteeing existence of optimal solutions

The main result of this section is Theorem 1, which gives a sufficient conditions of solvability of the convex SIP
problem (7).

Given problem (7), consider the set

∆X = {∆x ∈ Rn : qTj ∆x = 0, j ∈ S∗; qTj ∆x ≤ 0, j ∈ S; Wi∆x = 0, i ∈ I ∪ {0};
∃µ∗(j) = µ∗(∆x, j) ≥ 0 such that ∆xTAj = µ∗T (j)Bj , j ∈ J}. (13)

Theorem 1
Suppose that

(A) there exists x̄ ∈ X such that

(cTj − x̄TAj)τj ≥ 0 ∀τj ∈ ∆K(j), j ∈ J, (14)

(B) either the set ∆X \ {0} is empty or the following implication takes place:

∆x ∈ ∆X \ {0} ⇒ dT0 ∆x+max
i∈I

dTi ∆x > 0.

Then problem (7) has an optimal solution.

Proof. Let us prove, first, that under condition (A), the feasible set X in problem (7) is nonempty. Note that it
follows from assumption 2) (see Section 2) and condition (A), that X ≠ ∅ and there exists x̄ ∈ X satisfying (14).

Given x̄ ∈ X and j ∈ J, consider a Quadratic Programming (QP) problem

ρj(x̄) = min
t∈K(j)

(
1

2
tTDjt+ cTj t− x̄TAjt).

Taking into account condition (A) and the results from [4], we conclude that the problem above has an optimal
solution. Consequently, the vector (x̄, ρj(x̄), j ∈ J, β(x̄)) (with β(x) defined in (11)) is a feasible solution of
problem (7) and the set of feasible solutions X in this problem is nonempty. As it was noted in Section 3, for any
(x, ρj , j ∈ J, β) ∈ X , there exists a feasible solution (x, ρj(x), j ∈ J, β(x)), such that β(x) ≤ β. Hence, without
loss of generality, we can consider only such feasible solutions.

Now, let us prove that, if, additionally, the condition (B) is satisfied, then the convex problem (7) has an optimal
solution. Consider any sequence of feasible solutions xk ∈ X , k = 1, 2, ..., such that the corresponding sequence
of the cost function values of problem (7) decreases. Hence the following inequalities take place:

xkTW0x
k + dT0 x

k + β(xk) ≤ x1TW0x
1 + dT0 x

1 + β(x1) = const, k = 1, 2... (15)

Let us show that there exists a number M0 > 0 such that ||xk|| ≤ M0, k = 1, 2, ... Having supposed that on the
contrary, such M0 does not exist, without loss of generality, we can consider that ||xk|| → ∞ as k → ∞. It follows
from the constraints of (7) that

1

2
xkTWix

k + dTi x
k + ri −

∑
j∈J

y
(i)
j ρj(x

k) ≤ β(xk), i ∈ I. (16)

Divide inequalities (15) and (16) by ||xk||2, and pass to the limit as k → ∞. As a result, we obtain

∆x∗TW0∆x∗ + lim
k→∞

β(xk)

||xk||2
≤ 0,

1

2
∆x∗TWi∆x∗ −

∑
j∈J

y
(i)
j ∆ρ∗j ≤ lim

k→∞

β(xk)

||xk||2
, i ∈ I, (17)
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where ∆x∗ = lim
k→∞

xk

||xk|| , ∆ρ∗j = lim
k→∞

ρj(x
k)

||xk||2 , j ∈ J.

Taking into account inequalities (8), (9), and the positive semi-definitiveness of the matrices Wi, i ∈ I ∪ {0},
we conclude from (17) that

Wi∆x∗ = 0, i ∈ I ∪ {0}; ∆ρ∗j = 0, j ∈ J. (18)

Moreover, it is easy to show that

qTj ∆x∗ = 0, j ∈ S∗; qTj ∆x∗ ≤ 0, j ∈ S. (19)

For the fixed j ∈ J and k ∈ N, consider the problem

min
t∈K(j)

(
1

2
tTDjt+ cTj t− xkTAjt). (20)

Since xk ∈ X , this problem has an optimal solution, which we denote here by tkj ∈ K(j), ρj(xk) being the optimal
value of the cost function. Without loss of generality, let us consider that tkj is an optimal solution, which has the
minimal norm. For tkj , the following first order (necessary) optimality conditions take place:

Djt
k
j + cj −AT

j x
k +BT

j µ(k, j) = 0, µ(k, j) ≥ 0, tkj
T
BT

j µ(k, j) = 0. (21)

Below, with no loss of generality, we will suppose that in (21) it holds µ(k, j) = µ∗(k, j) with

µ∗(k, j) := arg min
µ∈M(k,j)

||µ||, (22)

where M(k, j) ⊂ Rmj is the set of all µ(k, j) satisfying (21). It follows from (21), that

ρj(x
k) = −1

2
tkj

T
Djt

k
j .

Having divided both sides of this equality by ||xk||2 and passing to the limit as k → ∞, we get

0 = ∆ρ∗j = −1

2
∆tTj Dj∆tjσ

2 with ∆tj = lim
k→∞

tkj

||tkj ||
, σ = lim

k→∞

||tkj ||
||xk||

.

There are two possible situations here: I) σ > 0, ∆tTj Dj∆tj = 0, and II) σ = 0.

Suppose, first, that the situation I) takes place. Hence, there exists ∆tj such that

∆tj ̸= 0, ∆tTj Dj∆tj = 0, Bj∆tj ≤ 0.

Denote
Mk

a (j) := {m ∈ {1, ...,mj} : bTmjt
k
j = 0}, Ma(j) := {m ∈ {1, ...,mj} : bTmj∆tj = 0}.

Here and in what follows, bTmj denotes the m-th row of matrix Bj .
For sufficiently large k, it is evident that Mk

a (j) ⊂ Ma(j) and from (21) we conclude that µm(k, j) = 0,
m ∈ {1, ...,mj} \Mk

a (j). Here µm(k, j) denotes the m-th element of vector µ(k, j) ∈ Rmj . Based on these
observations, it is easy to show that (µ(k, j))TBj∆tj = 0 for sufficiently large k. Taking into account this equality,
let us multiply the first equality in (21) by ∆tTj :

∆tTj Djt
k
j + (cTj − xkTAj)∆tj = 0. (23)

If suppose that (cTj − xkTAj)∆tj < 0, then we should conclude that the cost function of problem (20) in not
bounded from below on the feasible set. But this is impossible, since this problem admits an optimal solution.
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Therefore, the following inequality holds true:

(cTj − xkTAj)∆tj ≥ 0. (24)

Let us show that for any j ∈ J,

tTDjτ ≥ 0 for all t ∈ K(j), τ ∈ ∆K(j). (25)

In fact, for any t ∈ K(j), τ ∈ ∆K(j) and θ ≥ 0, we have (θt+ τ) ∈ K(j). Hence for all θ ≥ 0 it holds
0 ≤ (θt+ τ)TDj(θt+ τ) = θ2tTDjt+ θtTDjτ. For a sufficiently small θ ≥ 0, it follows from the last inequality
that tTDjτ ≥ 0 and the relations (25) are proved.

Since tkj ∈ K(j),∆tTj Dj∆tj = 0,∆tj ∈ ∆K(j), it follows from (25) that ∆tTj Djt
k
j ≥ 0. Then the last

inequality together with (23) and (24) imply

(cTj − xkTAj)∆tj = 0, ∆tTj Djt
k
j = 0. (26)

By construction, the vector tkj can be written in the form

tkj = (∆tj + εk)θ̃k, where θ̃k = ||tkj ||, εk → 0 as k → ∞. (27)

Taking into account this representation, we conclude from (26) that

0 = ∆tTj Dj(∆tj + εk)θ̃k ⇒ ∆tTj Djεk = 0, k = 1, 2, ..., (28)

and from the inequalities bTmjt
k
j ≤ 0,m = 1, ...,mj , we get bTmj(∆tj + εk)≤ 0,m = 1, ...,mj . Consequently, for

m = 1, ...,mj , the following implication is valid: if bTmjεk > 0, then bTmj∆tj<0.

Let us set α̃m(k) = 0 if bTmjεk ≤ 0, α̃m(k) = − bTmjεk

bTmj∆tj
if bTmjεk > 0,m = 1, ...,mj , and calculate

α̃(k) := max{α̃m(k),m = 1, ...,mj}.

It is easy to check that α̃(k) → 0 as k → ∞. Consider vector t̃kj := (α̃(k)∆tj + εk)θ̃k. By construction, it holds

Bj t̃
k
j ≤ 0 ⇔ t̃kj ∈ K(j).

Taking into account (26)-(28), we get

t̃kTj Dj t̃
k
j = θ̃2kε

T
kDjεk, tkTj Djt

k
j = θ̃2kε

T
kDjεk,

(cTj − xkTAj)t̃
k
j = θ̃k(c

T
j − xkTAj)εk, (cTj − xkTAj)t

k
j = θ̃k(c

T
j − xkTAj)εk.

From the last equalities, it follows that for k = 1, 2, ..., both vectors, t̃kj and tkj are optimal solutions of problem
(20). Note that for the large numbers k, the inequality ||t̃kj || < ||tkj || takes place, that is impossible since tkj is the
minimal norm optimal solution of problem (20). The obtained contradiction permits to conclude that the situation
I) is not possible.

Now, suppose that the situation II) takes a place:

σ = lim
k→∞

||tkj ||
||xk||

= 0. (29)

Let us show that lim
k→∞

||µ(k,j)||
||xk|| < ∞ for µ(k, j) defined in (21). Having supposed that, on the contrary,

lim
k→∞

||µ(k,j)||
||xk|| = ∞, we get lim

k→∞
||xk||

||µ(k,j)|| = 0. Taking into account the last equality and (29), let us divide all
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relations in (21) by ||µ(k, j)|| and pass to the limit as k → ∞. As a result, we obtain

BT∆µ(j) = 0, ∆µ(j) ≥ 0, ||∆µ(j)|| = 1 with ∆µ(j) = lim
k→∞

µ(k, j)

||µ(k, j)||
.

Hence, vector µ(k, j) admits representation µ(k, j) = (∆µ(j) + w(k, j))θk, where θk = ||µ(k, j)||, w(k, j) → 0 as
k → ∞. The relations (21) can be rewritten in the form

Djt
k
j + cj −AT

j x
k +BT

j w(k, j)θk = 0, ∆µ(j) + w(k, j) ≥ 0, tkTj BT
j w(k, j) = 0, k = 1, 2, ... (30)

Let ∆µi(j), wi(k, j) be the i-th components of the vectors ∆µ(j), w(k, j), i = 1, ...,mj . From (30), we conclude
that given i ∈ {1, ...,mj}, the inequality wi(k, j) < 0 implies ∆µi(j) > 0.

Let us calculate α(k) = max{αi(k), i = 1, ...mj}, where

αi(k) = 0 if wi(k, j) ≥ 0, and αi(k) = −wi(k, j)/∆µi(j) if wi(k, j) < 0, i = 1, ...,mj .

It is evident that α(k) ≥ 0, lim
k→∞

α(k) = 0, and, by construction, for µ̄(k, j) := θk(α(k)∆µ(j) + w(k, j)) we have

0 = Djt
k
j + cj −AT

j x
k +BT

j µ̄(k, j), µ̄(k, j) ≥ 0, 0 = tkTj BT
j µ̄(k, j), k = 1, 2, ...

Hence, µ̄(k, j) ∈ M(k, j) and ||µ̄(k, j)|| = ||µ(k, j)|| · ||(α(k)∆µ(j) + w(k, j))||.
Note that ||(α(k)∆µ(j) + w(k, j))|| → 0 as k → ∞. Then, for sufficiently large k, we have ||µ̄(k, j)|| <

||µ(k, j)||, that contradicts (22). Therefore, lim
k→∞

||µ(k,j)||
||xk|| < ∞.

Now divide both sides of (21) by ||xk|| and pass to the limit as k → ∞, taking into account (29). As a result, we
obtain

−AT
j ∆x∗ +BT

j ∆µ∗
j = 0, ∆µ∗

j ≥ 0 with ∆µ∗
j = lim

k→∞

µ(k, j)

||xk||
.

The last relations together with (18), (19) permit to conclude that ∆x∗ ∈ ∆X .

It follows from (15) and (16) that dT0 xk + β(xk) ≤ const, dTi x
k + ri ≤ β(xk), i ∈ I. Hence

dT0 x
k +max

i∈I
(dTi x

k + ri) ≤ const.

Divide both sides of the last inequality by ||xk|| and pass to the limit as k → ∞. As a result, we get inequality
dT0 ∆x∗ + dTi ∆x∗ ≤ 0, i ∈ I, which contradicts the assumption (B) of the theorem. Hence situation II) is
impossible as well as situation I).

The obtained contradictions lead us to conclude that for any sequence of feasible solutions xk ∈ X , k = 1, 2, ...,
of problem (7), where xk satisfy inequalities (15), there exists M0 > 0 such that ||xk|| ≤ M0, k = 1, 2, ... This fact
permits to conclude that problem (7) admits an optimal solution. The theorem is proved. 2

At the end of this section, we would like to make the following remarks.

1. It can be shown that the feasible set X of problem (7) is not empty if and only if the condition (A) of Theorem
1 is satisfied, that, in turn, always happens when tTj Djtj > 0 for all tj ∈ K(j) \ {0}, j ∈ J.

2. Note that the condition (B) is considered to be satisfied if ∆X \ {0} = ∅. Hence, from (13), one can see that
the condition (B) holds true, if the matrix W :=

∑
i∈I∪{0}

Wi is (strictly) positive definite on the set

∆X̃ := {∆x ∈ Rn : qTj ∆x = 0, j ∈ S∗; qTj ∆x ≤ 0, j ∈ S;

∃µ∗(j) = µ∗(∆x, j) ≥ 0, such that ∆xTAj = µ(j)∗TBj , j ∈ J}.

This condition will be satisfied if at least one of the matrices Wi, i ∈ I∪{0}, is positive definite on the set
∆X̃.
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3. The implication
∆x ∈ ∆X ⇒ dT0 ∆x+max

i∈I
dTi ∆x ≥ 0, (31)

which is a slight modification of the condition (B), is a necessary condition for boundedness from below of
the cost function in problem (7).

4.2. Relaxation of the sufficient condition

From the remarks done at the end of the previous subsection, one can conclude that the sufficient conditions
formulated in Theorem 1, are also ”almost” necessary for existence of an optimal solution in the convex SIP
problem (7). The differences between the necessary and sufficient conditions appear only in the case, when there
exists a vector ∆x ̸= 0 such that ∆x ∈ ∆X, dT0 ∆x+max

i∈I
dTi ∆x = 0.

The following conjecture of more strong statement naturally arises from our considerations.

Conjecture. Problem (7) admits an optimal solution if conditions (A) and (31) (a relaxed condition (B)) are
satisfied.

At the moment, we have no proof of this statement and also have certain doubts about its truthfulness. The
following example indicates that, possibly, the proposed conjecture is not true.

Example. Consider a linear SIP problem

min
z

cT z s.t. a(t)T z + b(t) ≤ 0, ∀t ∈ T. (32)

Problem (7) has the form (32), if we set:

zT = (xT , ρ) ∈ Rn+1, J = {1}, I = {1}, d0 = 0, cT = (dT0 ,−y
(1)
1 ),

W0 = O,W1 = O, d1 = 0, r1 = 0, X = Rn,K(1) = T,

aT (t) = (tTAT
1 , 1), b(t) = −1

2
tTD1t− cT1 t,

where O denotes the n× n null matrix.
For problem (32), the conditions (A) and (31) take the form of the following two conditions:

(A1) the constraints of problem (32) are consistent;
(B1) for any ∆z ∈ {∆z ∈ Rn+1 : a(t)T∆z ≤ 0, ∀ t ∈ T}, it holds cT∆z ≥ 0.

The conditions (A1) and (B1), in general, do not guarantee the existence of optimal solutions in problem (32)
even if the index set T is compact and the cost function of this problem is bounded in the feasible set. Indeed, let
us consider example 5.101. from [2]:

min
z

c̄T z = z2 s.t. ā(t)T z + b̄(t) = −t2z1 − z2 + 2t ≤ 0, ∀t ∈ T = [0, 1]. (33)

The condition (A1) is satisfied here, since for any k ≥ 1 vector zk = (k, 1/k)T is a feasible solution of this problem.
The condition (B1) is fulfilled as well. Nevertheless, problem (33) does not have an optimal solution. Notice that
there exists vector ∆z̄ = (1, 0)T , such that

∆z̄ ∈ {∆z ∈ R2 : ā(t)T∆z ≤ 0, ∀t ∈ T} and c̄T∆z̄ = 0,

and the vector zk admits representation zk = (k, 1/k)T = k(∆z̄ + ωk)
T , where ωk = (0, 1/k2)T → (0, 0)T as

k → ∞.
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5. Optimality conditions for problem (7)

The aim of this section is to formulate and prove optimality conditions for a given feasible solution of problem (7).
It was mentioned in the Introduction, that in the majority of papers on optimality conditions for SIP problems, the
compactness of the (infinite) index set of the (continual) constraints is being assumed. In our study of problem
(7), this assumption is not satisfied: it was already noticed above that the sets K(j), j ∈ J, of the indices, which
correspond to the continual constraints, are not compact.

In few papers dedicated to study of optimality for SIP problems without the assumption of the compactness
of the index set (see, for example, [3, 5, 13], and references therein), it is supposed that the Farkas-Minkowski
Constraint Qualification (CQ) is satisfied. In this paper, we do not have such an assumption for our problem (7)
(see Theorem below).

In the literature, there is an approach, a so called technique of homogenization, [15], which also permits to
bypass the difficulties caused by non-compactness of the index set. Having applied this approach to our problem,
we obtain an equivalent SIP problem, which has a compact index set but does not satisfy the Slater condition: if
∃j0 ∈ J, ∆K(j0) ̸= ∅, this new problem has immobile indices with infinite immobility orders [11]. Therefore, the
known from the SIP literature necessary optimality conditions (see [2, 11, 14]) cannot be applied here too. Despite
the above, in this section, for problem (7) with noncompact index set, we will prove the optimality criterion without
any additional condition (CQ) on the constraints.

Let (x, ρj , j ∈ J, β) be a feasible solution in problem (7). As it was mentioned above, without loss of generality,
we can consider that (x, ρj , j ∈ J, β) = (x, ρj(x), j ∈ J, β(x)), where ρj(x), j ∈ J, and β(x) are defined in (6)
and (11). Denote

Ka(j, x) := {tj ∈ K(j) :
1

2
tTj Djtj + (cj −AT

j x)
T tj = ρj(x)}, j ∈ J,

∆K(j, x) := {τ ∈ ∆K(j) : (cTj − xTAj)τ = 0, ||τ || = 1}, j ∈ J.

Theorem 2
A feasible solution (x0 ∈ Rn, ρ0j , j ∈ J, β0) of the convex SIP problem (7) is optimal in this problem iff there
exist vectors

t∗kj ∈ Ka(j, x
0), k = 1, ..., pj , τ∗kj ∈ ∆K(j, x0), k = 1, ..., lj , j ∈ J ; (34)

and numbers

λ∗
i , i ∈ I; η∗j , j ∈ S∗ ∪ S; y∗kj , k = 1, ..., pj , µ

∗
kj , k = 1, ..., lj , j ∈ J, (35)

with pj ≥ 0, lj ≥ 0, j ∈ J,
∑
j∈J

(pj + lj) ≤ 1 + n,

such that
λ∗
i ≥ 0, λ∗

i (
1

2
x0TWix

0 + dTi x
0 + ri −

∑
j∈J

y
(i)
j ρ0j − β0) = 0, i ∈ I;

∑
i∈I

λ∗
i = 1;

η∗j ≥ 0, η∗j (q
T
j x

0 + ωj) = 0, j ∈ S; (36)

y∗kj ≥ 0, k = 1, ..., pj ,

pj∑
k=1

y∗kj =
∑
i∈I

λ∗
i y

(i)
j , µ∗

kj ≥ 0, k = 1, ..., lj , j ∈ J,

W0x
0 + d0 +

∑
i∈I

λ∗
i (Wix

0 + di) +
∑
j∈J

Aj

( pj∑
k=1

y∗kjt
∗
kj +

lj∑
k=1

µ∗
kjτ

∗
kj

)
+

∑
j∈S∪S∗

qjη
∗
j = 0.

Note that here and in what follows, we suppose that, if κ = 0, then the set {1, ..., κ} is empty and
κ∑

i=1

... = 0.
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Since the sets S, S∗, I and J consist of finite numbers of elements, then to simplify calculations, without loss of
generality, we can present a proof of Theorem 2, considering problem (7) with |I| = 1, |J | = 1, and X = Rn. In
other words, we will prove here the theorem for problem (7) in the following form:

min
x∈Rn,ρ∈R

1
2x

TWx+ dTx− y∗ρ

s.t. ρ ≤ f(t, x) := 1
2 t

TDt+ (cT − xTA)t, ∀t ∈ K = {t ∈ Rp : Bt ≤ 0}, (37)

where W = W0 +W1, d = d0 + d1, y
∗ = y

(1)
1 , K = K(1), D = D1, A = A1, B = B1.

Theorem 3 (A particular case of Theorem 2)
A feasible solution (x0, ρ0) ∈ Rn+1 of problem (37) is optimal in this problem iff there exist vectors

t∗k ∈ Ka(1, x
0) =: Ka(x

0), k = 1, ..., p1, τ∗k ∈ ∆K(1, x0) =: ∆K(x0), k = 1, ..., l1, (38)

and numbers
y∗k, k = 1, ..., p1, µ

∗
k, k = 1, ..., l1, with p1 ≥ 0, l1 ≥ 0, p1 + l1 ≤ 1 + n, (39)

such that

y∗k ≥ 0, k = 1, ..., p1,
p1∑
k=1

y∗k = y∗, µ∗
kj ≥ 0, k = 1, ..., l1, (40)

Wx0 + d+A
( p1∑
k=1

y∗kt
∗
k +

l1∑
k=1

µ∗
kτ

∗
k

)
= 0. (41)

Before proceeding with the proof, let us introduce some notation and fulfill necessary preparatory calculations.

Let (x0, ρ0 = ρ(x0)) be a feasible solution of problem (37). Then the set Ka(x
0) is the set of optimal solutions

in the QP problem
min f(t, x0) s.t. t ∈ K.

Note that, in general, this problem is nonconvex.
It follows from [2], that the set Ka(x

0) can be represented in the form Ka(x
0) =

∪
s∈S

Ks(x
0), where for any

s ∈ S, the set Ks(x
0) is a convex polyhedron and |S| < ∞. Hence, for any s ∈ S, there exist finite sets of (extremal)

vectors t̄(s, i) ∈ Ks(x
0), i ∈ J(s), and rays τ̄(s, i) ∈ ∆K(x0), i ∈ I(s), such that

Ks(x
0) = {t ∈ Rp : t =

∑
i∈J(s)

αit̄(s, i) +
∑

i∈I(s)

βiτ̄(s, i),
∑

i∈J(s)

αi = 1, αi ≥ 0, i ∈ J(s); βi ≥ 0, i ∈ I(s)}.

Moreover, one can show that

t̄T (s, i)Dt̄(s, j) = const, (cT − x0TA)t̄(s, j) = const∗, i ∈ J(s), j ∈ J(s),

t̄T (s, i)Dτ̄(s, j) = 0, i ∈ J(s), j ∈ I(s),

τ̄T (s, i)Dτ̄(s, j) = 0, τ̄(s, i) ∈ ∆K(x0), i ∈ I(s), j ∈ I(s). (42)

Now, consider the set ∆K(x0) defined in (38). One can prove that this set is a union of a finite number of bounded
convex polyhedra ∆Ks(x

0), s ∈ ∆S : ∆K(x0) =
∪

s∈∆S
∆Ks(x

0). Then, for any s ∈ ∆S, there exist finite sets of

(extremal) vectors τ̂(s, i) ∈ ∆K(x0), i ∈ ∆I(s), such that

∆Ks(x
0) = {τ ∈ Rp : τ =

∑
i∈∆I(s)

αiτ̂(s, i),
∑

i∈∆I(s)

αi = 1, αi ≥ 0, i ∈ ∆I(s)}.
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From the above considerations, it follows that relations

−∆xTAt ≥ ∆ρ, ∀t ∈ Ka(x
0), −∆xTAτ ≥ 0, ∀τ ∈ ∆K(x0), (43)

are equivalent to the following ones:

−∆xTAt̄(s, i) ≥ ∆ρ, i ∈ J(s), s ∈ S, −∆xTAτ̂(s, i) ≥ 0, i ∈ ∆I(s), s ∈ ∆S. (44)

Here we have taken into account that τ̄(s, i) ∈ ∆K(x0) (see (42)). Now we can prove the theorem formulated
above.

Proof of Theorem 3.
Necessity. Suppose that (x0, ρ0 = ρ(x0)) is an optimal solution of problem (37). Consider the following problem

of Linear Programming (LP):

min
∆x∈Rn,∆ρ∈R

(Wx0 + d)T∆x− y∗∆ρ, s.t. conditions (44). (45)

Suppose that the vector (∆x0,∆ρ0) = 0 ∈ Rn+1 is an optimal solution of this problem. Then, according to the
theory of LP, there exist subsets

{t∗k, k = 1, ..., p1} ⊂ {t̄(s, i), i ∈ J(s), s ∈ S} ⊂ Ka(x
0),

{τ∗k , k = 1, ..., l1} ⊂ {τ̂(s, i), i ∈ ∆I(s), s ∈ ∆S} ⊂ ∆K(x0),

and numbers (39) such that relations (40) and (41) are satisfied, and the necessity is proved.
Now, suppose that the vector 0 ∈ Rn+1 is not an optimal solution of problem (45). Then there exists a vector

(∆x, ∆ρ), for which conditions (44) and the inequality

(Wx0 + d)T∆x− y∗∆ρ < 0

are satisfied. Vector (∆x, ∆ρ) satisfies conditions (44), and therefore, it satisfies relations (43) as well.
Consequently, according to Proposition 1 (see Appendix), for any δ > 0, there exists ε0 = ε0(δ) > 0 such that
for all ε ∈ [0, ε0], the vector (x(ε) := x0 + ε∆x, ρ(ε) := ρ0 + ε(∆ρ− δ)) is a feasible solution of problem (37).

Let us choose 0 < δ < −[(Wx0 + d)T∆x− y∗∆ρ]/y∗ and calculate

1

2
xT (ε)Wx(ε) + dTx(ε)− y∗ρ(ε) =

1

2
x0TWx0 + dTx0 − y∗ρ0 + ε2

1

2
∆xTW∆x+ εα∗,

where α∗ = (Wx0 + d)T∆x− y∗(∆ρ− δ) < 0. Hence, for a sufficiently small ε > 0 we get

1

2
xT (ε)Wx(ε) + dTx(ε)− y∗ρ(ε) <

1

2
x0TWx0 + dTx0 − y∗ρ0.

But this contradicts the assumption that (x0, ρ0 = ρ(x0)) is an optimal solution of problem (37). The necessity is
proved.

Sufficiency. Suppose that there exist vectors (38) and numbers (39) such that relations (40) and (41) are fulfilled.
Consider the convex QP problem

min
x∈Rn,ρ∈R

1

2
xTWx+ dTx− y∗ρ

s.t. ρ ≤ f(t∗k, x), k = 1, 2, ..., p1; (cT − xTA)τ∗k ≥ 0, k = 1, 2, ..., l1. (46)

Since {t∗k, k = 1, ..., p1} ⊂ Ka(x
0), {τ∗k , k = 1, ..., l1} ⊂ ∆K(x0) ⊂ ∆K, it follows from (10) and (37) that the set

of feasible solutions of problem (37) belongs to the set of feasible solutions of problem (46). Hence, vector (x0, ρ0)
is a feasible solution of problem (46) and the fulfillment of relations (40) and (41) implies that the vector is optimal
in problem (46). Consequently, it is optimal in problem (37) as well. The sufficiency is proved. 2
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The approach that was used in the proof of Theorem 3, can be applied to the proof of Theorem 2 as well, but the
calculations in this case are much more bulky. Therefore, we can consider that Theorem 2 is valid.

Observation. Let (x0, ρ0j , j ∈ J, β0) be a feasible solution of problem (7). From (10), it follows that

(cTj − x0TAj)τj ≥ 0 ∀τj ∈ ∆K(j), j ∈ J.

Suppose that the last inequalities are strongly satisfied:

(cTj − x0TAj)τj > 0 ∀τj ∈ ∆K(j)\{0}, j ∈ J. (47)

Then ∆K(j, x0) = ∅, j ∈ J, and, hence, in (34)-(36) we have lj = 0,
lj∑

k=1

µ∗
kjτ

∗
kj = 0, j ∈ J, ( or l1 = 0,

l1∑
k=1

µ∗
kτ

∗
k = 0 in (38)-(41), respectively). In this case the optimality conditions of Theorem 2 are the same as the

optimality conditions formulated in [3, 5, 13] under the assumption that problem (7) satisfies the Farkas-Minkowski
CQ.

Finally, we mention two cases where the terms
lj∑

k=1

µ∗
kjτ

∗
kj , j ∈ J, can be omitted in (34)-(36):

1. tTDjt > 0, t ∈ K(j) \ {0}, j ∈ J,
2. tTDjt ≥ 0, ∀t ∈ Rp, j ∈ J.

Remind that, by assumption, the inequalities tTDjt ≥ 0, t ∈ K(j), j ∈ J, take place.

6. Example

In this section, we present an example which shows that in a general case (when condition (47) is not satisfied) of

problem (7), the presence of the terms
lj∑

k=1

µ∗
kjτ

∗
kj , j ∈ J, in the optimality conditions given by relations (34)-(36)

is essential.
We consider here the SIP problem in the form (37), where

n = p = 2, y∗ = 1, W = O2×2, B = A = −E2×2, (48)

c =

(
0
0

)
, d =

(
d1
d2

)
, D1 =

(
0 b
b 1

)
, d1 > 0, d2 > 0, b > 0.

Here En×n denotes a n× n identity matrix.
Let us check the optimality conditions (38)-(41) of Theorem 3 (a particular case of conditions (34)-(36) of

Theorem 2). Rewrite the problem in the equivalent form:

min
x∈R2,ρ

d1x1 + d2x2 − ρ (49)

s.t. f(t, x) := 1
2 t

2
2 + t1t2b+ x1t1 + x2t2 ≥ ρ, ∀t ∈ K := {t ∈ R2 : t ≥ 0},

with d1 > 0, d2 > 0, b > 0, and consider the vector

(x0, ρ0) =

(
x0
1 := 0, x0

2 := −d2, ρ
0 := −1

2
d22

)
. (50)
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To make sure that (x0, ρ0) is a feasible point in SIP problem (49), it is enough to notice the following:

min
t≥0

f(t, x0) = min
t≥0

(
t1t2b+

1

2
t22 − d2t2

)
= min

t1=0,t2≥0

(
1

2
t22 − d2t2

)
= −1

2
d22 = ρ0.

Having applied the results obtained in the previous section, one can confirm that vector (x0, ρ0) defined in (50) is
a unique optimal solution of problem (49). Indeed, in our example, we have Ka(x

0) = {t0},∆K(x0) = {τ0} with
t0 = (t01 = 0, t02 = d2), τ

0 = (1, 0) and hence, according to Theorem 3, the optimality conditions (see (38)-(41))
take the form: (

d1
d2

)
− y∗1t

∗
1 − µ∗

1τ
∗
1 = 0, y∗1 ≥ 0, y∗1 = 1, µ∗

1 ≥ 0, (51)

with some t∗1 ∈ Ka(x
0) and τ∗1 ∈ ∆K(x0). If set t∗1 := t0, p1 := 1, τ∗1 := τ0, l1 := 1, y∗1 := 1, µ∗

1 := d1 > 0, and
substitute in (51), we can confirm that the optimality conditions of Theorem 3 are satisfied.

Now, let us formulate for the same problem the known optimality conditions from [5, 13, 3] without checking
the fulfillment of the Farkas-Minkowski CQ . Then the optimality conditions have the form:(

d1
d2

)
− y∗1t

∗
1 = 0, y∗1 ≥ 0, y∗1 = 1,

with some t∗1 ∈ Ka(x
0). It is evident that these conditions are not fulfilled.

Note, additionally, that for problem (37) with data (48), the Farkas-Minkowski CQ is not satisfied. According to
[5], the Farkas-Minkowski CQ is satisfied if the set

K := cone


 At

1
0.5tTDt+ cT t

 , t ∈ K;

 O
0
1


is closed. Here for Ω ⊂ Rn, cone Ω := {v =

n+1∑
i=1

αiωi, αi ≥ 0, ωi ∈ Ω, i = 1, 2, ..., n+ 1}.

Consider the sequence of vectors and numbers

t(k) = t0 + kτ0 ∈ K, α(k) =
1

k
; w(k) = α(k)

 At(k)
1

0.5tT (k)Dt(k) + cT t(k)

 ∈ K, k = 1, 2, ...

It is evident that there exists the limit

lim
k→∞

w(k) =: w =

 Aτ0

0

t0
T
Dτ0

 =

 −τ0

0
bd2

 .

Let us show that w ̸∈ K. Suppose the contrary. Then there exist ti ∈ K,αi, i ∈ I, and α∗ such that

τ0 =
∑
i∈I

tiαi, 0 =
∑
i∈I

αi, bd2 =
∑
i∈I

αi(0.5t
T
i Dti) + α∗; αi > 0, i ∈ I, α∗ ≥ 0.

Evidently, the last relations are irreconcilable, that permits to conclude that the set K is not closed.
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7. Conclusion

In the paper, we considered a special class of convex SIP problems with noncompact index sets, which arise in
nonlinear parametric optimization. For the problems of this class, we have formulated and proved the existence
theorem and new optimality conditions.

The results of the paper will be used in study of differential properties of parametric SIP problems. Moreover,
these results may be used as the basis of new approach to study of special classes of SIP problems, such as that of
Copositive Programming, Semi-Infinite Polynomial Programming, and others, for which the noncompactness of
index sets is commonplace.
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Appendix

Proposition 1
Assume that conditions (43) are satisfied for (∆x,∆ρ). Then for any δ > 0, there exists ε0 = ε0(δ) > 0, such that
for all ε ∈ [0, ε0], vector (x(ε) := x0 + ε∆x, ρ(ε) := ρ0 + ε(∆ρ− δ)) is a feasible solution of problem (37), i.e.

f(t, x(ε)) ≥ ρ(ε) ∀t ∈ K. (52)

Proof. Rewrite relations (52) as follows:

f(t, x0)− ρ0 + εg(t) ≥ 0, ∀t ∈ K, ε ∈ [0, ε0], (53)
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where g(t) := −∆xTAt−∆ρ+ δ.
Consider the optimization problem

ε∗ := inf
t

f(t, x0)− ρ0

−g(t)
s.t. t ∈ T := {t ∈ K : g(t) ≤ 0}. (54)

By construction, we have
f(t, x0)− ρ0 > 0 for all t ∈ T. (55)

Hence, in (54) we have 0 ≤ ε∗ ≤ ∞. It is evident that, if ε∗ > 0, then relations (53) take place with ε0 = ε∗ and
the proposition is proved in this case.

Let us show that ε∗ ̸= 0. Suppose that, on the contrary, ε∗ = 0. Let t̄k ∈ T, k = 1, 2, ... be a minimizing sequence
in problem (54):

Mk :=
f(t̄k, x0)− ρ0

−g(t̄k)
→ 0, as k → ∞.

Let us consider another sequence

tk = arg
{
min ||t||, s.t.

f(t, x0)− ρ0

−g(t)
≤ Mk, t ∈ T

}
. (56)

If suppose that the sequence tk, k = 1, 2, ... has a converging subsequence tki , i = 1, 2, ...:

lim
i→∞

tki = t∗, lim
i→∞

ki = ∞,

then, evidently, t∗ ∈ T and 0 = ε∗ = f(t∗,x0)−ρ0

−g(t∗) . But this contradicts relations (55). Thus, we can conclude that no
one subsequence of the sequence tk, k = 1, 2, ... converges and, therefore, ||tk|| → ∞ as k → ∞.

By assumption,

0 = ε∗ = lim
k→∞

f(tk, x0)− ρ0

−g(tk)
= lim

k→∞

[f(tk, x0)− ρ0]/||tk||2

−g(tk)/||tk||2
≥ 1

2
∆τ̄TD∆τ̄ ,

where ∆τ̄ = lim
k→∞

tk/||tk||. It is evident that ∆τ̄ ∈ K. Consequently, ∆τ̄TD∆τ̄ = 0 and ∆τ̄ ∈ ∆K. Moreover, the

inequalities g(tk) = −∆xTAtk −∆ρ+ δ ≤ 0, k = 1, 2, ... imply that −∆xTA∆τ̄ ≤ 0.
By assumption,

0 = ε∗ = lim
k→∞

f(tk, x0)− ρ0

−g(tk)
≥ lim

k→∞

[(cT−x0TA)tk − ρ0]/||tk||
−g(tk)/||tk||

=
(cT−x0TA)∆τ̄

∆xTA∆τ̄
,

where (cT−x0TA)∆τ̄ ≥ 0 due to (10). Hence there are two possible situations:

i) (cT−x0TA)∆τ̄ = 0, ∆xTA∆τ̄ > 0,

ii) (cT−x0TA)∆τ̄ = 0, ∆xTA∆τ̄ = 0. (57)

In situation i), we have ∆τ̄ ∈ ∆K(x0) and ∆xTA∆τ̄ > 0. But this contradicts relations (43).

Consider situation ii). By construction, tk = θk(∆τ̄ + ηk), where θk = ||tk||, ||ηk|| → 0 as k → ∞. Note that
B(∆τ̄ + ηk) ≤ 0. Hence, for any row bTm of the matrix B, we have an implication:

bTmηk < 0 ⇒ bTm∆τ̄ > 0.

Taking into account the last inequalities and that ||ηk|| → 0 as k → ∞, we conclude that B( 12∆τ̄ + ηk) ≤ 0, for
sufficiently large k. This implies that t̃k := θk( 12∆τ̄ + ηk) ∈ K for sufficiently large k. Rewrite the vector t̃k as
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follows:
t̃k = θk(∆τ̄ + ηk)− 1

2
θk∆τ̄ = tk − 1

2
θk∆τ̄ .

Taking into account relations (57) and the following one:

tTDτ ≥ 0 for all t ∈ K, τ ∈ ∆K,

it is easy to show that

f(t̃k, x0) = f(tk, x0)− θktk
T
D∆τ̄ ≤ f(tk, x0), g(t̃k) = g(tk), ||t̃k|| < ||tk||.

But the last relations contradict condition (56). Hence, the situation ii) is impossible as well. Thus we can can
conclude that ε∗ > 0. The proposition is proved. 2
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