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Abstract A mathematical model of dynamic interaction between mining and processing industries is formalized and
studied in the paper. The process of interaction is described by a system of two delay differential equations. The criterion
for asymptotic stability of nontrivial equilibrium point is obtained when both industries co-work steadily. The problem is
reduced to finding stability criterion for quasi-polynomial of second order. Time intervals between deliveries of raw materials
which make it possible to preserve stable interaction between the two industries are found.
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1. Introduction

A mathematical model of dynamic interaction between mining and processing industries is formalized and studied
in the paper. It is supposed, that the resource is mined by the first industry and then it is transformed into some
product by the second industry. Let us denote the amount of the resources mined by P and the number of companies,
producing the final product from this resource. Similarly, it is possible to consider Q as the total output in the
processing industry.

Let us assume, that the volume of the mined resources is growing with a coefficient a > 0 due to ongoing mineral
exploration and the amount of raw materials for processing industry is unlimited. We assume that the increase in the
number of processing companies leads to the reduction of the volume of extracted raw materials with coefficient
b > 0 and, conversely, an increase in the amount of raw materials implies an increase in the number of processing
companies with coefficient d > 0. Although the extraction of raw materials occurs continuously, it is shipped to
producers in portions with some positive time lag h. So the amount of raw materials mined depends on its volume
obtained earlier at time moment (t− h) when the last supply was made. If this quantity of “old” mined materials
is large, the rate of its extraction must decrease with coefficient e > 0.

In the absence of raw materials the number of processing companies is reduced with the coefficient c > 0. In the
model described by system (1) the number of processing companies at time moment t, also depends on the number
of already operating companies at time moment (t− h).
So we get that the process of mutual interaction between industries can be described by the differential equation
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system as follows

dP (t)

dt
= (a− eP (t− h)− bQ(t))P (t)

dQ(t)

dt
= (−c+ dP (t)− fQ(t− h))Q(t). (1)

This system has a nontrivial equilibrium

P ∗ =
af + bc

bd+ ef
; Q∗ =

ad− ce

bd+ ef
, (2)

provided that
ad > ce. (3)

Our aim is to find conditions on the coefficients of system (1) for stabilizing the equilibrium point (2). This would
mean that the first industry produces such a quantity of raw materials that they will be processed by the second
industry. In this case, it will not be overstocking in the warehouses and there will be sufficient volumes of raw
materials.
Necessary and sufficient criterion for stable coexistence of two competitors was obtained in [6]. Graphically the
stability areas were described in the form of multidimensional cones in [16]. In this article, our aim is to express
conditions for asymptotic stability in the form of inequalities. In this case these conditions help to solve problems
of control and stabilization. A delay effect on the stability of the equilibrium point was studied in [5],[2],[3].

A number of mathematical models describing the interaction between agents based on the game theory was
considered in [1, 11, 12, 13, 14, 15, 17, 18]. The results on the business security, the impact of external factors on the
growth of the business are given in [10, 9]. Mathematical models for delay-dependent linear systems with multiple
time delays, for growing tumor, on optimal properties of special nonlinear and semi-infinite problems arising
in parametric optimization, criterion for testing hypothesis about impulse response function, filtering problem
for functionals of stationary sequences, stability criteria for high even order delay differential equations were
considered in [7, 8][20]–[36].

2. Stability criterion for quasi-polynomial

By changing variables x = P − P ∗, y = Q−Q∗ in the system (1) and writing down a linear approximation
system, we get the characteristic quasi-polynomial and the characteristic equation as follows

H(z) = z2e2z + c1e
2z + c2ze

z + c3 = 0. (4)

Here c1 = bdh2P ∗Q∗, c2 = (eP ∗ + fQ∗)h, c3 = efh2P ∗Q∗. To get the conditions under which the roots of the
quasi-multinomial (4) lie in the left half-plane, we use Pontryagin and Hermite - Biehler criteria [6, 5, 2, 4, 19].

Theorem 1
The roots of the quasi-polynomial (4) with positive coefficients lie in the left half-plane if one of two following
assertions A or B is fulfilled:
Assertion A:

I.1. 0 < c1 < π2;
I.2. 0 < c2 < z(ẏ)

ẏ = 2(ẏ2−c1) sin ẏ
ẏ , here ẏ ∈ (

√
c1, π) is a unique root of the equation tan y = (c1−y2)y

c1+y2 ; notice,
that ẏ ∈ (π2 ;π);

I.3.1. If y1 ∈ (0; π
2 ) is a unique root of the equation 2(y2 − c1) sin y = c2y then the following conditions are

fulfilled:
I.3.1.1. c1 + c3 < y21 and I.3.1.2. c1 + c2

π
2 < c3 +

π2

4 .
I.3.2. If y1, y2 ∈ (π2 ;π), y1 < y2 are the roots of the equation 2(y2 − c1) sin y = c2y then the following

conditions are fulfilled:
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I.3.2.1. y21 < c1 + c3 < y22 and I.3.2.2. c1 + c2
π
2 > c3 +

π2

4
Assertion B:
II.1. π2 < c1 < 4π2;
II.2. 0 < c2 < z(ẏ)

ẏ = 2(ẏ2−c1) sin ẏ
ẏ , here ẏ ∈ (π;

√
c1) is the unique root of the equation tan y = (c1−y2)y

c1+y2 ; notice,
that ẏ ∈ (π; 3π

2 );
II.3.1. If y1 < y2 are the roots of the equation 2(y2 − c1) sin y = c2y andy1, C2 ∈ (π;

√
c1), then the following

conditions are fulfilled:
II.3.1.1.y21 < c1 + c3 < y22 and II.3.1.2.c1 + c2

π
2 > c3 +

π2

4 .
II.3.2. If y2 ∈ ( 3π2 ;

√
c1) is the unique root of the equation 2(y2 − c1) sin y = c2y then the following conditions

are fulfilled:
II.3.2.1. c1 + c3 > y22 and II.3.2.2. 9π2

4 + c2
3π
2 + c3 < c1.

Proof
Let us substitute z = iy into the quasi-polynomial (4) and write down its real F (y) and imaginary G(y) parts:

F (y) = (−y2 + c1) cos 2y − c2y sin y + c3, (5)

G(y) = (−2y2 sin y + 2c1 sin y + c2y) cos y = (c2y − z(y)) cos y = 0. (6)

Then derivative G′(y) may be written as follows

G′(y) = (c2 − z′(y)) cos y − (c2y − z(y)) sin y. (7)

Here z(y) = 2(y2 − c1) sin y.
From Pontryagin and Hermite - Biehler criteria it is known that the roots of quasi-polinomial (4) have negative real
parts if the vector of gain-phase cha-racteristic (amplitude-phase characteristic) w = H(iy) monotonically rotates
counterclockwise round the origin with positive rate [6, 5, 2, 4, 19]. It means that the gain-phase characteristic
turning around the origin crosses every line passing through the point (0,0) at the positive angle without touching
it [6, 5]. In this case all roots of the functions F (y) and G(y) are real, simple, alternate and the inequality

F (y)G′(y)− F ′(y)G(y) > 0 (8)

holds for all y. For the stability of quasi-polinomial (4) it is sufficient for the inequality (8) to be valid only at the
roots of function G(y). In the future, we will consider the inequality

F (y)G′(y) > 0 (9)

at the roots of the function G(y).
Due to the Pontryagin criterion [19] inequalities (8) and (9) are valid iff the rotation angle of gain-phase
characteristic (F (y);G(y)) around the origin asymptotically tends to φ(−2πk + ε ≤ y ≤ 2πk + ε) ≈ (4ks+ r)π
as k tends to infinity. Here s is the degree of quasi-polynomial (4) with respect to ezand r is the degree of quasi-
polynomial (4) with respect to z. In our case s = r = 2 so, polynomials F (y) and G(y) have each 10 roots on
the segment [−2π + ε; 2π + ε]. As the function G(y) is odd it can not have more than 9 roots over the segment
[−2π; 2π]. One root is y0 = 0, the other ones should lie symmetrically with 4 on each side. The tenth root will be
discussed later.
Proof of Assertion A. Note that π

2 and 3π
2 are the roots of the function G(y). Other two roots y1 < y2 ∈ (0; 2π)

are the solutions of the equation
z(y) = 2(y2 − c1) sin y = c2y. (10)

Since z′(0) = −2c1 < 0, the equation (10) has no roots for small positive y. On the other hand, the function z(y)
crosses the x-axis at the points y =

√
c1 and y = π, so two cases can occur.

Let 0 < c1 < π2. Then the function z(y) = 2(y2 − c1) sin y is positive over (
√
c1, π) and equation (10) has 2

solutions on this interval if the coefficient A2 is less than the slope of tangent line to the graph of the function
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z = z(y), drawn from the origin. Then the touch point ẏ is the solution of the equation z(y) = z′(y)y or
tan y = (c1−y2)y

c1+y2 . As we consider the solution of this equation on (
√
c1, π), so tan y < 0 and the touch point

ẏ ∈ (π2 ;π). In this case equation (10) has two roots y1 < y2 ∈(0;π) if the condition I.2 of the Theorem 1 is satisfied.
To satisfy the Hermite - Biehler conditions it is necessary to have alternation of signs both of derivative G′(y) and
function F (y) in the roots of G(y) and their multiplication should satisfy condition (9).
For the root y0 = 0 we get G′(0) = 2c1 + c2 > 0, F (0) = c1 + c3 > 0. Let’s assume that other roots of the function
G(y) are ordered as follows: y1 < π

2 < y2 < 3π
2 . Then c2 < z′(y1) and the inequality (7) is equivalent to the

condition G′(y1) < 0. For the root y2 the inverse inequality is valid. But cos y2 < 0 so G′(y2) < 0. Between
these two roots a straight line z = c2y lies under the graph of the function z = z(y) so the inequality c2y < z(y)
is valid at the point y = π

2 . From (7) we get G′(π2 ) > 0. Taking into account the condition I.1, we obtain
G′(3π2 ) > 0. So the signs of the derivative G′(y) in roots of function G(y) alternate. The function F (y) has the form
F (y) = c1 + c3 − y2j , j = 1, 2 at the roots y1 and y2 of the function G(y). If c1 + c3 < y21 then the both inequalities
F (yj) < 0, j = 1, 2 are valid. Inequality F (π2 ) > 0 corresponds to the condition I.3.1.2 of the theorem 1 and then
inequality F ( 3π2 ) > 0 is valid as well. So the signs of the function F (y) alternate in roots of G(y).
We can get the tenth root of G(y) by shifting the segment [−2π; 2π] to the right so that the root of the function
G(y) y3 ∈ (2π; 2π + π

2 ) will be in this segment. As there are no roots of the function G(y) on interval (−2π;− 3π
2 )

we don’t lose any of the root of the function G(y) on the left side. So we have constructed a segment of 4π-length,
and there are 10 roots of the function G(y) on this segment.

Let the roots of the function G(y) be ordered as follows: π
2 < y1 < y2 < 3π

2 . In this case a straight linez = c2y
is located over graph of the function z = z(y) on the interval (0; y1), so at point y = π

2 inequality c2
π
2 > z(π2 )

is valid. From (7) we get G′(π2 ) < 0. Similarly to the previous case, c2 < z′(y1) and taking into account the
inequality cos y1 < 0 from (7) we obtain G′(y1) > 0. The inverse inequality c2 > z′(y2) with cos y2 < 0 yields
G′(y2) < 0. Inequality G′( 3π2 ) > 0 is also valid, and we get the alternation of signs of the derivative G′(y) in the
roots of the function G(y). From the condition I.3.2.2 of the Theorem 1 we obtain F (π2 ) < 0 and from inequalities
y21 < c1 + c3 < y22 we obtain F (y1) > 0 and F (y2) < 0. Inequality F ( 3π2 ) > 0 is valid as well. So the signs of the
function F (y) in roots of G(y) alternate. Further, all 2π-long segments will include four roots of the function G(y)
and there will be a similar alternation of the signs of the derivative G′(y) and the signs of the function F (y) in these
roots and inequality (9) is valid as well. Assertion A is proved.
Proof of Assertion B. Let π2 < c1 < 4π2. Then function z(y) = 2(y2 − c1) sin y is positive on (π;

√
c1) and

equation (10) has 2 solutions on this interval if coefficient c2 is less than the slope of tangent to function graph
z = z(y), drawn from the origin. It was noted at the proof of the assertion that the touch point ẏ is the solution of
the equation tan y = (c1−y2)y

c1+y2 . We consider the solution of this equation on (π;
√
c1), so the touch point ẏ ∈ (π; 3π

2 ).
Let the roots of G(y) are ordered as follows π

2 < y1 < y2 < 3π
2 . We have considered such sequence of roots in the

previous part of the proof but now π < y1. As before we have c2
π
2 > z(π2 ) and from (7) we get G′(π2 ) < 0. At the

point y1 we have c2 < z′(y1) and cos y1 < 0 so the inequality (7) is equivalent to the inequality G′(y1) > 0. At the
point y2 we have c2 > z′(y2) and cos y2 < 0, so from (7) we obtain G′(y2) < 0. Inequality G′( 3π2 ) > 0 is fulfilled as
well. Inequalities F (π2 ) < 0, F (y1) > 0, F (y2) < 0, F ( 3π2 ) > 0 correspond to the inequalities c1 + c2

π
2 < c3 +

π2

4 ,
y21 < c1 + c3 < y22 , so the signs of the function F (y) in roots of G(y) alternate. If π

2 < y1 < 3π
2 < y2, and π < y1,

then G′(π2 ) < 0. The root y = 3π
2 lies between two roots y1 < y2 so the straight line z = c2y is located under the

graph of the function z = z(y) or c2y < z(y). From this inequality we obtain G′(y) = − sin y (c2y − z(y) < 0 for
y = 3π

2 . So the signs of the derivative G′(y) in roots of function G(y) alternate. The corresponding alternation
of signs of function F (y) takes place iff the inequalities 9π2

4 + c2
3π
2 + c3 < c1 and c1 + c3 > y2 are satisfied. If

π
2 < 3π

2 < y1 < y2, then the both inequalities c1 + c3 < y1 and c1 + c3 > y2 are fulfilled together. It contradicts to
the inequality y1 < y2. So the assertion B of the Theorem 1 is proved.
If c1 > 4π2, the segment [0; 2π] contains only two roots of the function G(y), whereas Pontryagin criterion requires
four roots.
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3. Criterion for stable co-functioning of the two industries

In this paragraph we obtain conditions under which the goods quantity meets the demand. Under these conditions
there is as overproducing of raw materials and its shortage as well. Proving the theorem 1 we have considered
only linear system associated with the equilibrium point (P ∗;Q∗) without square members. From the theory
of the differential equations it is known that in this case the equilibrium point of system (1) is asymptotically
stable if the approximating linear system is asymptotically stable. The last statement is valid if the roots of the
quasi-polynomial (4) lie in the left half-plane. Thus, we obtain the following theorem.

Theorem 2
A non-trivial equilibrium (P ∗;Q∗) of the system (1) is asymptotically stable iff the following conditions are
fulfilled:
Assertion A:

I.1. 0 < bdh2P ∗Q∗ < π2

I.2. 0 < (eP ∗ + fQ∗)h < z(ẏ)
ẏ = 2(ẏ2−bdh2P∗Q∗) sin ẏ

ẏ , here ẏ ∈ (
√

bdh2P ∗Q∗, π) is the unique root of the

equation tan y = (bdh2P∗Q∗−y2)y
bdh2P∗Q∗+y2 ;

I.3.1. If y1 ∈ (0; π
2 ) is a root of equation 2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy then the following

conditions are fulfilled:
I.3.1.1. bdh2P ∗Q∗ + efh2P ∗Q∗ < y21 and
I.3.1.2. bdh2P ∗Q∗ + (eP ∗ + fQ∗)hπ

2 < efh2P ∗Q∗ + π2

4 .
I.3.2. If y1, y2 ∈ (π2 ;π), y1 < y2 are the roots of the equation 2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy then

the following conditions are fulfilled:
I.3.2.1. y21 < bdh2P ∗Q∗ + efh2P ∗Q∗ < y22 and
I.3.2.2. bdh2P ∗Q∗ + (eP ∗ + fQ∗)hπ

2 > efh2P ∗Q∗ + π2

4
Assertion B:
A non-trivial equilibrium (P ∗;Q∗) of the system (1) is asymptotically stable if the following conditions are

fulfilled:
II.1. π2 < bdh2P ∗Q∗ < 4π2;

II.2. 0 < (eP ∗ + fQ∗)h < z(ẏ)
ẏ = 2(ẏ2−bdh2P∗Q∗) sin ẏ

ẏ ,here ẏ ∈ (π;
√

bdh2P ∗Q∗) is the unique root of the

equation tan y = (bdh2P∗Q∗−y2)y
bdh2P∗Q∗+y2 ;

II.3.1. If y1, y2 ∈ (π; 3π
2 ) y1 < y2 are the roots of the equation 2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy then

the following conditions are valid:
II.3.1.1. y21 < bdh2P ∗Q∗ + efh2P ∗Q∗ < y22 and
II.3.1.2. bdh2P ∗Q∗ + (eP ∗ + fQ∗)hπ

2 > efh2P ∗Q∗ + π2

4 .
II.3.2. If y2 ∈ ( 3π2 ;

√
bdh2P ∗Q∗) is a root of the equation2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy then the

following conditions are valid:
II.3.2.1. bdh2P ∗Q∗ + efh2P ∗Q∗ > y22 ,
II.3.2.2. 9π2

4 + (eP ∗ + fQ∗)h3π
2 + efh2P ∗Q∗ < bdh2P ∗Q∗.

4. Conclusion and Discussion

1. A mathematical model of dynamic interaction between mining and processing industries is described by the
system of two nonlinear delay differential equations. At the proposed model we take into account the volume
of raw materials mined and shipped in the preceding time (t− h). In the Theorem 2 we find conditions on the
coefficients of system (1) for stabilizing the equilibrium point (2). It means that the first industry produces such a
quantity of raw materials that they will immediately be processed by the second industry. It means that there is a
balance between the amount of extracted raw materials and the number of processing enterprises.
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2. The conditions under which the solutions of system (1) tend to equilibrium point (Q∗;P ∗) are given in
Theorem 2. The conditions I.1, I.2, I.3.1.1 and I.3.1.2 taken together, give a size of admissible interval between
deliveries of raw material at which the balance between industries is kept. The size of this h2 <

y2
1

(bd+ef)P∗Q∗ , where
y1 ∈ (0; π

2 ) is a root of equation 2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy.
3. If the interval between deliveries of raw material is not small but conditions I.1, I.2, I.3.2.1 and I.3.2.2 of
Theorem 2 taken together are fulfilled then the balance between industries is kept also. In this case size of
this admissible interval is y2

1

(bd+ef)P∗Q∗ < h2 <
y2
2

(bd+ef)P∗Q∗ , where y1, y2 ∈ (π2 ;π), y1 < y2 are the roots of the
equation 2(y2 − bdh2P ∗Q∗) sin y = (eP ∗ + fQ∗)hy.
4. Moreover if delay h is rather large π2 < bdh2P ∗Q∗ < 4π2 (condition II.I of Theorem 2) the stability of the
equilibrium point (Q∗;P ∗) can be restored if conditions of Assertion B of Theorem 2 are fulfilled.
5. If this time interval between supplies of raw materials increases, the asymptotic stability of equilibrium point
stabilization. Restrictions obtained in the Theorem 2 allow to solve the problem of stabilization of equilibrium
point.
6. Assume that a priori it is known the quantity of final products required to meet demand in the region, and to
manifacture these final products we need a certain amount of raw materials. It means that initially the equilibrium
point is known, but the point (Q∗;P ∗) determined by the formula (2), does not meet the demand for these products.
In this case, it is necessary to change the technological process of extraction and processing (change coefficients
a, b, c, d, e, f ) so that point (Q∗;P ∗) is consistent with the economically justified demand. Then it is possible to
solve the above mentioned problem of finding time intervals between deliveries of raw materials which make it
possible to preserve stable interaction between the two industries.
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