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Abstract In this paper, we study Mean Field Games with common noise based on nonlinear stable-like processes. The
MFG limit is specified by a single quasi-linear deterministic infinite-dimensional partial differential second order backward
equation. The main result is that any its solution provides an 1/N -Nash equilibrium for the initial game of N agents. Our
approach is based on interpreting the common noise as a kind of binary interaction of agents and our previous results on
regularity and sensitivity with respect to the initial conditions of the solution to the nonlinear stochastic differential equations
of McKean-Vlasov type generated by stable-like processes.
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1. Introduction

Mean field games with common noise present a quickly developing part of the mean field game theory. The
theory of mean field games was initiated by Lasry-Lions [28] and Huang-Malhame-Caines [19, 17, 18], see
[5, 6, 14, 15, 7, 8, 3, 4] for recent surveys, as well as [9, 10, 16, 2] and references therein. Notice that there is
quite an extensive literature on the mean field games with common noise (e.g. [11, 12, 27, 23, 24, 13, 1] and
references therein).

Seemingly first serious contributions to the general theory of mean field games with common noise are the
works [12] and [27]. In [12], existence of weak solutions for mean field games with common noise is shown to
hold under very general assumptions, existence and uniqueness of a strong solution are proved under additional
assumptions. However, [12] and [27] work mostly with controlled SDEs. Another approach which based on the
sensitivity analysis for McKean-Vlasov SPDEs was developed in the papers [23, 24]. Some simple concrete models
of mean field game types with common noise applied to modeling interbank loans are analyzed in detail in [13]. A
model of common noise with constant coefficients is discussed in [1].

Another new trend concerns the theory of mean field games with a major player, see [29, 30, 31], and references
therein. Common noise can be considered as a kind of neutral major player, but the usual setting for the latter
[29] introduces the corresponding noise into the coefficients of the SDEs of the minor players, rather than adding
additional common stochastic differential. One of the ideas (and results) of our contribution is to use the method
of stochastic characteristics to link these two models.
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Let us consider N agents, whose positions are governed by the system of SDEs

dXi
t = b(Xi

t , µ
N
t , ui

t) dt+ σcomdWt + a1/α(Xi
t)dY

i
t , (1)

where all Xi
t belong to Rd, Wt is d′-dimensional standard Brownian motion referred to as the common noise and

Y i
t are independent symmetric Lévy processes with the index α, σcom is a constant d× d′ matrix. The parameters

ui
t ∈ U are controls available to the players, trying to minimize their payoffs

V i
t (x) = E

[∫ T

t

J(s,Xi
s, µ

N
s , ui

s) ds+ VT (X
i
T , µ

N
T )

]
, (2)

depending on the action of other players, with the given functions J and VT . The coefficient b(x, µ, u) is a function
of x ∈ Rd, u ∈ U and a measure µ ∈ M(Rd), and µN

t in (1) is

µN
t =

1

N

N∑
i=1

δXi
t
.

Here U is a closed interval in R and M(Rd) is the set of bounded positive Borel measures on Rd.
In general, the function b needs to be defined only for µ from the set of probability measures P(Rd). However,

to use smoothness with respect to µ it is convenient (though not necessary) to have this function defined on a larger
space. In the usual examples, b depend on µ via a finite set of moments of type

Fj(µ) =

∫
F̃j(x1, · · · , xk)µ(dx1) · · ·µ(dxk), (3)

with some bounded measurable symmetric functions F̃j .
As shown below, under appropriate regularity assumptions on the coefficients b, σcom and a in (1), the

corresponding Markov evolution of the empirical measures µN
t converges, as N → ∞ to the unique solution µt

of the following nonlinear stochastic partial differential equation of the McKean-Vlasov type generated by the
stable-like process,

d(f, µt) = (L(µt, ut)f +
1

2
(σcomσT

com∇,∇)f, µt) dt+ (σcom∇f, µt) dWt. (4)

This equation is written in the weak form meaning that it should hold for all f ∈ C2(Rd). Here

L(µ, u)f(x) = (b(x, µ, u(x, µ)),∇)f(x)− a(x)|∆|α/2f(x), (5)

is the generator for the stable-like processes in Rd with stability index α ∈ (1, 2), µ ∈ M(Rd).
By the usual rule Y ◦ dX = Y dX + 1

2dY dX , equation (4) rewrites in a more transparent Stratonovich form as

d(f, µt) = (L(µt, ut)f, µt) dt+ (σcom∇f, µt) ◦ dWt. (6)

Recall that the fractional Laplacian can be expressed via the integral operator

|∆|α/2f(x) = Cα

∫
Rd

(
f(x+ y)− f(x)− (∇f(x), y)

1 + |y|2

)
dy

|y|d+α
, (7)

with a certain constant Cα.
Let us introduce the following conditions:
(C0) The function b is linear in u, that is,

b(x, µ, u) = b1(x, µ) + b2(x, µ)u, (8)
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266 ON MEAN FIELD GAMES WITH COMMON NOISE BASED ON STABLE-LIKE PROCESSES

and the function J(t, x, µ, u) is convex and smooth in u.
(C1) The function a(x) ∈ C2

∞
(
Rd

)
and satisfies the inequalities

M−1 ≤ a(x) ≤ M

for all x ∈ Rd and a constant M > 1;
(C2) Functions b1(x, µ), b2(x, µ) are continuous and bounded on Rd ×M(Rd), function u(t, x, µ) is continuous

and bounded on [0, T ]×Rd ×M(Rd), b1(., µ), b2(., µ), u(t, ., µ) ∈ C2(Rd), and b1, b2, u are Lipshitz continuous
as a functions of x, uniformly in other variables;

(C3) The first and second order variational derivatives of b1(x, µ), b2(x, µ), u(t, x, µ) and J(t, x, µ, u) with
respect to µ are well defined, bounded and

b1(x, .), b2(x, .), u(t, x, .), J(t, x, ., u) ∈ (C2,1×1 ∩ C1,2)(M≤λ(R
d))

for any λ > 0, the classes of functions C2,1×1(M≤λ(R
d)) and C1,2(M≤λ(R

d)) are introduced below.
Recall now that the optimal control problem facing each player, say X1

t , is to minimize cost (2). Now the crucial
difference with the games without common noise starts to reveal itself. For games without noise, one expects to get
a deterministic curve µt in the limit of large N , so that in the limit, each player should solve a usual optimization
problem for a stable-like process in Rd. Here the limit is stochastic, and thus even in the limit the optimization
problem faced by each player is an optimization with respect to an infinite-dimensional, in fact measure-valued,
process.

In fact, for fixed N , if all players, apart from the first one, are using the same control ucom(t, x, µ), the optimal
payoff for the first player is found from the HJB equation for the stable-like process governed by (1), that is, the
HJB equation (where we denote X1 by x),

∂V

∂t
(t, x, µ) + inf

u
[(b(x, µ, u),∇)V + J(t, x, µ, u)] +

1

2
(σcomσT

com∇,∇)V − a(x)|∆|α/2V

+
∑
j ̸=1

[
(b(xj , µ, ucom(t, xj , µ),∇)V +

1

2
((σcomσT

com∇,∇)V − a(xj)|∆|α/2V
]

+
∑
j ̸=1

(
σcomσT

com

∂

∂x
,

∂

∂xj

)
V +

∑
{i,j}⊂{1,...,N}

(
σcomσT

com

∂

∂xi
,

∂

∂xj

)
V = 0. (9)

As will be shown, in the limit when (δx1 + · · ·+ δxN
)/N converge to the process µt, this equation turns to the

limiting HJB equation

∂V

∂t
+ inf

u
[(b(x, µ, u),∇)V + J(t, x, µ, u)] +

1

2
(σcomσT

com∇,∇)V − a(x)|∆|α/2V

+ ΛlimV (t, x, µ) +

∫ (
σcomσT

com

∂

∂x
,
∂

∂y

)
δV (t, x, µ)

δµ(y)
µ(dy) = 0, (10)

where the operator Λlim acting on the variable µ is calculated in (48) with ucom as the control.
If J is convex, the infimum here is achieved on the single point

ûind(t, x, µ) = argminu [(b(x, µ, u),∇)V + J(t, x, µt, u)] .

Moreover, if ûind(t, x, µ) belongs to the internal part of U then

ûind(t, x, µ) = −
(
∂J

∂u

)−1

(b2(x, µ),∇)V. (11)

Instead of a pair of coupled forward-backward equations in the usual MFG we have now one single infinite-
dimensional equation (10). Namely, for any curve ucom(t, x, µ) (defining Λlim in (48) and thus in (10)), we should
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solve equation (10) with a given terminal condition leading to the optimal control (11). The key MFG consistency
requirement is now given by the equation

ûind(t, x, µ) = ucom(t, x, µ). (12)

This can be interpreted as having a limiting game of two players, a tagged player and a measure-valued player,
for which we are looking for a symmetric Nash equilibrium (see e.g. [32]).

Equivalently, the MFG consistency (12) can be encoded into a single quasi-linear deterministic infinite-
dimensional partial differential second order backward equation on the function V (t, x, µ), which we present now
in full substituting Λlim from (48) and (12) in (10):

∂V

∂t
(t, x, µ) + [(b(x, µ, ûind(t, x, µ)),∇)V + J(t, x, µ, ûind(t, x, µ))]

+
1

2
((σcomσT

com∇,∇)V − a(x)|∆|α/2V +
1

2

∫ ∫ (
σcomσT

com

∂

∂y
,
∂

∂z

)
δ2V (t, x, µ)

δµ(y)δµ(z)
µ(dy)µ(dz)

+

∫ ([
(b(., µ, ûind(t, ., µ)),∇) +

1

2
(σcomσT

com∇,∇)− a(.)|∆|α/2
]

δV (t, x, µ)

δµ(.)

)
(y)µ(dy)

+

∫ (
σcomσT

com

∂

∂x
,
∂

∂y

)
δV (t, x, µ)

δµ(y)
µ(dy) = 0, (13)

with a given terminal condition

V (t, x, µ)|t=T = VT (x, µ), µt|t=0 = µ0. (14)

The MFG methodology suggests that for large N the optimal behavior of players arises from the control û given
by (11) with V solving (13), or equivalently, satisfying the consistency condition (12).

In this paper, we are going to concentrate exclusively on proving that the solutions to MFG provide the ϵ(N)-
Nash-equilibria error-order ϵ(N) ∼ 1/N . Our approach will be based on interpreting (by means of Ito’s formula)
the common noise as a kind of binary interaction of agents (in addition to the usual mean field interaction of the
standard situation without common noise) and then reducing the problem to the sensitivity analysis for McKean-
Vlasov type SPDE.

Our paper is organized as follows. Section 2 formulates our main results and indicates the strategy of their proof.
Sections 3-4 are devoted to the well-posedness and sensitivity analysis of the McKean-Vlasov type SPDEs and
the related properties of the corresponding measure-valued Markov processes. The last two Sections prove the
Theorems formulated in Section 2.

The following basic notations will be used:
Cn(Rd) is the Banach space of n times continuously differentiable and bounded functions f on Rd such that

each derivative up to and including order n is bounded, equipped with norm ∥f∥Cn which is the sum of the suprema
of the magnitudes of all mixed derivatives up to and including order n.
C∞(Rd) is the Banach space of bounded continuous functions f : Rd → R with limx→∞ f(x) = 0, equipped

with sup-norm.
Cn

∞(Rd) is a closed subspace of Cn(Rd) with f and all its derivatives up to and including order n belonging to
C∞(Rd).

If M is a closed subset of a Banach space B, then
C([0, T ],M) is a metric space of continuous functions t → µt ∈ M with distance ∥η − ξ∥C([0,T ],M) =

supt∈[0,T ] ∥ηt − ξt∥B. An element from C([0, T ],M) is written as {µ.} = {µt, t ∈ [0, T ]}.
M(Rd) is the Banach space of finite signed Borel measures on Rd.
M+(Rd) and P(Rd) are the subsets of M(Rd) of positive and positive normalized (probability) measures,

respectively.
Let M<λ(R

d) (resp. M≤λ(R
d) or Mλ(R

d)) and M+
<λ(R

d) (resp. M+
≤λ(R

d) or M+
λ (R

d)) denote the parts of
these sets containing measures of the norm less than λ (resp. not exceeding λ or equal λ).
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Let Ck×k(R2d) denote the subspace of C(R2d) consisting of functions f such that the partial derivatives
∂α+βf/∂xα∂yβ with multi-index α, β, |α| ≤ k, |β| ≤ k, are well defined and belong to C(R2d). Supremum of
the norms of these derivatives provide the natural norm for this space.

For a function F on M+(Rd) or M(Rd) the variational derivative is defined as the directional derivative of
F (µ) in the direction δx:

δF (µ)

δµ(x)
=

d

dh
|h=0F (µ+ hδx).

The same formula defines the variational derivative in the case when F is a Banach space-valued mapping.
For instance, if F = Fj is given by (3), then

δF

δµ(x)
= k

∫
F̃j(x, x2, · · · , xk)µ(dx2) · · ·µ(dxk),

δ2F

δµ(x)δµ(y)
= k(k − 1)

∫
F̃j(x, y, x3, · · · , xk)µ(dx3) · · ·µ(dxk).

The higher derivatives δlF (µ)/δµ(x1)...δµ(xl) are defined inductively.
Let Ck(M≤λ(R

d)) denote the space of functionals such that the kth order variational derivatives are well defined
and represent continuous functions of all variables with measures considered in their weak topology.

Let Ck,l(M≤λ(R
d)) denote the subspace of functionals F from Ck(M≤λ(R

d)) such that
δmF (µ)/δµ(.)...δµ(.) ∈ Cl(Rdm) for all m ≤ k uniformly in µ ∈ M≤λ(R

d).
Let C2,k×k(M≤λ(R

d)) be the space of functionals such that their second order variational derivatives are
continuous as functions of all variables and belong to Ck×k(R2d) as functions of the spatial variable; the norm
of this space is

∥F∥C2,k×k(M≤λ(Rd)) = sup
µ∈M≤λ(Rd)

∥∥∥∥ δ2F

δµ(.)δµ(.)

∥∥∥∥
Ck×k(R2d)

.

(f, µ) =
∫
f(x)µ(dx) denotes the usual pairing of functions and measures on Rd.

E denotes the expectation.

2. Our strategy and results

Our main result is the following.

Theorem 1
Let functions b, a, u, J satisfy the Conditions (C0)-(C3), σcom be a constant d× d′ matrix and let V (t, x, µ)
be a classical solution to problem (13), (14). Assume V (t, x, µ), as the function of µ belongs to the space
(C2,1×1 ∩ C1,2)(M≤λ(R

d)), as the function of x belongs to the space C2(Rd) and its derivatives with respect
to x belong to the space C1,1(M≤λ(R

d)). Then the profile of symmetric strategies ût(x, µ) given by (11) is an
ϵ-Nash equilibrium of the N -player game given by (1), (2), with ϵ(N) ∼ 1/N as N → ∞.

As an important ingredient in our proof we use our previous results on the regularity and sensitivity of the
nonlinear stochastic differential equations of McKean-Vlasov type generated by stable-like processes [25]. As a
by-product of our analysis, we obtain a result of independent interest, not linked with any optimization problem,
namely the 1/N -rates of convergence for interacting stable-like processes to the limiting measure-valued stable-like
process, Theorem 2 (often interpreted as the ’propagation of chaos’ property).

Let us explain our strategy for proving Theorem 1.
For any N and a fixed common strategy ut(x, µ), solutions to the system of SDEs (1) on t ∈ [0, T ] define a

backward propagator (also referred in the literature as a flow or as a two-parameter semigroup) Us,t
N = Us,t

N [u(.)],
0 ≤ s ≤ t ≤ T , of linear contractions on the space Csym(RdN ) of symmetric functions via the formula

(Us,t
N f)(x1, · · · , xN ) = Ef(X1, · · · , XN )s,t(x1, · · · , xN ), (15)
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where (X1, · · · , XN )s,t(x1, · · · , xN ) is the solution to (1) at time t with the initial condition

(X1, · · · , XN )s,s(x1, · · · , xN ) = (x1, · · · , xN )

at time s. The corresponding dual forward propagator V t,s
N = (Us,t

N )′ is defined by the equation

(f, V t,s
N µ) = (Us,t

N f, µ). (16)

It acts on the probability measures on RdN , so that if µ is the initial distribution of (X1, · · · , XN ) at time s, then
V t,s
N µ is the distribution of (X1, · · · , XN ) at time t.
By the standard inclusion

(x1, · · · , xN ) → 1

N
(δx1 + · · ·+ δXN ) (17)

the set RdN is mapped to the set PN (Rd) of normalized sums of N Dirac’s measures, so that Us,t
N , V t,s

N can be
considered as propagators in C(PN (Rd)) and P(PN (Rd)) respectively.

On the other hand, for a fixed function ut(x, µ), the solution of SPDE (4) specifies a stochastic process, a stable-
like process, on the space of probability measures P(Rd) defining the backward propagator Us,t = Us,t[u(.)] on
C(P(Rd)):

(Us,tf)(µ) = Ef(µs,t(µ)), (18)

where µs,t(µ) is the solution to (4) at time t with a given initial condition µ at time s ≤ t.
From the convergence of the empirical measures µN

t , mentioned above, it follows that Us,t
N tend Us,t, as N → ∞.

The following result provides the rates for the weak convergence.

Theorem 2
Let functions b, a, u satisfy the Conditions (C0)-(C3), σcom be a constant d× d′ matrix. Then for any µ ∈ PN (Rd)
and F ∈ (C2,1×1 ∩ C1,2)(M≤λ(R

d))

∥(Us,t − Us,t
N )F (µ)∥C(M≤λ(Rd)) ≤

C(T )

N

(
∥F∥C2,1×1(M≤λ(Rd)) + ∥F∥C1,2(M≤λ(Rd))

)
(19)

for 0 ≤ s ≤ t ≤ T .

This result belongs to the statistical mechanics of interacting stable-like processes, so that its significance goes
beyond any links with games or control theory.

This result is not sufficient for us, as we have to allow one of the agent to behave differently from the
others. To tackle this case we shall consider the corresponding problem with a tagged agent. Namely, consider
the Markov process on pairs (X1,N

t , µN
t )[uind(.), ucom(.)], where uind and ucom are some U -valued functions

uind
t (x, µ), ucom

t (x, µ), (X1,N
t , · · · , XN,N

t ) solves (1) under the assumptions that the first agent uses the control
uind
t (X1,N

t , µN
t ) and all other agents i ̸= 1 use the control ucom

t (Xi,N
t , µN

t ), and µN
t = 1

N

∑N
i=1 δXi,N

t
.

Remark 1
The coordinates (X1,N

t , µN
t ) of our pair process are not independent. Quite opposite, X1,N

t is the position of the
first δ-function in µN

t . However, we are aiming at the limit N → ∞ where the influence of X1,N
t on µN

t becomes
negligible, and we do not want it to be lost in the limit. Alternatively, to avoid this dependence, one can consider (as
some authors do), instead of our µN

t , the measures that do not take X1,N
t into account, that is µ̃N

t = 1
N

∑N
i=2 δXi,N

t
,

but this would neither change the results nor simplifies the notations.

Let us now define the corresponding tagged propagators Us,t
N,tag = Us,t

N,tag[u
ind(.), ucom(.)] and

Us,t
tag = Us,t

tag[u
ind(.), ucom(.)]:

(Us,t
N,tagF )(x, µ) = EF (X1,N

t , µN
t )[uind(.), ucom(.)](x, µ), (20)

where µ = 1
N

∑N
j=1 δxj is the position of the process at time s and where x = x1;

(Us,t
tagF )(x, µ) = EF (X1

t , µt)[u
ind(.), ucom(.)](x, µ), (21)
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where the process (X1
t , µt)[u

ind(.), ucom(.)](x, µ) with the initial data x, µ at time s is the solution to the system
of stochastic equations

dX1
t = b(X1

t , µt, u
ind
t (X1

t , µt)) + σcom(X1
t )dWt + a1/α(Xi

t)dY
i
t , (22)

d(f, µt) = (L(µt, u
com
t (., µt))f +

1

2
(σcomσT

com∇,∇)f, µt) dt+ (σcom∇f, µt) dWt (23)

(the second equation is actually independent of the first one).
The following is the basic convergence result for the tagged processes.

Theorem 3
Under the assumptions of Theorem 2 (with both ucom

t , uind
t satisfying these assumptions), let F (x, µ), x ∈ Rd,

belongs to the space (C2,1×1 ∩ C1,2)(M≤λ(R
d)) as a function of µ, F ∈ C2(Rd) as a function of x and

∂F

∂x
(x, .) ∈ C1,1(M≤λ(R

d)). Then, for any µ ∈ PN (Rd)

∥(Us,t
tag − Us,t

N,tag)F∥C(Rd×M≤λ(Rd))

≤ C(T )

N

(
sup
x

∥F (x, .)∥C2,1×1(M≤λ(Rd)) + sup
x

∥F (x, .)∥C1,2(M≤λ(Rd))

+sup
µ

∥F (., µ)∥C2(Rd) + sup
x

∥∂F
∂x

(x, .)∥C1,1(M≤λ(Rd))

)
. (24)

Theorem 2 is a particular case of Theorem 3 obtained from the latter by ignoring the first coordinate. However,
by methodological reason, we first prove simpler Theorem 2, and then its extension Theorem 3.

Now Theorem 1 can be derived.
Proof of Theorem 1
Let u1 be any adaptive control of the first player and V1 the corresponding payoff in the game of N players,

where all other players are using ucom(t, x, µ) arising from a solution to (13),(14). Then V1 ≥ V2, where V2 is
obtained by playing optimally, that is using control u2 arising from the solution to (9). By Theorem 3,

|V2 − V2,lim| ≤ C/N,

where V2,lim is obtained by playing u2 in the limiting game specified by equations (22), (23). But V2,lim ≥ V ,
where V is the optimal payoff for the first player in the limiting game of two players, where the second, measure-
valued, player uses ucom. Consequently,

V1 ≥ V2 ≥ V2,lim − C

N
≥ V − C

N
,

completing the proof. 2

3. Sensitivity for stochastic McKean-Vlasov type equations

In this section, we formulate the well-posedness and the sensitivity results of equations (4) or (6), proved in our
previous paper [25].

For any measure µ and a vector y the measure µ(.+ y) denotes the measure µ shifted by y.
By using the method of stochastic characteristics, equations (4) and (6) are transferred to the non-stochastic

equations with random coefficients.
Namely, according to Lemma 1 of [25], equation (6) rewrites in terms of the measures ζt = T ∗(−Wt)µt =

µt(.+ σcomWt) as the following non-stochastic equation with random coefficients

d

dt
(f, ζt) = (L̃t(ζt)f, ζt) = (Ldress

t (ζt(.− σcomWt))f, ζt), (25)
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with
Ldress
t (µ)f(x) = (b(x+ σcomWt, µ, u),∇)f(x)− a(x+ σcomWt)|∆|α/2f(x) (26)

and
L̃t(ζt)f(x) = Ldress

t (ζt(x− σcomWt))f(x)

= (b̃(Wt, x, ζt),∇)f(x)− ã(Wt, x)|∆|α/2f(x), (27)

where
b̃(Wt, x, ζt) = b(x+ σcomWt, ζt(x− σcomWt), u),

ã(Wt, x) = a(x+ σcomWt).

Theorem 4
Let functions b, a, u satisfy the Conditions (C0)-(C3), σcom be a constant d× d′ matrix. Then for any given T > 0
the following holds.

(i) The Cauchy problem for equation (6) is well posed almost surely, that is, for any initial condition Y ∈
M+(Rd) it has the unique bounded nonnegative solution µt(Y ) such that ζt = µt(x+ σcomWt) solves (25).

(ii) For all t > 0, ∥ζt∥ ≤ ∥Y ∥ and ζt have densities with respect to Lebesgue measure. With some abuse notation,
we shall denote these densities again by ζt. They satisfy the mild equation

ζt(x) =

∫
Gt(x, y)Y (dy)−

∫ t

0

ds

∫
∂

∂y

(
G(t−s)(x, y), b̃(Ws, y, ζs)ζs(y)

)
dy. (28)

Consequently, ∥µt∥ ≤ ∥Y ∥ and µt also have densities, vt and µt(dy) = vt(y)dy → Y weakly, as t → 0. If the initial
condition Y has a density, v0, then vt → v0 in L1(Rd).

(iii) For any two solutions µ1
t and µ2

t of (6) with the initial conditions Y 1, Y 2 the estimate

∥µ1
t − µ2

t∥L1(Rd) ≤ ∥Y 1 − Y 2∥M(Rd)C(T, ∥Y 1∥), (29)

with C depending on the bounds of the derivatives in conditions (C1)-(C3).

Denote by

ξt(x; .) = ξt(x; .)[µ0] =
δµt

δµ0(x)
=

d

dh
|h=0µt[µ0 + hδx], (30)

and
ηt(x, z; .) = ηt(x, z; .)[µ0] = δ2µt/δµ0(x)δµ0(z)

the first and second variational derivatives of the solutions to (6) with respect to the initial data respectively.

Lemma 1
Let equation (25) be well posed and its solutions ζt depend smoothly on the initial condition in the sense that
the variational derivatives δζt/δζ0(x) and δ2ζ/δζ0(x)δζ0(y) exist as signed measures and are continuous bounded
functions of x and y. Then the solutions µt = ζt(x− σcomWt) to equation (6) also depend smoothly on the initial
condition µ0 = ζ0 and the variational derivatives are given by the formulas(

f,
δµt

δµ0(x)

)
=

δ

δµ0(x)
(f, µt) =

δ

δζ0(x)
(f(x− σcomWt), ζt), (31)

(
f,

δ2µt

δµ0(x)δµ0(y)

)
=

δ2

δζ0(x)δζ0(y)
(f(x− σcomWt), ζt). (32)

Theorem 5
Let functions b, a, u satisfy the Conditions (C0)-(C3), σcom be a constant d× d′ matrix. Then the mapping
Y = µ0 7→ µt from Theorem 4 is continuously differentiable in Y , so that the derivative (30) is well defined as
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a continuous function of two variables such that

sup
x

sup
µ0∈M+

≤λ
(Rd)

∥ξt(x; .)[µ0]∥ ≤ C(T, λ, ∥Y ∥) (33)

for t ∈ [0, T ] uniformly for all values of Wt. Moreover, the variational derivatives ξt(x; .) are twice differentiable
in x weakly, as the functionals on the spaces of smooth functions, that is,

∂ξt(x; .)/∂x ∈ (C1
∞(Rd))∗, ∂2ξt(x; .)/∂x

2 ∈ (C2
∞(Rd))∗,

and
∥∂ξt(x; .)/∂x∥(C1

∞(Rd))∗ ≤ C(T, λ, ∥Y ∥),

∥∂2ξt(x; .)/∂x
2∥(C2

∞(Rd))∗ ≤ C(T, λ, ∥Y ∥), (34)

again uniformly for all values of the noise Wt.

Theorem 6
(i) Let functions b, a, u satisfy the Conditions (C0)-(C3), σcom be a constant d× d′ matrix. Then the mapping
Y = µ0 7→ µt from Theorem 4 is twice continuously differentiable in Y , so that the derivative ηt(x, z; .) is well
defined as a continuous function of three variables such that

sup
x

sup
z

sup
µ0∈M+

≤λ
(Rd)

∥ηt(x, z; .)[µ0]∥ ≤ C(T, λ, ∥Y ∥) (35)

for t ∈ [0, T ] uniformly for all values of Wt.
Moreover, the derivatives of ηt(x, z; .) with respect to x and z of order at most one are well-defined as elements

of (C2(Rd))∗ and

∥ ∂γ

∂xγ

∂β

∂zβ
ηt(x, z; .)∥(C2(Rd))∗ ≤ C(T, λ, ∥Y ∥) (36)

for γ, β = 0, 1.

4. On the domain of the Markov semigroups generated by the McKean-Vlasov type SPDEs

The solutions of equation (6) define a Markov process, in fact a measure-valued stable-like process. The
corresponding Markov propagator is given on the continuous functionals of measures in the usual way:

Us,tF (µ) = EF (µt(µ, [W ])), (37)

where µt is the solution to (6) for t > s with given µ = µs at time s.
The main conclusion we need from the sensitivity analysis developed above is the invariance of the set of smooth

functionals under this propagator, that is the following fact:

Theorem 7
Under assumption of Theorem 6 the spaces of functionals C1,2(M≤λ(R

d)) and its intersection with
C2,1×1(M≤λ(R

d)) are invariant under the action of the operators (37), so that

∥Us,tF∥C1,2(M≤λ(Rd)) ≤ C(T )∥F∥C1,2(M≤λ(Rd)), (38)

∥Us,tF∥C2,1×1(M≤λ(Rd)) ≤ C(T )
(
∥F∥C2,1×1(M≤λ(Rd)) + ∥F∥C1,2(M≤λ(Rd))

)
(39)

with a constant C(T ).
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Proof
Since

(δUs,t(F ))(v)

δv(x)
= E

δF (vt)

δv(x)
= E

∫
Rd

δF (vt)

δvt(z)
ξt(z;x)[v] dz,

it follows that

∥Us,tF∥C1,2(M≤λ(Rd)) ≤ E

∥∥∥∥∫
Rd

δF (vt)

δvt(z)
ξt(z; .)[v] dz

∥∥∥∥
C2(Rd)

≤ E

∥∥∥∥δF (vt)

δvt(.)

∥∥∥∥
C2(Rd)

∥∥∥∥ ∂2

∂x2
ξt(.;x)[v]

∥∥∥∥
(C2(Rd))∗

≤ C(T ).

It follows from Theorem 6 and the formula

(δ2Us,t(F ))(v)

δv(x)δv(y)
= E

δ2F (vt)

δv(x)δv(y)

= E

∫
Rd

δF (vt)

δvt(z)
ηt(z;x, y)[v0]dz +E

∫
R2d

δ2F (vt)

δvt(z)δvt(w)
ξt(z;x)[v0]ξt(w; y)[v0] dzdw,

that

∥Us,tF∥C2,1×1(M≤λ(Rd)) ≤ E

∥∥∥∥ δ2F (vt)

δv(.)δv(.)

∥∥∥∥
C1×1(R2d)

≤

∥∥∥∥∥ ∂α

∂xα
1

∂β

∂xβ
2

ηt(.;x1, x2)

∥∥∥∥∥
[C2(Rd)]∗

∥F∥C1,2(M≤λ(Rd))

+

∥∥∥∥ ∂α

∂xα
ξt(.;x)[v]

∥∥∥∥
(C1(Rd))∗

∥∥∥∥ ∂β

∂yβ
ξt(.; y)[v]

∥∥∥∥
(C1(Rd))∗

∥∥∥∥ δ2F (vt)

δvt(.)δvt(.)

∥∥∥∥
C2,1×1(M≤λ(Rd))

,

leading to (39).

5. Proof of Theorem 2

Let us return to our initial equation (1). Under the conditions (C0)-(C3) and the constant correlations σcom, equation
(1) is well-posed in RdN and specifies a Feller stable-like process and the corresponding backward and forward
propagators UN , VN given by (15), (16). We are interested in the limit of this stable-like process as N → ∞.

Applying Ito’s formula we obtain the generator of the stable-like process specified by (1):

ANf(x1, · · · , xN ) =

N∑
j=1

(B1
µ)if(x1, · · · , xN ) +

∑
{i,j}⊂{1,...,N}

(B2
µ)ijf(x1, · · · , xN ), (40)

where µ = (δx1 + · · ·+ δxN
)/N , (B1

µ)i and (B2
µ)ij denote the actions of the operators B1

µ and B2
µ on the variables

xi and xi, xj respectively. Here B1
µ and B2

µ are the operators, depending on a measure µ as on a parameter and
allowing for an additional mean field interaction:

B1
µg(x) = (b(x, µ, u(t, x, µ)),∇)g(x) +

1

2
(σcomσT

com∇,∇)g(x)− a(x)|∆|α/2g(x), (41)

B2
µg(x, y) =

(
σcomσT

com

∂

∂x
,
∂

∂y

)
g(x, y). (42)

Here and everywhere by a time-dependent generator, say AN above, of a non-homogeneous Markov process
we mean a time-dependent family of operators such that for f from some invariant dense subspace of bounded
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continuous functions the equation
d

ds
Us,t
N f = −ANUs,t

N f

holds for s ≤ t. In the case of the N -particle stable-like process, the invariant subspace can be usually taken to
be the space of twice differentiable functions (which are invariant if σ and b are twice and once differentiable
respectively). In the case of the limiting measure-valued process the invariant domains will be given by the
subspaces C2,k×k(M≤λ(R

d)).
The first term in (40) can be considered as describing a stable-like process arising from the system of particles

with a mean field interaction and the second term as giving an additional binary interaction (though not of a standard
potential type that can be easily included in the mean field interaction).

By inclusion (17), the process specified by (40) can be equivalently considered as a measure-valued process
defined on the set of linear combinations PN (Rd) of the Dirac atomic measures. On the level of propagators this
correspondence arises from the identification of symmetric functions f on RdN with the functionals F = Ff on
PN (Rd) via the equation

f(x1, · · · , xN ) = Ff [(δx1 + · · ·+ δxN
)/N ].

To recalculate the generator (40) in terms of functionals F on measures we use the following simple formulas
for differentiation of functionals on measures (proofs can be found e.g. in [21]): for µ = h(δx1

+ · · ·+ δxN
) with

h = 1/N
∂

∂xj
F (µ) = h

∂

∂xj

δF (µ)

δµ(xj)
, (43)(

G
∂

∂xj
,

∂

∂xj

)
F (µ) = h

(
G

∂

∂xj
,

∂

∂xj

)
δF (µ)

δµ(xj)
+ h2

(
G

∂

∂y
,
∂

∂z

)
δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=xj

, (44)(
γ

∂

∂xi
,

∂

∂xj

)
F (µ) = h2

(
γ

∂

∂xi
,

∂

∂xj

)
δ2F (µ)

δµ(xi)δµ(xj)
, i ̸= j. (45)

Applying these formulas in conjunction with the obvious identity

h2
∑

i<j:i,j∈{1,...,N}

ϕ(xi, xj) =
1

2

∫ ∫
ϕ(z1, z2)µ(dz1)µ(dz2)−

h

2

∫
ϕ(z, z)µ(dz), (46)

leads to the following expression of AN in terms of F (µ):

ANF (µ) = ΛlimF (µ) +
1

N
ΛcorrF (µ), (47)

with

ΛlimF (µ) =

∫
Rd

(
B1

µ

δF

δµ(.)

)
(x)µ(dx)

+

∫
R2d

(
σcomσT

com

∂

∂y
,
∂

∂z

)
δ2F (µ)

δµ(y)δµ(z)
µ(dy)µ(dz), (48)

and

ΛcorrF (µ) =
1

2

∫
Rd

(
σcomσT

com

∂

∂y
,
∂

∂z

)
δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=x

µ(dx)

+a(x)Cα

1∫
0

(1− s)ds

∫
R2d

(
δ2F

δµ(.)δµ(.)
(µ+

s

N
(δx+y − δx)), (δx+y − δx)

⊗2

)

+a(x)Cα

1∫
0

(1− s)ds

∫
R2d

(
δ2F

δµ(.)δµ(.)
(µ+

s

N
(δx+y − δx)), (δx+y − δx)

⊗2

)
dy

|y|d+α
µ(dx). (49)
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Thus we have an explicit expression for the limit of AN as N → ∞ and for the correction term, which are well
defined for functional F from the spaces C1,2(M≤λ(R

d)) ∩ C2,1×1(M≤λ(R
d)).

It is straightforward to check by Ito’s formula that the operator Λlim generates the measure-valued process
defined by the solution of equation (1). Hence we have the convergence of the generators of N -particle
approximations to the generator of the process given by (1) on the space C1,2(M≤λ(R

d)) ∩ C2,1×1(M≤λ(R
d))

with the uniform rate of convergence of order 1/N .
But according to Theorem 7, the propagator of the process generated by (1) acts by bounded operators on this

subspace. Hence Theorem 2 follows from the standard representation of the difference of two propagators in terms
of the difference of their generators:

U t,r
N − U t,r =

∫ r

t

U t,s
N (AN − Λlim)sU

s,rds. (50)

6. Proof of Theorem 3

The well-posedness of the process on pairs (x, µ) solving equations (22) and (23) is straightforward once the well-
posedness of the process solving (23) is proved, because equation (23) does not depend on x, and once it is solved,
equation (22) is just a usual Ito’s equation. Straightforward extension of the above calculations for the generator of
the process solving (23) shows that the process solving (22)-(23) is generated by the operator

ΛlimF (x, µ) + Λ̃limF (x, µ),

where Λlim is given by (48) and acts on the variable µ,

Λ̃limF (x, µ) = (b(x, µ, uind
t (x, µ)),∇)F (x, µ)

+
1

2

(
σcomσT

com∇,∇
)
F (x, µ)− a(x)|∆|α/2F (x, µ) +

∫ (
σcomσT

com

∂

∂x
,
∂

∂y

)
δF

δµ(y)
µ(dy), (51)

and with the same correction term (49). Thus the proof of Theorem 3 is the same as for Theorem 2.

7. Conclusion

Mean field games with common noise based on nonlinear stable-like processes are studied in this paper. We
consider the common noise as a multidimensional noise with constant correlations. The MFG limit is specified
by a single quasi-linear deterministic infinite-dimensional partial differential second order backward equation. The
main result is that any solution of this equation provides an 1/N -Nash equilibrium for the initial game of N agents.
Our approach is based on interpreting the common noise as a kind of binary interaction of agents. We use our
previous results on regularity and sensitivity with respect to the initial conditions of the solution to the nonlinear
stochastic differential equations of McKean-Vlasov type generated by stable-like processes.
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