
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 7, June 2019, pp 311–328.
Published online in International Academic Press (www.IAPress.org)

Stochastic Models to Estimate Population Dynamics

Saba Infante 1,2, ∗, Luis Sánchez 3,4, Aracelis Hernández 1,2

1 School of Mathematical Sciences and Information Technology, Yachay Tech University, Ecuador.
2Department of Mathematics, Faculty of Science and Technology, University of Carabobo, Venezuela
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Abstract The growth dynamics that a population follows is mainly due to births, deaths or migrations, each of these
phenomena is affected by other factors such as public health, birth control, work sources, economy, safety and conditions
of quality of life in neighboring countries, among many others. In this paper is proposed two statistical models based on a
system of stochastic differential equations (SDE) that model the dynamics of population growth, and three computational
algorithms that allow the generation of probability distribution samples in high dimensions, in models that have non-linear
structures and that are useful for making inferences. The algorithms allow to estimate simultaneously states solutions and
parameters in SDE models. The interpretation of the parameters is important because they are related to the variables of
growth, mortality, migration, physical-chemical conditions of the environment, among other factors. The algorithms are
illustrated using real data from a sector of the population of the Republic of Ecuador, and are compared with the results
obtained with the models used by the World Bank for the same data, which shows that stochastic models Proposals based on
an SDE more adequately and reliably adjust the dynamics of demographic randomness, sampling errors and environmental
randomness in comparison with the deterministic models used by the World Bank. It is observed that the population grows
year by year and seems to have a definite tendency; that is, a clearly growing behavior is seen. To measure the relative success
of the algorithms, the relative error was estimated, obtaining small percentage errors.

Keywords Markov Chain Monte Carlo, Secuential Monte Carlo, Particle Markov Chain Monte Carlo, Stochastic
Differential Equations.
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1. Introduction

Biological models are a multidisciplinary research field that studies the interactions between the internal and
external elements of a real phenomenon. The process can be represented with a dynamic mathematical system;
that is, by means of systems of ordinary differential equations, where it is assumed that the observed dynamics
are exclusively determined by internal deterministic mechanisms. However, real biological systems are always
exposed to external factors that are not completely controlled or not possible to model explicitly. Any biological
process can be studied from the perspective of systemic biology, such as the growth of a cell, the interaction
between two bacteria or the blood circulation in an organism. Therefore, the study of population dynamics as a
system of interactions is part of the field of systemic biology. All the ecological theories regarding populations
and communities have to do, in one way or another, with various aspects such as their sizes, how they grow or
decrease, whether they show stable growth or fluctuate, how they respond to environmental changes and how they
influence the environment of other populations. This suggests that an approximate way to include environmental
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variability, without modeling additional environmental factors, is to vary the rates of births and deaths per capita
at random. Therefore, is hypothesized that changes in the environment produce random changes in the birth and
mortality rates per capita of a population that are independent of the changes due to demographic variability. These
hypotheses can provide only an approximation to the actual biological situation.

However, accepting these hypotheses leads to manageable mathematical models that can give an idea of the
effects of environmental variability on the dynamics of a population. However, the environment also varies and is
likely to affect otherwise random populations. Therefore, one possible way to model environmental effects would
be to include additional variables in the mathematical model, such as rainfall, predator populations, competing
populations and food supply. In this sense, including additional variables would quickly complicate the model and
destroy the simple nature of the process. The models that explain population dynamics are based on a structure of
differential equations of the type:

dyt
dt

= f(yt)− h(t) (1)

where yt represents the size of the population in t, f(yt) indicates the population growth rate and h(t) represents the
capture rate. The dynamic behavior of the population depends on the relationship between both rates f(yt) and h(t).
The population level declines yes f(yt) < h(t), then dyt

dt < 0. Whereas, if f(yt) = h(t), the population remains at
a constant level, because dyt

dt = 0, which means that the natural growth rate f(yt) equals the value of sustainable
yield, maintaining a constant population level. In this sense, [28] established that population dynamics are
exponential growth, where a population without restrictions would increase geometrically. However, populations
can not maintain this exponential growth indefinitely, which gave rise to models of restricted population growth
or logistic models, deduced by [38]. Then followed extensions that include competition between different species,
and interaction type predator-prey ([39], [27], [40], [12], [23]). Based on the works of [27], models were developed
that consider the population classified by age groups, in order to solve the limitation of the models that treat all the
individuals of the population in an identical way. However, very few models allow to predict the dynamics of the
populations in an effective way. Then, the need to extend these deterministic processes to models that include more
complex variations of the dynamic system, when a deterministic model is used to understand the dynamics of any
of the aforementioned processes, there is a risk of obtaining deficient models, with residual correlated, errors on
estimates, and with results of incorrectly interpreted inferences. One way to model the dynamics of the real world
is by including a random noise in the model, and consequently a natural extension of the deterministic models
is to move from an ordinary differential equation to an SDE, where the relevant parameters are modeled through
of a probability distribution. Under these assumptions, it is assumed that the dynamic system of the process is
partially driven by noise. The model includes a random noise in the measurement of dynamic system observations,
and also includes factors that can not be controlled such as epidemiological diseases, variations in blood pressure,
hormonal oscillations, respiration, neuronal control of variables that model activity muscle, enzymatic processes,
cellular metabolism, nerve activity, molecule interactions, or individual characteristics such as body mass index,
genes, smoking, stress impact ([8]).

Statistical models based on stochastic differential equations type Itô are defined through a continuous time
Markov process, these models have come using recently to model stochastic population dynamics ([1], [2], [3],
[4], [5], [10], [22] and [29]). The attractiveness of these models lies in their flexibility to model problems with
complex dynamics, that have non-linear and erratic behaviors, that cause the system to become chaotic as the size
of the variables increases making it unpredictable. On the other hand, the application of these SDE-based models
becomes feasible, because efficient computational algorithms are available to estimate the solutions and parameters
under all these circumstances.

The main contribution of this research is related to the proposed methodology based on the Markov chain Monte
Carlo and sequential Monte Carlo algorithms, that allow us to make Bayesian inference on a large number of
statistical models in which it was not possible to perform before; in particular, are considered mathematical models,
that incorporate randomness and that allow to describe the dynamics of population growth. Stochastic effects can
influence the dynamic system of the population, i.e. it may increase, decrease or even completely change the
dynamic behaviour of birth and mortality per capita in a population. The results obtained by our proposal are
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contrasted with the estimates obtained by the World Bank models, unlike of the models, these estimates are based
on censuses that are interpolations or extrapolations based on demographic models.

The two stochastic models proposed in this work are: stochastic growth suggested by [32], and second stochastic
model that includes environmental variability according to [6]. The structures of these models are widely used in
many applications, such as: economics and finance ([9], [11], [14], [15], [17], [18] among others), in robotics, [24],
biological systems, [14], epidemiology, [20], [21] and [26], and for precipitation models, [37], [18], [19], [35] and
[36], among others. The implementation of these models is done following a Bayesian methodology under which
three algorithms are proposed: Metropolis-Hasting (MH), Monte Carlo Sequential (SMC) and Particle Markov
Chain Monte Carlo (PMCMC).The first two algorithms are widely known in the literature, however the method
based on the PMCMC algorithm is more recent and was proposed by [7], and is used to estimate the solutions
and parameters of a stochastic differential equation of Itô, this algorithm is based on a combination of the Markov
chains Monte Carlo methods (MCMC) and SMC methods. The idea is to divide the original sampling problem into
smaller and simpler sampling problems, by focusing on some of the subcomponents of the target distribution q(.).

The rest of the article is organized as follows. In Section 2, the problem is introduced and the two models to
be studied are proposed, in Section 3 the three computational algorithms used to estimate the growth projection
of the population are developed, in Section 4 the results of illustrate the proposed methodology with real data and
establish comparisons with standard methods, in Section 5 conclusions and discussions are established.

2. The problem

Natural phenomena are modeled generally in a suitable way by some Markov process which in turn can be written
in the form of space state model. These models are constructed according to physical, chemical, environmental,
or economic criteria, and on the bas is of incomplete observations or with noisy measurements. Markov processes
are continuous-time processes with continuous trajectories but with measurements taken at a discrete time, and
such events define the so-called partially observed diffusion processes ([20]). To define the general problem, the
notation given in [32], and suppose that xt ∈ Rm is a continuous time signal denoting the solution of the stochastic
differential equation of Itô, given by:

dxt = ΘA(x)dt+ CdBt

x(0) = x0 (2)

Where

• {Bt, t > 0} is a standard Brownian movement m−dimensional.
• A : Rk → Rl is a set of (possibly nonlinear) functions of Lipschitz globally known forces.
• The parameters that are estimated, the last m rows of the drift matrix (the first k −m rows are known)
• Θ ∈ Rk×1 is a set of unknown parameters.
• C ∈ Rk×m is a diffusion matrix.

The diffusion matrix C ∈ Rk×m is of the form:

C =

(
0
Γ

)
(3)

Where Γ ∈ Rm×m is a non-singular constant array. The estimated parameters in the drift and diffusion correspond
to the coordinates, that are driven directly by the white noise.
Assuming, the standard regularity conditions of existence and uniqueness of the solution xt of the stochastic
differential equation given in (2) ([31]); it is also assumed that the process xt is hypo-elliptical, this means that
the noise propagates through the drift in all the components of the system given in (2).

The structure of the C matrix restricts noise in such a way, that it only acts on a subset of the variables that can
be called rough variables; these variables can evolve through the coupling in the drift. The remaining variables of
the system are called smooth variables. To distinguish between rough variables and smooth variables, is introduced
the notation x(t) = (u(t), v(t))T , where u(t) ∈ Rk−m is the smooth variable, and v(t) ∈ Rm is the rough variable.
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The problem of interest is to consider u as an observed variable, and v as an unobserved variable, and estimate
the parameters Γ and the entries of the Θ rows that correspond to the trajectories of the non-observed variables v,
considering that {un}Nn=0 is a known solution of the stochastic differential equation given in (2).

Under the Bayesian paradigm, a priori distribution is needed for the parameters Θ and ΓΓT , denoted as
p(Θ,ΓΓT ), and a likelihood for the data, denoted as L(u, v|Θ,ΓΓT ), then the posterior distribution for the
parameters can be estimated as:

p(Θ,ΓΓT |u, v) ∝ L(u, v|Θ,ΓΓT )p(Θ,ΓΓT ) (4)

In this type of problem, usually the exact likelihood of the transition density is unknown, so it is natural to use
approximations to be able to make inference. Suppose that for the Markov sequence {xt}Tt=0, the transition map of
t → t+ 1 is determined by:

xt+1 = xt +

∫ (t+1)∆t

t∆t

ΘA {xs} ds+
∫ (t+1)∆t

t∆t

CdBs (5)

Then, the Euler-Maruyama approximation of this map is given by:

xt+1 ≈ xt +∆tΘA(xt) +
√
∆tR(0,Θ)ξt (6)

Where xt ∈ Rk, ξt ∈ Rk, ξt ∼ N(0, I), I is the identity matrix, and:

R(0,Θ) =

(
0 0
0 Γ

)
∈ Rk×k (7)

It is a non-invertible matrix. To prevent R(0,Θ) from being invertible, the following approximation is used:

xt+1 ≈ xt +∆tΘA(xt) +
√
∆tR(∆t,Θ)ξt (8)

Where R(∆t,Θ) is invertible, and is given by:

R(∆t,Θ) =

(
∆t ∆t
∆t Γ

)
∈ Rk×k (9)

In general, the solution xt is observed with errors through a continuous observation process yt, that is related to the
process xt through the following expression:

yt = g(xt,Θ) + ϵt , ϵt ∼ N(0, σ2
ϵ ) (10)

Where g(.) is a vector function of known real value. Then, the model under study can be represented by:

dxt = ΘA(x)dt+ CdBt

yt = g(xt,Θ) + ϵt , ϵt ∼ N(0, σ2
ϵ ) (11)

When the dynamic system of continuous time is approximated by a discrete time system, the derivatives in the
continuous time domain are approximated by an equation in difference in discrete time, that is:

xt = f1(xt−1,Θ) + ζ1t , ζ1t ∼ N(0, σ2
ζ ) (12)

yt = g1(xt,Θ, t) + ϵ1t , ϵ1t ∼ N(0, σ2
ϵ ) (13)

The models given by (12) and (13) are known as the equation of state and the equation of observation, respectively.
Using Bayesian algorithms is estimated the a posteriori marginal distribution p(xt|y1:t) in time t in two steps,
prediction and update, where x0:t = (x0, . . . , xt) are the unknown solutions states and y1:t = (y1, . . . , yk) are the
observed solutions states.
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To carry out the recursive procedure, it is assumed that the a posteriori marginal density p(xt−1|y1:t−1) is known
at a time t. Then, using the equation (12) is obtained the updated density p(xt|y1:t−1) of the state in time t, and
using the equation of Chapman-Kolmogorov transition:

p(xt|y1:t−1) =

∫
p(xt−1|y1:t−1)p(xt|xt−1)dxt−1 (14)

When a new observation yt is recorded, the posterior density is updated using the equation (13) and the Bayes
Theorem as follows:

p(xt|y1:k) =
p(xt−1|y1:t−1)p(yt|xt)∫
p(xt−1|y1:t−1)p(yt|xt)dxt

(15)

In the [32] is considered the solution x(t) = (u(t), v(t))T divided into two parts, a known solution ut, and a solution
vt unknown, so that this stochastic process can be seen as a partially observed latent process. The general objective
is to estimate the missing solution and the parameters of the dynamic system proposed in the equation (2). The
representation in the form of state space is given by:

v1 ∼ p(.)

Θt = Θt−1 + ωt , ωt ∼ N(0, σ2
ω)

vt = f2(vt−1,Θt) + ζ2t , ζ2t ∼ N(0, Q)

ut = g2(vt,Θt) + ϵ2t , ϵ2t ∼ N(0, R) (16)

Where f2 is a function, that maps the states within the same state space, g2 is a function, that maps the state
variables within the observed variables, and v0 is a variable random with probability distribution given by p(.).

The joint probability distribution of the parameters Θ, the latent process v1:t = (v1, . . . , vt), and the observed
solutions u1:t = (u1, . . . , ut) is given by:

p(u1:t, v1:t,Θ) = p(v1:t|Θ)p(u1:t|v1:t,Θ)p(Θ|u1:t)

p(u1:t, v1:t,Θ) = p(v1)

(
n∏

i=2

p(vi|vi−1,Θ)

)(
t∏

i=1

p(ui|vi,Θ)

)
p(Θ|u1:t) (17)

The latent process is not observed, and the interest is to estimate the marginal posterior distribution:

p(Θ|u1:t) ∝ p(u1:t,Θ)

= p(ut|u1:t−1,Θ)p(u1:t−1,Θ)

= p(u1,Θ)

t∏
k=1

p(uk|u1:k−1,Θ) (18)

Where:
p(ut|u1:t−1,Θ) =

∫
p(ut|vt,Θ)p(vt|u1:t−1,Θ)dvt

=

∫
p(ut|vt−1,Θ)p(vt−1|u1:t−1,Θ)dvt−1 (19)

And:
p(u1,Θ) =

∫
p(u1|v1,Θ)p(v1)dv1 (20)

In general, the latent process can not be integrated, so MCMC and SMC algorithms are required to explore the
space in parameter set Θ, and latent process, v1:t. The ideal would be to integrate the latent process by calculating
the marginal verisimilitude given in the equation (19), then the MCMC algorithm could be run only in the parameter
space.

In particular, the problem that is proposed to be solved in this work, consists in the adjustment of two stochastic
models to project the dynamics that population growth follows:
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A. Langivin model of second order for stochastic growth

In this model, the problem of systems of second-order hypoeliptical equations discussed in [32] and that have
a physical meaning where u is considered to be the position and v is the momentum, and the general form of
Langevin’s second order equation given by:

dv = udt (21)

du = (−γu+ f(v,D)) dt+ σdB (22)

Where f is a force function (possibly nonlinear) parameterized by D, dB is a Brownian Movement, and the
variables v and u are scalars, while the parameters γ, D, σ and the states must be estimated.

In this paper is considered a particular case of this model known as a stochastic growth model for which
x = (v, u)T satisfies:

dv = udt (23)

du = σdB (24)

In this case, the process has a single diffusion parameter, σ, which describes the size of the fluctuations, and which
must be estimated in conjunction with the unknown solutions states, vt. Expressing the model (24) in terms of the
equation (2), is obtained that:

A(x) = x ; Θ =

(
0 1
0 0

)
; C =

(
0
σ

)
(25)

Then, the stochastic growth model in its discretized form uses a order first approximation of Euler-type with a step
∆t for the equation (23), and for the second equation (24) the usual approximation of a stochastic integral is used,
obtaining the following model:

σt = σt−1 + ε1 ; ε1 ∼ N(0, σ2
ε1)

vt+1 = vt + ut∆t+ ε2 ; ε2 ∼ N(0, σ2
ε2)) (26)

ut+1 = ut + σt(Bt+∆t −Bt) ; Bt+∆t −Bt ∼ N(0, σ2
(Bt+∆t−Bt)

)

The parameters and states to be estimated σt and v1:T = (v1, . . . , vT ), respectively.

B. Differential equations system

Following [6], a system of differential equations is considered to model the stochastic growth of a population, but
including environmental variability.

This system of differential equations is given:

dyt = (b(t)y(t)− d(t)y(t))dt+
√

(b(t)y(t)− d(t)y(t))dW1(t)

dbt = β1(be − b(t))dt+ α1dW2(t) (27)

ddt = β2(de − d(t))dt+ α2dW3(t)

With (yt, bt, dt) ∈ [0,∞)×R×R, yt represents the size of the population, bt represents the birth rate per capita,
dt represents the death rate per capita, be represents the average per capita birth rate, de represents the average
death rate per capita, Wi(t), i = 1, 2, 3, are independent standard Wiener processes. The parameters are β1, β2,
α1 and α2, but if environmental variability does not occur, then the value of the parameters is considered as
β1 = β2 = α1 = α2 = 0.
Discretizing the model using the first-order Euler approximation, is obtained:

yt+1 = yt + (btyt − dtyt)∆t +
√

(btyt − dtyt)
√

∆tε1 ; ε1 ∼ N(0, σ2
ε1)

bt+1 = bt + β1(be − bt)∆t + α1

√
∆tε2 ; ε2 ∼ N(0, σ2

ε2) (28)

dt+1 = dt + β2(de − dt)∆t + α2

√
∆tε3 ; ε3 ∼ N(0, σ2

ε3)

Where the parameters and states to be estimated are β1, β2, α1, α2 and y1:T = (y1, . . . , yT ), respectively.
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3. Methodology

In this paper, is proposed to use three computational algorithms based on the MCMC methods and the SMC
methods, to estimate the projection of the growth dynamics of a population. The algorithms proposed are:

• Metropolis-Hastings (MH)
• Monte Carlo sequential (SMC)
• Particle Markov chain Monte Carlo (PMCMC)

3.1. Markov chains Monte Carlo Algorithm

The MCMC algorithm used in this work, the Metropolis-Hastings (MH) algorithm is proposed by [30] and [16]
and dealt extensively with [33], [25], [13] and [34], among others.

Suppose is wanted to design an MH algorithm, whose stationary distribution is p (v1:t,Θ|u1:t), where v1:t are
latencies unknown and u1:t are the observations. Then in iteration l + 1, is proposed a candidate (vc1:t,Θ

c) with
proposed distribution q

(
vc1:t,Θ

c|v(l)1:t,Θ
(l)
)

and accept this with probability:

p
(
vc1:t,Θ

c|v(l)1:t,Θ
(l)
)
= min

{
1,

q(v
(l)
1:t,Θ

(l)|vc1:t,Θc)p(u1:t|vc1:t, σ)p(vc1:t|Θc, γ)p(Θc, β)

q(vc1:t,Θ
c|v(l)1:t,Θ

(l))p(u1:t|v(l)1:t, σ)p(v
(l)
1:t|Θ(l), γ)p(Θl, β)

}
(29)

Assuming that the following distribution can be used as the proposed distribution:

q
(
vc1:t,Θ

c|v(l)1:t,Θ
(l)
)
= q(Θc|Θ(l))q(vc1:t|u1:t,Θ

c, κ) (30)

Then, the probability of acceptance is simplified as follows:

α = p
(
vc1:t,Θ

c|v(l)1:t,Θ
(l)
)
= min

{
1,

q(Θ(l)|Θc)p(u1:t|Θc, γ, σ)p(Θc, β)

q(Θc|Θ)p(u1:t|Θ(l), γ, σ)p(Θ, β)

}
(31)

However, two difficulties arise here. To approximate the equations (29) and (30), both the conditional distribution
or filtered distribution p(v1:t|u1:t,Θ, κ), and the marginal distribution p(u1:t|Θ, γ.σ), but both distributions are
generally unknown, and in turn are required for can calculate probability of acceptance α.
The algorithm is summarized below:

Algorithm 1: Metropolis-Hastings algorithm

• Step 1. Initialize:
v0 =

(
v
(0)
1 , . . . , v

(0)
N

)
(32)

And
Θ0 =

(
Θ

(0)
1 , . . . ,Θ

(0)
N

)
(33)

• Step 2. For a time: l = 1 until N , generate the candidate values:

Θc ∼ q(Θc|Θ(l−1)) (34)

And
vc1:t ∼ q(vc1:t|v

(l−1)
1:t ,Θc, κ) (35)

The current parameters vc1:t and Θc are changed to v
(l−1)
1:t and Θ(l−1), respectively, with probability of

acceptance α, and in another case the string remains in the current parameters.
• Step 3. Generate ul ∼ U(0, 1).
• Step 4. If ul < α, then it is done v

(l)
1:t = vc1:t and Θl = Θc, otherwise it is done v

(l)
1:t = v

(l−1)
1:t and Θl = Θl−1.

• Step 5. It increases from l to l + 1, and is returned 2 step by step.
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3.2. Sequential Monte Carlo Algorithm

The SMC procedures are a class of algorithms, that are used to sequentially densities approximate of the posterior
densities {p(v1:t|u1:t);n ≥ 1}, as well as marginal likelihood sequences {pθ(u1:t|u1:t);n ≥ 1} for θ ∈ Θ given. The
SMC algorithm generates a set of K particles {v(l)1:t}Kl=1 and their respective weights {W (l)

J }Kl=1, to approximate the
conditional distribution p(v1:t|u1:t), using an empirical measure:

p̃θ(dv1:t) :=

K∑
l=1

W
(l)
J δ

v
(l)
1:t
(dv1:t) (36)

Where W
(l)
J is called weight of importance associated with the particles v(l)1:t, and δ is the delta function of Dirac.

The SMC algorithm is summarized below:

Algorithm 2: SMC algorithm

• Step 1. All time j = 0,

– Sample v
(l)
0 ∼ Π0(.|Θ), for all l = 1, . . . ,K.

– Compute and normalize the weights:

w
(l)
0 = p(u0, v

(l)
0 |Θ, γ, σ) (37)

And

W
(l)
0 =

w
(l)
0∑K

l=1 w
(l)
0

(38)

• Step 2. Time j = 2, . . . , J :

– Sample K iid variables v(l)0:j−1 according to the distribution:

p̃θ(dv1:j−1) :=

K∑
l=1

W
(l)
j−1δv(l)

1:j−1

(dv1:j−1) (39)

– Then, for each particle l = 1, . . . ,K, sample:

v
(l)
j ∼ qSMC(.|uj , v

(l)
0:j−1,Θ, γ, σ) (40)

(i.e propagate the particle), and set v(l)0:j = (v
(l)
0:j−1, v

(l)
j )

– Finally compute and normalize the weights:

w
(l)
j =

p(uj |v(l)j , σ)p(v
(l)
j |v(l)j−1,Θ, γ)

qSMC(v
(l)
j |uj , v

(l)
0:j−1,Θ, γ, σ)

(41)

And

W
(l)
j =

w
(l)
j∑K

l=1 w
(l)
j

(42)

The simulation of one trajectory v1:J = (v1, . . . , vJ) called run of SMC algorithm under the approximation of
p(v1:t|u1:t,Θ, γ, σ), it is directly achieved by randomly one particle v(l) among the K particles with weights
{W (l)

j }Kl=1. Basides, the marginal distribution p(u1:t|Θ, γ, σ) can be estimated through the weights:

p̃(u1:t|Θ, γ, σ) = ΠJ
j=0

(
1

K

K∑
l=1

w
(l)
j

)
(43)
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3.3. Particle Markov Chain Monte Carlo Algorithm

The PMCMC algorithms are exact approximations of a posteriori distributions p(v1:t|u1:t). These algorithms
combine the SMC algorithms with the MCMC methods to approximate both p(v1:t|u1:t) or p(Θ, v1:t|u1:t), in
the sense that for any fixed number of particles N ≥ 1 transition densities leave invariant target density. The SMC
algorithm is an approximate simulation procedure for the target density p(v1:t|u1:t), and the latter is used as the
proposed distribution for the MH algorithm.

The PMCMC methods are used to simultaneously estimate the parameters and states in non-linear spatial state
models. This procedure can be interpreted as a standard update of the MH method, which leads to convergent
algorithms.

The key to this PMCMC algorithm is to approximate the target density p(v1:t|u1:t), by choosing an optimal
proposed density q(v1:t|u1:t) = p̃(v1:t|u1:t) and implementing a p̃(v1:t|u1:t) within a step of the MH algorithm,
which leads to a familiar and simple method. Previously, an SMC simulation procedure is run to approximate
p(v1:t|u1:t) but this procedure can not be implemented directly, since when calculating the acceptance rate of the
MCMC algorithm, this it is required evaluating the marginal density, that is generated from an SMC algorithm.

Consider v∗1:t a candidate sample that updates the state v1:t, with probability of acceptance given by:

α(v1:t, v
∗
1:t) = min

{
1,

p(v∗1:t|u1:t)q(v1:t|u1:t)

p(v1:t|u1:t)q(v∗1:t|u1:t)

}
(44)

The optimal choice of q(v1:t|u1:t) is:
q(v1:t|u1:t) = p(v1:t|u1:t) (45)

However, in practice this choice becomes impossible. The developments obtained for the SMC methods ([7]),
suggest the idea of using the approximation of p(v1:t|u1:t) as the proposed density, this means, that a sample is
extracted as follows:

p̂(dv1:t|u1:t) :=

N∑
l=1

w
(l)
j δ

v
(∗l)
1:t

(dv1:t) (46)

Where δ is the Dirac delta function. Given the samples and weights
{
W

(l)
j , v

(l)
1:t, l = 1, . . . , N

}
, for calculating

the probability of acceptance is required the expression of the marginal distribution of v∗1:t, which is difficult to
estimate, however the SMC algorithm allows is obtained an unbiased estimator of marginal likelihood:

p̂(v∗1:t|u1:t) =

J∏
j=0

(
1

K

N∑
l=1

w
(l)
j

)
(47)

This is a low cost algorithm because it requires very little input information, and provides satisfactory results, is
needed to specify densities of importance in one dimension:

q(v1|u1) = p(v1)

q(vn|un, vn−1) = p(vn|vn−1) (48)

For N ≥ 2, but when T is too large the algorithm has degeneration problems due to successive resampling steps,
that decrease the number of different values for v∗t .

Algorithm 3: Particle Independent Metropolis-Hasting (PIMH) algorithm

• Step 1. Initialize i = 0 and run an SMC algorithm choosing a proposed density q(v1:t|u1:t) = p̂(v1:t|u1:t),
sampling; v1:t ∼ p̂(v1:t|u1:t), and be p̂(v1:t)(0) the marginal likelihood estimator.

• Step 2. For i ≥ 1,
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– Run an SMC algorithm to estimate p(v1:t|u1:t), sampling v∗1:t ∼ p̂(v1:t|u1:t), and let p̂(v1:t)∗ be the
marginal likelihood estimator.

– Then with probability:

α = min

{
1,

p̂(v1:t)
∗

p̂(v1:t)(i− 1)

}
(49)

It becomes v1:t(i) = v∗1:t, and p̂(v1:t)(i) = p̂(v1:t)
∗, otherwise it becomes v1:t(i) = v1:t(i− 1), and

p̂(v1:t)(i) = p̂(v1:t)(i− 1).

In [7] it was proved that the update of the PIMH sampler keeps the distribution afterwards p(v1:t|u1:t) invariant,
and that under weak criteria such as the partial marginal p̂(v1:t)∗, and p̂(v1:t)(i− 1) represent consistent estimators
of the marginal p(v1:t), then the PIMH sampler is ergodic and converges to 1 when N → ∞.
If the target distribution to be approximated is p(Θ, v1:t|u1:t), it is considered:

p(Θ, v1:t|u1:t) = p(Θ|u1:t)p(v1:t|u1:t) (50)

Then, a natural choice of the proposed density to update the MH is:

q(Θ∗, v∗1:t|Θ, u1:t) = q(Θ∗|Θ)q(v∗1:t|u1:t) (51)

Then the probability of acceptance is:

α = p

(
p(Θ∗, v∗1:t|u1:t)q(Θ, v∗1:t|Θ∗, u1:t)

p(Θ, v∗1:t|u1:t)q(Θ∗, v∗1:t|Θ, u1:t)

)
(52)

α =
p(v1:t)

∗p(Θ∗)q(Θ|Θ∗)

p(v1:t)p(Θ)q(Θ∗|Θ)
(53)

The PMCMC algorithm is detailed below:

Algorithm 4: PMCMC algorithm

• Step 1. It is initialized with i = 0, be Θ(0) an arbitrary distribution.

– Run an SMC algorithm targeting pΘ(0)(v1:t|u1:t), sampling v1:t(0) ∼ p̂Θ(0)(v1:t|u1:t), and defining
p̂Θ(0)(u1:t) as the marginal likelihood estimator.

• Step 2. For i ≥ 1,

– Sample Θ∗ ∼ q(Θ∗|Θ(i− 1)).
– Run an SMC algorithm targeting pΘ∗(v1:t|u1:t), sample v∗1:t ∼ p̂Θ∗(v∗1:t|u1:t), and let p̂Θ∗(u1:t) the

marginal likelihood estimator.
– Calculate the probability of acceptance:

α = min

{
1,

p̂Θ∗(u1:t)p(Θ
∗)q(Θ(i− 1)|Θ∗)

p̂Θ(i−1)(u1:t)p(Θ(i− 1))q(Θ∗|Θ(i− 1))

}
(54)

It becomes Θ(i) = Θ∗, v1:t(i) = v∗1:t, and p̂Θ(i)(u1:t)(i) = p̂Θ∗(u1:t); otherwise, Θ(i) = Θ(i− 1),
v1:t(i) = v1:t(i− 1) and p̂Θ(i)(u1:t)(i) = p̂Θ(i−1)(v1:t)(i− 1).

4. Results

To illustrate the methodology proposed in this paper, real data is used. As discussed in the previous sections, two
stochastic population growth models defined in [32] and [6], respectively, with the objective of forecasting the
population growth of male and female aged between 35 and 39 years of the Republic of Ecuador, for a range that
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ranges from year 1960 up to 2035. These results are contrasted with the estimates obtained by the World Bank
models, which are generally based on national censuses of the population. The estimates for the years before and
after the censuses are interpolations or extrapolations based on demographic models. The data is used property
of the World Bank and is available on the website: https://data.worldbank.org/. To compare the estimates of the
models, the percentage error (EP), which is a measure of the relative error expressed in percentage, with the
estimated states ŷ and the true values observed yi. The percentage of the error can be used to compare each error
in terms of 100%. The EP is defined as:

EP = |yi − ŷi
yi

|100% (55)

4.1. Langiven stochastic growth model

In order to adjust Langiven’s stochastic growth model, the data from the population growth of male and female
in the Republic of Ecuador were considered. In the Table (1), the a priori distributions for the adjustment of the
stochastic population growth model are indicated.
In the Figures (1) and (2), the estimates of the states (growth of the considered population of Ecuador) are shown

Parameters MH SMC PMMH
σ0 0 1 1
ϵ1 100 1 10
ϵ2 1000 10 1
ϵ3 1000 1000 10
∆t 0.03 0.03 0.04

Table 1. A priori values to initialize the parameters of the MH, SMC, and PMMH algorithms, for the female and male data.

by the algorithms proposed in this work: MH, SMC and PMMH, together with the projections made by the World
Bank model. In these graphs and tables (2) and (3), it can be observed that the algorithms proposed have a good
performance in the prediction of the population up to the year 2035, taking as reference the model of the World
Bank but from there onwards one can observe instability in the projections. The estimates provided by the World
Bank come from demographic models and, therefore, are susceptible to biases and errors due to deficiencies in
both the model and the data. For various reasons, a stochastic model is preferable to a deterministic one to simulate
the growth of real populations, since there may be an implicit demographic randomness because the population is
composed of a finite number of individuals, that are subject to random events whose effects may be relevant in small
populations due to the risk of extinction. On the other hand, there is always a randomness due to sampling since
populations are estimated by random sampling subject to measurement errors. In addition, there is an environmental
randomness that is given by external factors such as climate, epidemics that can affect populations, and these factors
have a random behavior. Consequently, stochastic models allow to better understand and investigate the influence
of noise on the dynamics of population growth and make more reliable predictions because the modeling structure
is the most appropriate.
In the Figures (3) and (4) show the percentage errors for the estimated values of the population of female and

male in ages between 35 and 39 from 2015 up to 2035, obtained using the algorithms MH, SMC, and PMMH,
with respect to the World Bank model. The results indicate that the percentage errors for the estimated states are
much lower with respect to the values provided from the model of the World Bank model, with the exception
of the results obtained using the PMMH algorithm, that show a very high percentage error from the year 2030,
which implies a divergence. These estimated values validate the results shown in the Figures (1) and (2) and in the
tables (2) and (3), observing good prediction regarding the population growth of female and male up to the year
2035, which implies an increase in the human population, either by immigration or by the increase in the birth
rate with respect to the mortality rate. All this can affect natural resources and social infrastructure, affecting the
government’s commitment to maintain services and infrastructure.

In the Table (4) the posterior estimate of the σ parameter of the population growth model is shown, for the
three algorithms proposed up to the year 2035. The results indicate, a close stability in the estimated value of the
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Figure 1. Algorithm: MH , SMC and PMMH for Female

Figure 2. Algorithm: MH , SMC and PMMH for Male

Estimated BM MH SMC PMMH Years
545494 586744 603399 745339 2015
576000 634950 654313 811842 2018
598000 668458 689873 858770 2020
659000 764280 785255 983263 2025
697000 866836 887794 111846000000 2030
724000 972081 995009 126013000000 2035

Table 2. Estimated values of the population of male from 35 to 39 years old of the Republic of Ecuador by the World Bank
(BM) and the algorithms MH, SMC and PMMH
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Figure 3. Percentage error for the algorithms: MH, SMC and PMMH for Female

Figure 4. Percentage error for the algorithms: MH, SMC and PMMH for Male

Estimated BM MH SMC PMMH Years
551393 587363 604299 746172 2015
581000 636649 655714 813522 2018
603000 671152 691570 860486 2020
662000 764589 787527 985922 2025
696000 866741 890100 112135000000 2030
719000 949192 996820 126275000000 2035

Table 3. Estimated values of the population of female from 35 to 39 years old of the Republic of Ecuador by the World Bank
(WB) and the algorithms MH, SMC and PMMH

parameter σ for each algorithms with the data of the female and male sex, but no common convergence to the value
of the parameter with respect to the convergence of each algorithm.
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Gender MH SMC PMMH
Male σ = 28.12 σ = 1.74 σ = 2880

Female σ = 27.9 σ = 1.64 σ = 2552
Table 4. Parameter estimation σ

4.2. Stochastic model of population growth with variability in the environment

To adjust the stochastic model of population growth that experiences variability in the environment, data were
considered that stem from the population growth of the Republic of Ecuador, both female and male. The Table (5)
shows the a priori distributions that were considered for the adjustment of the stochastic model.
In the Figures (5) and (6), the estimates of the states (growth of the considered population of the Republic

Parameters MH SMC PMMH
β1 0.001 0.001 0.001
β2 0.001 0.001 0.001
α1 0.001 0.001 0.001
α2 0.001 0.001 0.001
ϵ1 0.001 0.001 0.001
ϵ2 0.001 0.001 0.001
ϵ3 0.001 0.001 0.001
∆t 0.000003 0.000003 0.000003
be 30000 30000 30000
de 8000 8000 8000

Table 5. A priori values to initialize the parameters of the MH, SMC and PMMH algorithms, for the female and male data

of Ecuador) are shown by the algorithms MH, SMC, and PMMH, together with the projections made by the
World Bank models, and as commented above, these estimates come from demographic models and, therefore, are
susceptible to biases and errors due to deficiencies in both the model and the data. In these Figures and in the Tables
(6) and (7) it can be seen that the algorithms proposed have a good performance in the prediction of the population
up to the year 2035, taking as reference the model of the World Bank.
The Figures (7) and (8) show the percentage errors for the estimated values of the population of female and male

between 35 and 39 years of age. The Republic of Ecuador from 2015 up to 2035, estimates obtained with the
algorithms MH, SMC and PMMH with respect to the World Bank model. These results show that the percentage
errors for the estimated states using the MH, SMC and PMMH algorithms are lower with respect to the values
provided by the World Bank model. These estimated values validate the results shown in the Figures (5) and (6)
and in the Tables (6) and (7), observing good prediction regarding the population growth of women and men up
to the year 2035, which corroborates an increase in the human population, which as mentioned above may be due
to immigration or an increase in the birth rate with respect to the mortality rate, which would affect the use of
natural resources and the development of social infrastructure and in consequence affects government commitment
for maintaining these services and this infrastructure properly.
In the Tables (8) and (9) the posterior estimation of the parameters β1, β2, α1 and α2 of the stochastic population

growth model for the female and male data respectively, using the three proposed algorithms for the year 2035. In
these results a stability is observed in the values of the parameters for each algorithm, that is closed to the data, in
addition a common convergence to the value of the parameters with respect to the convergence of each algorithm
is observed.
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Figure 5. Algorithm: MH , SMC and PMMH for Female

Figure 6. Algorithm: MH , SMC and PMMH for Male

Estimated BM MH SMC PMMH Years
545494 536611 572027 572027 2015
576000 566000 603356 603356 2018
598000 587000 625742 625742 2020
659000 648000 690768 690768 2025
697000 690000 735540 735540 2030
724000 720000 767520 767521 2035

Table 6. Estimated values of the population of male from 35 to 39 years old of the Republic of Ecuador by the World Bank
(BM) and the algorithms MH, SMC and PMMH
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Figure 7. Percentage error for the algorithms: MH, SMC and PMMH for Female

Figure 8. Percentage error for the algorithms: MH, SMC and PMMH for Male

Estimated BM MH SMC PMMH Years
551393 542488 578292 578292 2015
581000 571000 608686 608686 2018
603000 592000 631073 631072 2020
662000 652000 695032 695032 2025
696000 690000 735540 735540 2030
719000 716000 763256 763256 2035

Table 7. Estimated values of the population of female from 35 to 39 years old of the Republic of Ecuador by the World Bank
(WB) and the algorithms MH, SMC and PMMH
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Parameters MH SMC PMMH
β1 0.9972 1.023 0.9896
β2 0.9824 1.002 1.001
α1 0.4981 0.5041 0.4981
α2 0.486 0.4924 0.4966

Table 8. Estimated values a posteriori of the parameters by means of the algorithms MH, SMC and PMMH, for the male data

Parameters MH SMC PMMH
β1 0.9944 0.9965 1.016
β2 0.9952 1 1.017
α1 0.5025 0.5131 0.501
α2 0.4879 0.4925 0.5082

Table 9. Estimated values a posteriori of the parameters using the MH, SMC and PMMH algorithms, for female data

5. Discussions and Conclusions

The stochastic models used to study population dynamics through stochastic differential equations are well known
in the field of statistics. However, in the current literature there are not many efficient and reasonable estimation
methods from the computational point of view, that allow dealing with these complex non-linear structures that
in most cases do not have closed expressions for the approximation of the likelihood. In this paper two stochastic
growth models were proposed, a first model determined by the second-order stochastic differential equation
of Lagiven, and a second model determined by a system of stochastic differential equations that models the
environmental variability of a population. In addition, three computational algorithms were provided: MH, SMC
and PMCMC to estimate the solutions states and parameters. By combining the SMC and MCMC methods, the
problem of large dimensions is divided into many low-dimensional problems, that simplify calculations without
sacrificing the properties of the target distribution. The adjustment of the models was carried out using real data
from the Republic of Ecuador, and the results obtained predict a population growth from the year 2018 to the year
2035. These results were compared with those estimated by the deterministic models of the World Bank, indicating
that with the models proposed in this work under the Bayesian methodology, the estimated data more appropriately
fits the real population growth. Is estimated later the parameters of the models, and it is shown that the proposal
adequately and reliably models the dynamics of demographic randomness, sampling errors and environmental
randomness better than with the deterministic models used by the World Bank. To measure the relative success
of the estimation algorithms, the relative error expressed as a percentage was proposed as a measure of goodness
of fit, obtaining small percentage errors for the proposed models. Know a priori the population growth of a
country can prevent the social and economic impact; in addition, the results obtained by these models can serve
as a reference for decision making of government agencies, that are responsible for planning urban development
policies, infrastructure, health services, education, drinking water, and growth harmonized with the environment,
among others.
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37. F. Sigrist, H. Künsch and W. Stahel, A dynamic nonstationary spatio-temporal model for short term prediction of precipitation, The

Annals of Applied Statistics, vol. 6, pp. 1452–1477, 2012.
38. P. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corres. Math. et Physique, vol. 10, pp. 113–121, 1838.
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