
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 7, June 2019, pp 383–393.
Published online in International Academic Press (www.IAPress.org)

Optimality of Reinsurance Treaties under a Mean-Ruin Probability Criterion

El Attar Abderrahim 1, El Hachloufi Mostafa 2, M. Guennoun Zine El Abidine 3

1 Department of Mathematics,Mohamed V University, Faculty of Sciences-Rabat, Morocco
2 Department of Statistics and Mathematics Applied to Economics and Management,Hassan II University, Faculty of Juridical Sciences,

Economic and Social-Ain Sebaa, Morocco
3 Department of Mathematics,Mohamed V University, Faculty of Sciences-Rabat, Morocco

Abstract The minimization of the probability of ruin is a crucial criterion for determining the effect of the form of
reinsurance on the wealth of the cedant and is a very important factor in choosing optimal reinsurance. However, this
optimization criterion alone does not generally lead to a rational decision for an optimal choice of reinsurance. This criterion
acts only on the risk (minimizing it via the probability of ruin), but it does not affect the technical benefit. That is to say, the
insurer should not choose the optimal reinsurance treaty if it is not beneficial. We propose a new reinsurance optimization
strategy that maximizes the technical benefit of an insurance company while maintaining a minimal level for the probability
of ruin. The objective is to optimize reinsurance with efficiency and ease of computation, using Genetic algorithms.
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1. Introduction

The objective of reinsurance differs from one insurer to another insofar as an insurer can choose reinsurance to
minimize the variance of its technical profit (De Finetti [21]), or minimize risk measures, such as Value-at-Risk
(VaR) and Conditional Tail Expectation (CTE) (Cai & Tan [17]), while another insurer chooses reinsurance which
allows it to minimize its probability of ruin (Schmidli [47]).

Indeed, the criterion of minimizing the probability of ruin is a very important factor in the choice of optimal
reinsurance, it has a significant impact on the stabilization and terminal wealth of the insurance company
M.Kaluszka & A.Okolewski [35], S.Luoa & al [46].

In this context, several studies have been developed to study the effect of the probability of ruin on the optimal
choice of reinsurance. Centeno [19] used the Panjer algorithm to calculate the probability of ruin in order to
optimize reinsurance. Dickson & Waters [24], Aase [1], Krvavych [32], Schmidli [47], Deelstra & Plantin [22]
chose to seek optimality by the criterion of minimizing the probability of ruin based on the Cramer-Lundberg
model.

In addition, Schmidli [47] and several other authors have considered the reinsurance treaties as optimal if
and only if they make it possible to maximize the Lundberg adjustment coefficient from the Cramer-Lundberg
approximation G.Willmot & X.Lin [26].

In these approaches, the authors only act on the probability of ruin via maximizing the Lundberg adjustment
coefficient to determine the optimal reinsurance treaty parameters. However, several authors, such as Ben Dbabis
[15], have pointed out that maximizing the adjustment coefficient alone does not generally lead to a rational
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decision for an optimal choice of reinsurance, because this criterion acts only on the risk, but not on the technical
benefit, ie the insurer should not choose the optimal reinsurance treaty if it is not profitable.

So it must also refer to a new method that acts on minimizing the probability of ruin and maximizing the technical
benefit, both at the same time, by seeking both optimal reinsurance treaty parameters and adjustment factors that
maximize the technical benefit and minimize the risk of an insurance company.

Therefore, it must also refer to a new method that acts on the minimization of the probability of ruin (by
maximizing the adjustment coefficient) and on maximizing the technical benefit both at the same time and by
seeking the parameters of the reinsurance treaties and the optimal adjustment coefficient; which maximize the
technical benefit and minimize the risk of an insurance company at the same time.

In this paper we propose a new reinsurance optimization strategy that maximizes the technical benefit of an
insurance company while maintaining a minimal level for the probability of ruin, using Genetic algorithms Davis.L
[20]. the latter, contrary to the deterministic methods (classical Lagrangian and Kuhn-Tucker theorem), use only
the value of the studied function, not its derivative nor any other auxiliary knowledge, which makes it easier to
implement their effectiveness for more complex optimization problems.

The organization of this paper is as follows: in the second section, we start with a preliminary, then in the third
section, we formulate our optimization problem for the different cases of reinsurance treaties, then we propose
the optimization procedure by the Augmented Lagrangian method and the Genetic Algorithms. Finally, in the last
section, we illustrate our model of optimization by a sample application.

2. Preliminary

Let a portfolio of claims expenses be represented by continuous and positive random variables X1, . . . , XN , with
distribution functions F1, . . . , FN and density functions f1, . . . , fN and corresponding to the premiums P1, . . . , PN ,
with E (Xi) = µ.

The risks are considered independent and identically distributed, and independent of N .
With the sum of(Xi)i=1,...,Nbeing zero, if N = 0.
For a reinsurance contract, a risk Xi is defined by:

Xi = XA
i +XR

i , ∀i = [1, ..., N ] (1)

The componentXA
i is the insurer’s claims burden andXR

i s the claims burden transferred to the reinsurer.
The reinsurer’s charge shall in no way exceed the total claims burden, as it should not be negative, i.e.

0 < XR
i ≤ Xi , ∀i = [1, ..., N ] .

The ruin probability is the probability that the total cost of claims exceeds the corresponding collection over
time. Ruin occurs when reserves fall below 0.

The reserve of the insurance company at the moment tis given by the following random function:
Cramer-Lundberg has modeled the reserve of the insurance company by the following risk process:

R (u, t) = u+ Ct−
N∑
i=1

XA
i (2)

or

•
(
XA

i

)
i∈[1,...,N ]

are random variables (i.i.d) non-negative, represent expenses claims of the insurer;
• N the number of claims in (0, t] is a Poisson process independent of Xi with rate λ;
• C is the recipe for the premium collected at the moment t.

The probability of ruin ψ (u, t)for finite horizon can be written as follows:

ψ (u, t) = P

∃t ∈ [0, T ] , R (u, t) = u+ Ct−
N(t)∑
i=1

Xi < 0

 , 0 < T <∞ (3)
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And for an infinite horizon, the probability of ruin can be written as follows:

ψ (u, t) = P

∃t ≥ 0, R (u, t) = u+ Ct−
N(t)∑
i=1

Xi < 0

 (4)

Note. The surplus process can be naturally continuous, and can also be considered in discrete time;
We focus here on the static approach where the reserve of the insurance company is defined by the following

surplus process:
R (u) = u+NC − SA

N (5)

With

• N is the number of claims, independent of Xi;
• SA

N =
∑N

i=1X
A
i is the sum of the claims expenses of the insurer;

• C is the rate of return premiums (the recipe for the premium collected at the moment) t;

The recipe for the premium collectedC is obtained by subtracting premiums charged from insurance, reinsurance
premiums for a period.

In this case the probability of ruin is given as follows:

ψ (u) = P

(
∃N > 0, RN (u, λ) = u+ C (λ)N −

N∑
i=1

XA
i ≤ 0

)
(6)

The probability of ruin is evaluated by several approaches, numerical or by simulations, namely, exact solutions
(Erlang model, · · · ), numerical methods (inverse Laplace transform, differential and integral equations, etc), and
the approximations (composite Poisson model, Lundberg inequality, etc).

Recently, several works have been developed to find approximations of the probability of ruin by improving the
previous approximations. To know: M.Longué & Y.Darmaillac [36], which were able to give an approximation
of the Ruin probability using the ARMA model. P.Goffard [38] have proposed polynomial approximations of
probability densities to apply them in insurance.

In this work we consider the Lundberg inequality treated in Schmidli [47] which is the most used in practice and
adequately adequate with our problem:

Schmidli [47] has demonstrated that the probability of ruin ψ (u)which may be increased by an upper boundary
known as the Lundberg boundary, such as :

ψ (u) = P

(
∃N > 0, RN (u, λ) = u+ C (λ)N −

N∑
i=1

XA
i ≤ 0

)
≤ e−ρu (7)

With ρ > 0 the Lundberg fitting coefficient and being the unique root for the following equation:

e−C(λ)ρE
[
eρX

A
i

]
= e−C(λ)ρMXA

i
(ρ) = 1, ∀i ∈ [1, ..., N ] (8)

Or MXA
i

is the generating function of the moments for the random variable XA
i .

According to the Lundberg inequality, the probability of ruin is minimal if the adjustment coefficient is maximal.
Schmidli [47] determined an optimal choice of reinsurance based on the maximization criterion of the Lundberg

adjustment coefficient. However, the insurance company is still seeking to realize higher profits (Ben Dbabis [15]).
So to make a good decision, it must be melted on the criteria of profitability (maximizing the expected technical
benefit) while keeping the condition of the adjustment factor which must be as maximal.

In this work, we look at maximizing the technical benefit of an insurance company while maintaining a minimal
level for the probability of ruin (by maximizing the Lundberg adjustment coefficient). The objective is to optimize
the efficiency and ease of calculation, using genetic algorithms.
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3. Formulation of optimization problem

We then construct the following optimization program which maximizes both the expected technical benefit of the
cedant and minimizes its probability of ruin (via the maximum setting of the adjustment coefficient):

max(λ,ρ) ⟨Z (X,λ) = E (B (X,λ))⟩

s.t
⟨

e−C(λ)ρE
[
eρX

A
i

]
= 1

λ ∈ [λ−, λ+]
ρ > 0

, ∀i ∈ [1, ..., N ] (9)

For instances E (B (X,λ)) represents the expected technical benefit of the ceding company.
Let ηr > 0 and η > 0 respectively, the reinsurer’s and the insurer’s security charges, such as ηr > η.
Assume that the reinsurance premium uses the principle of premium based on mathematical
expectation with a safety load ηr, i.e.

Π
(
XR

i

)
= (1 + ηr)E

(
XR

i

)
. ∀i = [1, ..., N ] (10)

The technical benefit of the ceding company is defined by:

E (B (X,λ)) =

N∑
i=1

[
Pi −

∏(
XR

i

)
− E

(
XA

i

)]
=

N∑
i=1

[
Pi − (1 + ηr)E

(
XR

i

)
− E

(
XA

i

)]
(11)

The parameter λ is the reinsurance treaty parameter applied to cover the risk of loss. This parameter represents
the transfer rate in the case of proportional reinsurance, and the retention limit in the case of non-proportional
reinsurance.
λ− and λ+ are respectively the lower bound and the upper bound of the reinsurance treaties parameter.
We will address the above optimization problem in different forms of reinsurance cases.

3.1. Case of treaties in ”quota share”

In the case of proportional reinsurance of the ”quote part” type with a proportionality factor α ∈ ]0, 1] constant,
the insurer supports the portion XA

i = (1− α)Xi and the portion XR
i = αXi transferred to the reinsurer.

The premium charged by the reinsurer for a period i is given by:

Cr (α) = Π
(
XR

i

)
= (1+ηr)αE (Xi) = (1+ηr)αµ , ∀i ∈ [1, ..., N ] (12)

Then the premium charged to the insurer after the reinsurance for a period i is given by:

C (α) = (1 + η)E (Xi)− Cr (α) = µ ((1+η)− α (1+ηr)) , ∀i ∈ [1, ..., N ] (13)

The static surplus process is given by the following formula:

RN (u, α) = u+ C (α)N −
∑N

i=1X
A
i

= u+ µN ((1+η)− α (1+ηr))−
∑N

i=1X
A
i

Then the expected reserve is given by:

E (RN (u, α)) = u+ µN ((1+η)− α (1+ηr))− E
(∑N

i=1X
A
i

)
= u+ µN ((1+η)− α (1+ηr))−N (1− α)µ
= u+ µN (η − αηr)

(14)
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The proportionality factor α must check the following safety condition:

E (RN (u, α)− u) > 0⇔ α <
η

ηr
(15)

The Lundberg adjustment coefficient ρ is always the positive solution of the following equation:

e−C(λ)ρMXA
i
(ρ) = 1 ⇔ (MXi (ρ)− 1)− µ ((1+η)− α (1+ηr)) ρ

1−α = 0 , ∀i ∈ [1, ..., N ] (16)

Or MXi (ρ) is the generating function of the moments of the random variable Xi evaluated at ρ.
(See Hald & Schmidli [30]).
Let us now calculate the mathematical expectation of the technical benefit:

E (B (X,α)) =
∑N

i=1

[
Pi −Π

(
XR

i

)
− E

(
XA

i

)]
=
∑N

i=1 [Pi − (1 + ηr)αE (Xi)− (1− α)E (Xi)]

= P −N (1 + ηrα)µ (17)

Finally, the optimization program (9) is reformulated in this case as follows:

max(α,ρ) ⟨E (B (X,α)) = P −N (1 + ηrα)µ⟩

sc
⟨ (

MXA
i
(ρ)− 1

)
− µ ((1+η)− α (1+ηr)) ρ

1−α = 0

α ∈
]
0, η

ηr

[
ρ > 0

, ∀i ∈ [1, ..., N ] (18)

3.2. Case of treaties in ”excess of loss”

In this case, the insurer covers each individual claim up to a certain level of retention L > 0 (the retention limit
applies to each individual claim).
Let S be a random variable denoting the total amount of claims; XA =

∑N
i=1X

A
i is the insurer’s claims burden

and XR =
∑N

i=1X
R
i is the claims burden transferred to the reinsurer.

Then, the total charges are shared as follows:

XA =

N∑
i=1

XA
i =

N∑
i=1

min (Xi, L) and XR =

N∑
i=1

XR
i =

N∑
i=1

(
(Xi − L)+

)
. With S = XA +XR (19)

The premium charged for reinsurance for a period i is given by:

Cr (L) = Π
(
XR

i

)
= (1 + ηr)E

(
(Xi − L)+

)
, ∀i ∈ [1, ..., N ] (20)

Then the premium charged to the insurer after the reinsurance for a period i is given by:

C (L) = (1 + η)E (Xi)− Cr (L) = (1 + η)µ− (1 + ηr)E
(
(Xi − L)+

)
, ∀i ∈ [1, ..., N ] (21)

We know that

E
(
XA

i

)
= E [min (Xi, L)] =

∫ L

0

xdFXi (x) + LSXi (β) =

∫ L

0

SXi (x) dx , ∀i ∈ [1, ..., N ] (22)

and

E
(
XR

i

)
= E

(
(Xi − L)+

)
= E (Xi)− E

(
XA

i

)
= µ−

∫ L

0

SXi (x) dx , ∀i ∈ [1, ..., N ] (23)
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Then, the recipe of the premium for each period is given by:

C (L) = (1 + η)µ− (1 + ηr)E
(
(Xi − L)+

)
= (1 + η)µ− (1 + ηr)

(
µ−

∫ L

0
SXi (x) dx

)
= (η − ηr)µ+ (1 + ηr)

∫ L

0
SXi (x) dx

, ∀ i ∈ [1, · · · , N ] (24)

The surplus process is given by the following formula:

RN (u, L) = u+ C (L)N −XA

= u+N
[
(η − ηr)µ+ (1 + ηr)

∫ L

0
SXi (x) dx

]
−

N∑
i=1

XA
i

(25)

Then, the expected reserve is given by:

E (RN (u, L)) = u+N
[
(η − ηr)µ+ (1 + ηr)

∫ L

0
SXi (x) dx

]
−

N∑
i=1

XA
i

= u+N
[
(η − ηr)µ+ (1 + ηr)

∫ L

0
SXi (x) dx

]
−N

∫ L

0
SXi (x) dx

= u+N
[
(η − ηr)µ+ ηr

∫ L

0
SXi (x) dx

]
(26)

Let us now calculate the mathematical expectation of the technical benefit:
The expected technical benefit is given by:

E (B (X,L)) = E

(
N∑
i=1

[
Pi −

∏(
XR

i

)
−XA

i

])

=
N∑
i=1

[
Pi − (1 + ηr)E

(
(Xi − L)+

)
− E

(
XA

i

)]
= P −

N∑
i=1

[
(1 + ηr)

(
µ−

∫ L

0
SXi (x) dx

)
+
∫ L

0
SXi (x) dx

]
(27)

Hence, the expected technical benefit is given by:

E (B (X,L)) = P −
N∑
i=1

[
(1 + ηr)µ− ηr

∫ L

0

SXi (x) dx

]
(28)

On the other hand, the Lundberg fitting coefficient ρ is always the only root for the following equation:

e−C(L)ρE
[
eρX

A
i

]
= 1, ∀i ∈ [1, · · · , N ] (29)

Then the optimization program (9) is reformulated as follows:

max(L,ρ)

⟨
E (B (X,L)) = P −

N∑
i=1

[
(1 + ηr)µ− ηr

∫ L

0
SXi (x) dx

]⟩

sc

⟨
e−((η−ηr)µ+(1+ηr)

∫ L
0

SXi
(x)dx)ρMXA

i
(ρ) = 1

L ∈ [L−, L+]
ρ > 0

, ∀i ∈ [1, · · · , N ] (30)

Or L− > 0 and L+ > 0 are two parameters that respectively represent the lower and upper limit of the retention,
depending on the market reinsurance (the liquidity interval).
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3.3. Case of treaties in ”stop loss”

Non-proportional reinsurance of ”stop loss” type operates similarly to ”excess loss” reinsurance. In this case, the
retention limit L is applicable to the total of the claims.

Let S be a random variable denoting the total amount of claims; XA =
N∑
i=1

XA
i is the insurer’s claims burden and

XR =
N∑
i=1

XR
i is the claims burden transferred to the reinsurer.

In this case, the insurer bears the risk XA = min (X,L) and the part XR = (X − L)+ transferred to the reinsurer.
The premium charged by the reinsurer for the period X is given by:

Cr (L) = Π
(
XR
)
= (1 + ηr)E

(
(S − L)+

)
(31)

We know that

E
(
XA
)
= E [min (S,L)] =

∫ L

0

SS (x) dx (32)

Then

Cr (L) = (1 + ηr)

[
E (S)−

∫ L

0

SS (x) dx

]
(33)

Then the premium charged to the insurer after the reinsurance for a period N is given by:

C (L) = (1 + η)E (S)− Cr (L) = (1 + η)E (S)− (1 + ηr)

[
E (S)−

∫ L

0

SS (x) dx

]

C (L) = (η − ηr)E (S) + (1 + ηr)

∫ L

0

SS (x) dx (34)

The surplus process in this case is given by:

RN (u, L) = u+ C (L)−XA

The surplus process in this case is given by:

E (RN (u, L)) = u+ C (L)− E
(
XA
)

= u+ (η − ηr)E (S) + ηr
∫ L

0
SS (x) dx

(35)

Let us now calculate the expected technical benefit:
we have

E (B (S,L)) = P −
∏(

XR
)
− E

(
XA
)

= P − (1 + ηr)
(
E (S)−

∫ L

0
SS (x) dx

)
−
∫ L

0
SS (x) dx

Simplifying, then we find:

E (B (S,L)) = P −

(
(1 + ηr)E (S)− ηr

∫ L

0

SS (x) dx

)
(36)

The Lundberg adjustment coefficient ρ is the only root for the following equation:

e−C(L)ρE
[
eρX

A
]
≡ e−C(L)ρMXA (ρ) = 1 ⇒ e−((η−ηr)E(S)+(1+ηr)

∫ L
0

SS(x)dx)ρMXA (ρ) = 1 (37)

Then the optimization program (9) is reformulated as follows:
max(L,ρ)

⟨
E (B (S,L)) = P −

(
(1 + ηr)E (S)− ηr

∫ L

0
SS (x) dx

)⟩
sc

⟨
e−((η−ηr)E(S)+(1+ηr)

∫ L
0

SS(x)dx)ρMXA (ρ) = 1
L ∈ [L−, L+]
ρ > 0

(38)
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4. Procedure for Optimization by Genetic algorithms

We rely on genetic algorithms to solve our optimization problem. Nevertheless, the use of the latter is conditioned
by certain characteristics. For example: the instructions of the optimization program must be realizable.
To make our program workable, we transformed the constrained optimization problem into an unrestrained
optimization problem, using the Augmented Lagrangian.
Indeed, our optimization program is in the following general form:

Minλ,ρ Z (λ)

K (λ, ρ) = 0

λmin ≤ λ ≤ λmax

ρ > 0

(39)

Or

• Z (λ) is the objective function;
• K (λ, ρ) is the function of the equality constraint;
• λ ∈

[
λmin, λmax

]
and ρ > 0 are domain constraints that limit variations of unknowns λ and ρ.

The Lagrangian function G (λ, ρ,m) is defined as follows:

G (λ, ρ,m) = Z (λ)−mK (λ, ρ) (40)

Or m is the multiplier of Lagrange.
The principle of the method is to solve iteratively the problem without constraints which minimizes the Lagrangian
function G (λ, ρ,m).
G (λ, ρ,m) must be minimized in relation to λ and ρ .

We have developed an iterative algorithm that combines the Lagrange multiplier and genetic algorithms to solve
our optimization problem.

Algorithm 3.1. The solution algorithm

1. Create Augmented Lagrangian functionG (λ, ρ,m) ;
2. Initialize the Lagrange multiplier m = m0;
3. Initialize the couple (λ, ρ) = (λ0, ρ0);
4. i=0;
5. As long as the stopping criterion is not verified, i.e.∇Gi (λi, ρi,mi) > ε, with ε > 0 ;

a. i← i+ 1;
b. Create the objective function Gi (λi, ρi,mi);

6. Run Classic GA for the objective function Gi (λi, ρi,mi);
7. Update the triple (λ∗, ρ∗,m∗) which minimizes the function Gi (λi, ρi,mi);
8. Return the result (λ∗, ρ∗).
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5. Application

Suppose individual losses (Xi)i=1,...,N follow the Uniform Law U [0, 1].

such as E (Xi) = 0, 5, MXi (ρ) = E
(
eρXi

)
=
∫ 1

0
eρXidx = eρ−1

ρ et SXi (x) = 1− x,∀i ∈ [1, · · · , N ].
Let the following data be:

– N = 9 (a horizon of 9 years) ;
– ηr = 2 and η = 1 are respectively the security loading of the reinsurer and the insurer ;
– The initial capital is equal to u = 786 ;
– The total premium collected is equal P =

∑N
i=1 Pi = 20.

5.1. Case of treaties in ”quota share”

In the case of a ”quota share” reinsurance treaty where the proportionality factor α, we have:

E (B (X,α)) = P −N (1 + ηrα)µ = 20− 9
(1 + 2α)

2
= 15, 5− 9α

and (
MXA

i
(ρ)− 1

)
− µ ((1+η)− α (1+ηr)) ρ

1−α = 0 ⇔ ρ
(

eρ−1
ρ − 1

)
− (2−3α)

2 ρ = 1

We obtain the following optimization program:

max(α,ρ) ⟨E (B (X,α)) = 15, 5− 9α⟩

sc

⟨ (
eρ−1

ρ − 1
)
− (2−3α)

2 ρ = 1

α ∈
]
0, 12
[

ρ > 0

To solve the optimization program above, we applied the previous procedure using the Genetic algorithms solver
(GA) developed by Matlab software.
The result is as follows:

• The optimal objective function, E (B (X,α∗)) = 15, 5;
• The best session rate, α∗ = 2, 354.10−8;
• The best solution for the coefficient of adjustment, ρ∗ = 23, 319.

5.2. Case of treaties in ”excess of loss”

Assume that the insurer selects the ”excess of loss” type of retention L to cover the risk of loss. In this case we
have:

MXA
i
(ρ) = E

(
eρX

A
i

)
=

∫ L

0

eρXidx+

∫ 1

L

eρLdx =
eρL − 1

ρ
+ eρL (1− L)

The adjustment coefficient is the positive solution of the following equation:

e−((η−ηr)µ+(1+ηr)
∫ L
0

SXi
(x)dx)ρMXA

i
(ρ) = 1⇔

(
eρL − 1

ρ
+ eρL (1− L)

)
e
−ρ

(
1− 3(L−1)2

2

)
= 1

The expected technical benefit is given by:

E (B (X,L)) = P −N

[
(1 + ηr)

(
µ−

∫ L

0

SXi (x) dx

)
+

∫ L

0

SXi (x) dx

]
= 6, 5 + 18

(
L− L2

2

)
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Then, we have the following optimization program:
max(L,ρ)

⟨
E (B (X,L)) = 6, 5 + 18

(
L− L2

2

)⟩
sc

⟨ (
eρL−1

ρ + eρL (1− L)
)
e
−ρ

(
1− 3(L−1)2

2

)
= 1

L > 0
ρ > 0

The result obtained by the Genetic algorithms is:

• The optimal objective function, E (B (X,L∗)) = 15, 499;
• The optimal retention limit, L∗ = 1;
• The best solution for the coefficient of adjustment, ρ∗ = 0, 0001.

The results for the technical benefit and the adjustment coefficient for the two forms of reinsurance are presented
in the following table:

quota share excess of loss
Maximum technical benefit 15, 5 15, 499

Parameter of optimal
reinsurance treaties

α∗ = 2, 354.10−8 L∗ = 1

Maximum adjustment
coefficient ρ ∗

23, 319 0, 0001

Table 1: Results relative to technical benefit and adjustment coefficient

From Table 1 it can be seen that Lundberg’s adjustment coefficient is higher in the case of proportional reinsurance
of the ”quote share” type than in the case of non-proportional reinsurance of the ”excess loss” type with a relatively
higher expected technical profit.
Thus, we can conclude from in this example that for a principle of premium of mathematical expectation, the
optimal form of reinsurance adopted is the proportional treaty of the ”quota share” type.
However, the choice of an optimal form of effective reinsurance obviously depends on the strategy adopted by
the insurance company which differs from one insurer to another and it also has several factors: The nature of
the portfolio (distribution of claims amounts, independence of occurrence of claims, etc.), we can also take into
account the initial assumptions and the statistics observed by the insurance company.

6. Conclusion

In this chapter, we presented a new strategy for the choice of optimal reinsurance under the “Mean-Ruin
probability” criterion, using genetic algorithms. This approach makes it possible both to maximize the technical
benefit and to minimize the probability of ruin (by maximizing the Lundberg adjustment coefficient).
This strategy is effective because it affects both technical profit and risk at the same time, including the ease of
calculation loads and faster execution.
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