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1. Introduction

Let E be a separable Banach space, C0 = C([−r, 0], E) the space of continuous functions from [−r, 0] to E. For
any T > 0, x : [−r, T ] −→ E and t ∈ [0, T ], define the function xt ∈ C0 by

xt(s) = τ(t)x(s) = x(t+ s) ∀s ∈ [−r, 0]

and consider the functional differential inclusion{
ẋ(t) ∈ F (t, xt) a.e. t ∈ [0, T ]

τ(0)x = x0 = φ on [−r, 0],
(1)

where F is a set-valued function from [0, T ]× C0 with nonempty convex compact values in E, and φ ∈ C0.
The existence of viable solutions for such problems with memory has been studied by several authors ([4], [5],
[10], [12], [13], [14]). This class of problems is motivated by the evolution of control systems with feedbacks,
dynamic evolutions and planning procedures in microeconomics, for more details and examples, see [1]. In [13],
the existence of solutions in the invariance set E0 = {φ ∈ C0, φ(0) ∈ D} where D is closed convex nonempty
in E, has been established. The purpose of this paper is to show the existence of viable solutions in a set more
natural introduced by [11] for a functional differential equations and called the fully constrained set: ED = {φ ∈
C0, φ(s) ∈ D, ∀s ∈ [−r, 0]}. The following simple example (see [11]) shows that conditions of invariance for sets
E0 and ED, may be different for the same problem. Consider the problem (1) with

F (t, xt) = {axt(0) + bxt(−r)} = {ax(t) + bτ(−r)x(t)}, t ≥ 0,

where a and b are real constants. Let D = {c}, c ∈ R∗. The conditions for invariance of E0 and ED are respectively

aφ(0) + bφ(−r) = 0, φ ∈ E0 (2)
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aφ(0) + bφ(−r) = 0, φ ∈ ED (3)

In the equation (2) the value φ(−r) could be any we want. Hence the condition (2) is satisfied if and only if
a = b = 0, while the condition (3) holds if and only if a+ b = 0.

To establish the main result, we adopt a discretization approach; we first obtain the invariance result for an
intermediary set: Es = {φ ∈ C0, φ(s) ∈ D} for any s fixed in [−r, 0]. Next, we give the result for ED =

∩
−r≤s≤0

Es;

we study also the case of variable constraint D = Γ(t), where Γ is a set-valued function with closed graph. Our
approach is different from that of [11] since our method consists in transforming the delayed problem to a problem
without delay and applying the results known in this case. Moreover, we weaken the regularity assumptions existing
for this type of problems thanks to a set-valued version of Scorza-Dragoni Theorem.

1.1. Contributions

The main contribution of this paper is a generalization of existence results for viable solutions of differential
inclusions with delay. We consider a more natural and general invariance set, called the ”fully constrained set”, as
well for the case of a fixed set as of the variable case. Our results generalize those in [13], [11] and [3].

1.2. Organization

The rest of this paper is organized as follows. In Section 2, we present the basic notions for set-valued mappings
and functional differential inclusions. In Section 3 , we give first a weak version for the existence of viable solutions
to first order differential inclusion without delay. This result is used to extend the discretization approach to solve
functional differential inclusions for a general and natural invariance set. Finally, the variable case of viability set
is studied in Section 4.

2. Notations and preliminaries

Throughout the paper E will denote a separable Banach space with norm ∥.∥, D a nonempty closed convex set of
E and Ct = C([−r, t], E) the set of continuous functions from [−r, t] to E, equipped with the topology of uniform
convergence. Clearly, if x ∈ CT , then xt ∈ C0 and the mapping x 7−→ xt is continuous from CT to C0 in the sense
of uniform convergence. For r > 0 and s ∈ [−r, 0], let define the set Es = {φ ∈ C0, φ(s) ∈ D}, equipped with the
topology induced by the norm

∥φ∥s = sup
−r≤τ≤0

∥φ(τ)∥, φ ∈ Es.

We denote by c(E) (resp. ck(E)) the set of nonempty closed (resp. convex compact) subsets of E, λ the Lebesgue
measure on R, τλ(I) the σ-algebra of measurable subsets of I ⊂ R, and B(D) the class of Borel measurable
nonempty subsets of D.

A function y : I = [0, T ] −→ E is said absolutely continuous if there exists a Lebesgue-Bochner integrable
function ẏ from I to E such that y(t) = y(0) +

∫ t

0
ẏ(s)ds. A set-valued function F : I −→ ck(E) is scalarly λ-

measurable if for any x′ in the dual E
′

of E the scalar function δ⋆(x′, F (·)) is λ-measurable, δ⋆(·,K) is the support
function of K, that is, for all x′ ∈ E′,

δ⋆(x′,K) = sup
x∈K

⟨x′, x⟩.

For a closed convex subset K, the distance function is defined by

d(x,K) = sup
x′∈E′

(⟨x′, x⟩ − δ⋆(x′,K)). (4)

A set-valued function G from a topological space S to ck(E) is upper semi-continuous if for any closed subset U of
E, {x ∈ S : G(x) ∩ U ̸= ∅} is closed. If G is upper semi-continuous, then G is scalarly upper semi-continuous, that
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is, for any x′ ∈ E
′
, the scalar function δ⋆(x′, G(·)) is upper semi-continuous. Further, any upper semi-continuous

set-valued function has closed graph.
The Bouligand tangent cone of D at the point x is defined by

TD(x) = {y ∈ E : lim inf
h−→0+

h−1d(x+ hy,D) = 0}.

If D is convex, then TD(x) is convex. We refer to [8] and [9] for details concerning measurable set-valued functions.
We end this section with the following result due to [7].

Theorem 1
Let D be a closed convex nonempty subset of E and F be a set-valued function defined on [0, T ]×D with values
in ck(E) verifying
(i) F is τλ([0, T ])

⊗
B(D)-measurable,

(ii) for any t fixed in [0, T ], F (t, ·) is upper semi-continuous on D,
(iii) there exists a balanced set K ∈ ck(E) such that for all (t, x) ∈ [0, T ]×D,

F (t, x) ⊂ (1 + ∥x∥)K

(iv) F (t, x) ∩ TD(x) ̸= ∅, ∀(t, x) ∈ [0, T ]×D.
Then, for any x0 ∈ D, there exists an absolutely continuous function x : [0, T ] −→ E, verifying

ẋ(t) ∈ F (t, x(t)) a.e. on [0, T ]

x(t) ∈ D, ∀t ∈ [0, T ]

x(0) = x0.

(5)

3. Fully constrained sets

We shall say that a continuous function x : [−r, T ] −→ E is a solution of

ẋ(t) ∈ F (t, xt) a.e. t ∈ [0, T ] (6)

with the initial value φ ∈ C0 if τ(0)x = φ on [−r, 0] and x is an absolutely continuous function on [0, T ], which
verifies (6) almost everywhere on [0, T ]. Let A be a subset of C0, we shall say that a solution x of (6) is viable in
A if xt ∈ A for all t ∈ [0, T ]. A is said to be strongly invariant if for any initial function φ ∈ A, all solutions are
viable in A.
First, let state a weak version of Theorem 1 by using a set-valued version of Scorza-Dragoni Theorem and the
Dugundji Theorem.

Proposition 1
Let D be a closed convex nonempty subset of E, F a set-valued function defined on [0, T ]×D with values in
ck(E) verifying
(i) ∀x ∈ D, t 7→ F (t, x) is measurable,
(ii) ∀t ∈ [0, T ], x 7→ F (t, x) is upper semi-continuous on D,
(iii) there exists a balanced set K ∈ ck(E) such that for all (t, x) ∈ [0, T ]×D,

F (t, x) ⊂ (1 + ∥x∥)K

(iv) F (t, x) ∩ TD(x) ̸= ∅, ∀(t, x) ∈ [0, T ]×D.
Then, for any x0 ∈ D, there exists an absolutely continuous function x : [0, T ] −→ E, verifying

ẋ(t) ∈ F (t, x(t)) a.e. on [0, T ]

x(t) ∈ D, ∀t ∈ [0, T ]

x0 = x(0).

(7)
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Proof: Using the Scorza-Dragoni’s Theorem (see [6]), there is a set-valued function F0 : [0, T ]×D −→ ck(E),
which is globally measurable and has the following properties:
(1) There is a set N ⊂ [0, T ], independent of (t, x) such that λ(N) = 0 and

F0(t, x) ⊂ F (t, x), for all t ∈ [0, T ] \N and for all x ∈ D;

(2) if x, z : [0, T ] −→ E are measurable mappings with z(t) ∈ F (t, x(t)) a.e., then z(t) ∈ F0(t, x(t)) a.e.
(3) for every ε > 0, there is a compact subset Jε ⊂ [0, T ] such that λ([0, T ] \ Jε) < ε, the restriction of F0 on
Jε ×D is upper semi-continuous and

∅ ≠ F0(t, x) ⊂ F (t, x); for all (t, x) ∈ Jε ×D.

By property (3), there exists a sequence of compact sets Jε ⊂ [0, T ] with λ([0, T ] \ Jε) = εn −−−−→
n→∞

0 such that the

restriction of F0 to Jε ×D is upper semi-continuous and has nonempty values. We may also assume that (Jε) is
increasing. By Dugundji’s Theorem (see [2]), there is an upper semi-continuous extension F̃n of F0/Jε ×D, and

F̃n(t, x) ⊂ (1 + ∥x∥)K. (8)

Since TD(x) is convex and F0 satisfies the condition (iv), it is therefore obvious that F̃n satisfies (iv) too.
So F̃n satisfies the hypotheses of Theorem 1. Thus, for every x0 ∈ D there exists an absolutely continuous function
xn : [0, T ] −→ E such that 

ẋn(t) ∈ F̃n(t, xn(t)) a.e. on [0, T ]

xn(t) ∈ D ∀t ∈ [0, T ]

xn(0) = x0

(9)

By (8) and (9) we have for almost every t in [0, T ],

ẋn(t) ∈ F̃n(t, xn(t)) ⊂ (1 + ∥xn(t)∥)K.

Since K is compact, there is a strictly positive number M such that

F̃n(t, xn(t)) ⊂ (1 + ∥xn(t)∥)MB̄E ,

where B̄E is the closed united ball. Moreover, xn is absolutely continuous on [0, T ], then

∥xn(t)− xn(0)∥ ≤
∫ t

0

M(1 + ∥xn(w)∥)dw ∀t ∈ [0, T ].

By applying the Gronwall inequality, we conclude that for all t

∥xn(t)∥ ≤ (∥xn(0)∥+MT )eMT

and then, for almost every t in [0,T]

ẋn(t) ∈ F̃n(t, xn(t)) ⊂ (1 + l)K (10)

with l = (∥φ0(0)∥+MT )eMT . Since K is convex compact and from (10), (ẋn)n is relatively compact in
L1
E([0, T ]). Thus we can extract a subsequence still denoted (ẋn)n for simplicity which converges σ(L1, L∞)

to a function y ∈ L1
E . Furthermore, since (xn) is absolutely continuous on [0, T ] and by using (10), we obtain

∥ẋn(t)∥ ≤ (1 + l)M,

the sequence is equi-continuous, and

∀t ∈ [0, T ], (xn(t))n ⊂ xn(0) + T (1 + l)K.

Stat., Optim. Inf. Comput. Vol. 7, June 2019



398 VIABLE SOLUTIONS FOR DELAY DIFFERENTIAL INCLUSIONS

By Ascoli’s Theorem, (xn)n converges uniformly on [0, T ] to x with

x(t) = x(0) +

∫ t

0

y(w)dw ∀t ∈ [0, T ]

so ẋ(t) = y(t) a.e., since D is closed,
x(t) ∈ D ∀t ∈ [0, T ].

We will show that for all t ∈ [0, T ], ẋ(t) ∈ F (t, x(t)) almost everywhere.
As (xn), (ẋn) are two measurable mappings satisfying

ẋn(t) ∈ F̃n(t, x(t)) a.e.,

then by property (2), for all n ∈ N, there is a Lebesgue null set Nn ⊂ Jn such that

ẋn(t) ∈ F0(t, xn(t)) ∀t ∈ Jn \Nn. (11)

Let N0 = ([0, T ] \ ∪nJn) ∪ (∪nNn) which is Lebesgue-negligible. Indeed,

λ(N0) = λ(([0, T ] \ ∪nJn) ∪ (∪nNn))

≤ λ(([0, T ] \ ∪nJn) + λ(∪nNn)

≤ (∩n([0, T ] \ Jn)) +
∑
n

λ(Nn),

we have that the set Jn has finite measure and the sequence ([0, T ] \ Jn) is decreasing because (Jn) is increasing,
thus

λ(∩n([0, T ] \ Jn)) = lim
n−→∞

(λ([0, T ] \ Jn)) = lim
n−→∞

εn = 0,

and therefore
λ(N0) ≤ lim

n−→∞
λ([0, T ] \ Jn) +

∑
n

λ(Nn) = 0.

For all t ∈ [0, T ] \N0, there is an integer n0 = n0(t) ∈ N such that for all n ≥ n0, t ∈ Jn \Nn, so by the relation
(11), we obtain

ẋ(t) ∈ F0(t, x(t)), ∀n ≥ n0.

On the other hand, since F0 is upper semi-continuous on Jn ×D and xn(t) −→ x(t) when n −→ ∞, it follows
that for all x′ ∈ E

′

lim sup
n−→∞

δ⋆(x′, F0(t, xn(t))) ≤ δ⋆(x′, F0(t, x(t))).

For t ̸∈ N0 and n ≥ n0, we have
⟨x′, ẋn(t)⟩ ≤ δ⋆(x′, F0(t, x(t)));

thus
lim sup
n−→∞

⟨x′, ẋn(t)⟩ ≤ lim sup
n−→∞

δ⋆(x′, F0(t, xn(t))) ≤ δ⋆(x′, F0(t, x(t))),

by Fatou’s lemma we deduce that for every measurable set B ⊂ [0, T ] and every x′ ∈ E
′
,∫

B

⟨x′, ẋ(t)⟩dt = lim
n−→∞

∫
B

⟨x′, ẋn(t)⟩dt

= lim sup
n−→∞

∫
B

⟨x′, ẋn(t)⟩dt

≤
∫
B

lim sup
n−→∞

⟨x′, ẋn(t)⟩dt
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≤
∫
B

δ⋆(x′, F0(t, x(t)))dt.

So
⟨x′, ẋ(t)⟩ ≤ δ⋆(x′, F0(t, x(t))) a.e.,

then
sup

x′∈E′
⟨x′, ẋ(t)⟩ − δ⋆(x′, F0(t, x(t))) ≤ 0,

since F0 has closed convex values, by (4) we get d(ẋ(t), F0(t, x(t))) = 0, which implies that ẋ(t) ∈ F0(t, x(t)) a.e.
By property (1),

ẋ(t) ∈ F (t, x(t)), ∀t ∈ [0, T ] \N0,

which shows that
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ].

Now, let’s give the existence of viable solutions for Es, s ∈ [−r, 0].

Theorem 2
For s fixed in [−r, 0], let D be a closed convex nonempty subset of E and F a set-valued function defined on
[0, T ]× C0 with values in ck(E) verifying
(i) ∀θ ∈ Es, t 7→ F (t, θ) is measurable,
(ii) ∀t ∈ [0, T ], θ 7→ F (t, θ) is upper semi-continuous on Es,
(iii) there exists a balanced set K ∈ ck(E) such that for all (t, θ) ∈ [0, T ]× E0,

F (t, θ) ⊂ (1 + ∥θ(0)∥)K

(iv) F (t, θ) ∩ TD(θ(0)) ̸= ∅, ∀(t, θ) ∈ [0, T ]× E0.
Then, for any φ0 ∈ Es, there exists a continuous function xs : [−r, T ] −→ E, absolutely continuous on [0, T ],
verifying 

ẋs(t) ∈ F (t, τ(t− s)xs) a.e on [0, T ]

τ(t− s)xs = xs
t−s ∈ Es, ∀t ∈ [0, T ]

xs(t) = φ0(t) ∀t ∈ [−r, 0].

(12)

Proof: Let Pn be a subdivision of [0, T ] defined by

Pn = {tni = T
i

2n
, i = 0, 1, ..., 2n}.

Let x ∈ D, we define fx
1 : [−r, tn1 ] −→ E by

fx
1 (u) =


φ0(u) u ∈ [−r, s]

φ0(s) +
u−s
2−nT (x− φ0(s)) u ∈ [s, s+ tn1 ]

x u ∈ [s+ tn1 , t
n
1 ]

(13)

and τ(tn1 ) : Ctn1 −→ C0, fx
1 7−→ τ(tn1 )f

x
1 :

τ(tn1 )f
x
1 (u) = fx

1 (u+ tn1 ) u ∈ [−r, 0].

Obviously, we have fx
1 ∈ Ctn1 , τ(t

n
1 )f

x
1 (0) = x ∈ D, so τ(tn1 )f

x
1 ∈ Es ⊂ C0.

Moreover, the function x 7−→ τ(tn1 )f
x
1 is 1-Lipschitz:

∥τ(tn1 )fx
1 − τ(tn1 )f

y
1 ∥s = sup

−r≤u≤s
∥fx

1 (u+ tn1 )− fy
1 (u+ tn1 )∥
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= sup
s−tn1≤u≤s

∥u+ tn1 − s

2−nT
(x− y)∥

= ∥x− y∥.

Now, define the set-valued function Sn
1 : [0, tn1 ]×D −→ ck(E) by:

Sn
1 (t, x) = F (t, τ(tn1 )f

x
1 ) ∀(t, x) ∈ [0, tn1 ]×D. (14)

Since F is measurable and x 7−→ τ(tn1 )f
x
1 1-Lipschitz, Sn

1 (·, x) is obviously measurable. Also, Sn
1 (t, ·) is upper

semi-continuous on D because F (t, ·) is so on Es, ∀t ∈ [0, T ]. Moreover, conditions (iii) and (iv) give for any
t ∈ [0, tn1 ] and x in D,

Sn
1 (t, x) = F (t, τ(tn1 )f

x
1 ) ⊂ (1 + ∥fx

1 (t
n
1 )∥)K = (1 + ∥x∥)K,

and
Sn
1 (t, x) ∩ TD(x) = F (t, τ(tn1 )f

x
1 ) ∩ TD(τ(tn1 )f

x
1 (0)) ̸= ∅.

So Sn
1 verifies hypotheses of Proposition 1, then for any φ0 ∈ D there exists an absolutely continuous function xn

1

from [0, tn1 ] to E such that 
ẋn
1 (t) ∈ S(t, xn

1 (t)) a.e. on [0, tn1 ]

xn
1 (t) = φ0(0) +

∫ t

0
ẋn
1 (w)dw ∀t ∈ [0, tn1 ]

xn
1 (t) ∈ D, ∀t ∈ [0, tn1 ]

xn
1 (0) = φ0(0).

(15)

So xn
1 verifies

ẋn
1 (t) ∈ F (t, τ(tn1 )f

xn
1 (t)

1 ) a.e t ∈ [0, tn1 ].

Put

xs
n(t) =

{
φ0(t) ∀t ∈ [−r, 0]

xn
1 (t) ∀t ∈ [0, tn1 ].

(16)

Then, xs
n : [−r, tn1 ] −→ E, xs

n absolutely continuous on [0, tn1 ], x
s
n(t) ∈ D.

Similarly, for any x ∈ D, we define fx
2 : [−r, tn2 ] −→ E

fx
2 (u) =


xs
n(u− s) u ∈ [−r, tn1 + s]

xs
n(t

n
1 ) +

u−tn1−s
2−nT (x− xs

n(t)) u ∈ [tn1 + s, tn2 + s]

x u ∈ [s+ tn2 , t
n
2 ]

(17)

and τ(tn2 ) : Ctn2 −→ C0, τ(tn2 )fx
2 (0) = fx

2 (t
n
2 ) = x ∈ D, so τ(tn2 )f

x
2 ∈ Es and x 7−→ τ(tn2 )f

x
2 is 1-lipschitz:

∥τ(tn2 )fx
2 − τ(tn2 )f

y
2 ∥s = sup

s−2n≤u≤s
∥u+ tn2 − tn1 − s

2nT
(x− y)∥ = ∥x− y∥.

Define again Sn
2 : [tn1 , t

n
2 ]×D −→ ck(E)

Sn
2 (t, x) = F (t, τ(tn2 )f

x
2 ) ∀(t, x) ∈ [tn1 , t

n
2 ]×D. (18)

Also, the hypotheses on F ensure that Sn
2 (., x) is measurable, Sn

2 (t, ·) upper semi-continuous on D, ∀t ∈ [0, T ].

Sn
2 (t, x) ⊂ (1 + ∥x∥)K, ∀(t, x) ∈ [tn1 , t

n
2 ]×D

and
Sn
2 (t, x) ∩ TD(x) ̸= ∅.
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Then, there exists an absolutely continuous function xn
2 from [tn1 , t

n
2 ] on E such that

ẋn
2 (t) ∈ S(t, xn

2 (t)) a.e. on [tn1 , t
n
2 ]

xn
2 (t) = xs

n(t
n
1 ) +

∫ t

tn1
ẋn
2 (w)dw ∀t ∈ [tn1 , t

n
2 ]

xn
2 (t) ∈ D ∀t ∈ [tn1 , t

n
2 ]

xn
2 (t

n
1 ) = xs

n(t
n
1 ) = xn

1 (t
n
1 ).

(19)

So xn
2 verifies

ẋn
2 (t) ∈ F (t, τ(tn2 )f

xn
2 (t)

2 ) a.e. on [tn1 , t
n
2 ]. (20)

Put
xs
n(t) = xn

2 (t) ∀t ∈ [tn1 , t
n
2 ].

Then, xs
n : [−r, tn2 ] −→ E, xs

n absolutely continuous on [0, tn2 ], x
s
n(t) ∈ D. By induction, we define a function

xs
n : [−r, tnk ] −→ E, xs

n absolutely continuous on [0, tnk ], x
s
n(t) ∈ D such that

xs
n(t) =


φ0(t) ∀t ∈ [−r, 0]

xn
1 (t) ∀t ∈ [0, tn1 ]

...

xn
k (t) ∀t ∈ [tnk−1, t

n
k ]

(21)

and 
ẋs
n(t) ∈ F (t, τ(tnk )f

xs
n(t)

k ) a.e. on [tnk−1, t
n
k ]

xs
n(t) = xs

n(t
n
k−1) +

∫ t

tnk−1
ẋs
n(w)dw ∀t ∈ [tnk−1, t

n
k ]

xs
n(t) ∈ D ∀t ∈ [tnk−1, t

n
k ]

(22)

and construct a solution on [tnk , t
n
k+1].

For any x ∈ D, define fx
k+1 : [−r, tnk+1] −→ E :

fx
k+1(u) =


xs
n(u− s) u ∈ [−r, tnk + s]

xs
n(t

n
k ) +

u−tnk−s
2−nT (x− xs

n(t
n
k )) u ∈ [tnk + s, tnk+1 + s]

x u ∈ [s+ tnk+1, t
n
k+1]

(23)

τ(tnk+1) : Ctnk+1
−→ C0, τ(tnk+1)f

x
k+1(0) = fx

k+1(t
n
k+1) (24)

fx
k+1 ∈ Ctnk+1

, fx
k+1(t

n
k+1) = x, so τ(tnk+1)f

x
k+1 ∈ Es, and x 7−→ τ(tnk+1)f

x
k+1 is 1-Lipschitz.

Let: Sn
k+1 : [tnk , t

n
k+1]×D −→ ck(E)

Sn
k+1(t, x) = F (t, τ(tnk+1)f

x
k+1). (25)

Then, Sn
k+1(·, x) is measurable, Sn

k+1(t, ·) is upper semi-continuous on D for any t ∈ [0, T ] and verifies

Sn
k+1(t, x) ⊂ (1 + ∥x∥)K

and
Sn
k+1(t, x) ∩ TD(x) ̸= ∅.

Then, there exists an absolutely continuous function xn
k+1 : [tk, tk+1] −→ E such that

ẋn
k+1(t) ∈ S(t, xn

k+1(t)) a.e. on [tnk , t
n
k+1]

xn
k+1(t) = xs

n(t
n
k ) +

∫ t

tnk
ẋn
k+1(w)dw ∀t ∈ [tnk , t

n
k+1]

xn
k (t) ∈ D ∀t ∈ [tnk , t

n
k+1]

xn
k+1(t

n
k ) = xs

n(t
n
k ).

(26)
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Put xs
n(t) = xn

k+1(t) on [tnk , t
n
k+1], and for t in [tnk , t

n
k+1[, θn(t) = tni , δn(t) = tni+1, θn(T ) = T. Then xs

n is
continuous on [−r, T ], absolutely continuous on [0, T ] such that

ẋs
n(t) ∈ F (t, τ(δn(t))f

xs
n(t)

k ) a.e. on [0, T ]

xs
n(t) = φ0(0) +

∫ t

0
ẋs
n(w)dw ∀t ∈ [0, T ]

xs
n(t) ∈ D ∀t ∈ [0, T ]

xs
n(t) = φ0(t) ∀t ∈ [−r, 0]

(27)

where for any t in [0, T ], f
xs
n(t)

n ∈ Cδn(t)

f
xs
n(t)

n (u) =


xs
n(u− s) u ∈ [−r, θn(t) + s]

xs
n(θn(t)) +

u−θn(t)−s
2−nT (xs

n(t)− xs
n(θn(t))) u ∈ [θn(t) + s, δn(t) + s]

xs
n(t) u ∈ [s+ δn(t), δn(t)].

(28)

Consequently, we have obtained a sequence (xs
n)n of continuous functions on [−r, T ], absolutely continuous on

[0, T ], and (f
xs
n(t)

n )n in CT verifying (27).
Let us to show that (xs

n)n converge uniformly to an absolutely continuous function on [0, T ]. By (iii) and (27) we
have for almost every t in [0, T ], there exists K ∈ ck(E) such that

ẋs
n(t) ∈ F (t, τ(δn(t))f

xs
n(t)

n ) ⊂ (1 + ∥τ(δn(t))f
xs
n(t)

n (0))∥)K.

Since K is compact, there is a strictly positive number M such that

F (t, τ(δn(t))f
xs
n(t)

n ) ⊂ (1 + ∥xs
n(t)∥)MB̄E

moreover, xs
n is absolutely continuous on [0, T ], then

∥xs
n(t)− φ0(0)∥ ≤

∫ t

0

M(1 + ∥xs
n(w)∥)dw ∀t ∈ [0, T ].

By applying the Gronwall inequality, we conclude that for all t

∥xs
n(t)∥ ≤ (∥φ0(0)∥+MT )eMT

and then, for almost every t in [0,T]

ẋs
n(t) ∈ F (t, τ(δn(t))f

xs
n(t)

n ) ⊂ (1 + l)K (29)

with l = (∥φ0(0)∥+MT )eMT . Since K is convex compact and from (29), (ẋs
n)n is relatively compact in

L1
E([0, T ]). Thus we can extract a subsequence still denoted (ẋs

n)n for simplicity which converges σ(L1, L∞)
to a function ys ∈ L1

E . Furthermore, since (xs
n) is absolutely continuous on [0, T ] and by using (29), we obtain

∥ẋs
n(t)∥ ≤ (1 + l)M,

the sequence is equicontinuous, and for all t ∈ [0, T ],

(xs
n(t))n ⊂ φ0(0) + T (1 + l)K.

By Ascoli’s theorem, (xs
n)n converges uniformly on [0, T ] to xs with

xs(t) = φ0(0) +

∫ t

0

ys(w)dw ∀t ∈ [0, T ]
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so ẋs(t) = ys(t) a.e., since D is closed,
xs(t) ∈ D ∀t ∈ [0, T ]

and
τ(t− s)xs = xs

t−s ∈ Es.

Because xs
n = φ0 on [−r, 0], we can take xs = φ0 on [−r, 0].

To complete the proof, we’ll show that for almost every t ∈ [0, T ],

lim
n−→∞

τ(δn(t))f
xs
n(t)

n = τ(t− s)xs

in Es.

∥τ(δn(t))f
xs
n(t)

n − τ(t− s)xs∥s = sup
−r≤u≤s−2−n

∥xs
n(u+ δn(t)− s)− xs

n(u+ t− s)∥

+ sup
s−2−n≤u≤s

∥xs
n(θn(t)) +

u− s+ θn(t)− δn(t)

2−nT
(xs

n(t)− xs
n(θn(t)))− xs(u+ t− s)∥

≤ sup
−r≤u≤s−2−n

∥xs
n(u+ δn(t)− s)− xs(u+ δn(t))∥+ sup

−r≤u≤s−2−n

∥xs(u+ δn(t))− xs(u+ t− s)∥

+ sup
s−2−n≤u≤s

∥ u− s

2−nT
(xs

n(θn(t))− xs
n(t))∥+ sup

s−2−n≤u≤s

∥xs
n(t)− xs(u+ t− s)∥

≤ ∥xs
n(θn(t))− xs

n(t)∥+ sup
s−2−n≤u≤s

∥xs(t)− xs(u+ t− s)∥+ ∥xs
n(t)− xs(t)∥.

Since
lim

n−→∞
δn(t) = lim

n−→∞
θn(t) = t,

xs and xs
n are continuous, we conclude that τ(δn(t))f

xs
n(t)

n converges to τ(t− s)xs.
Finally, by using a well known closure’s theorem (see [8]), we obtain

xs(t) ∈ F (t, τ(t− s)xs) a.e. on [0, T ]

τ(t− s)xs = xs
t−s ∈ Es ∀t ∈ [0, T ]

xs(t) = φ0(t) ∀t ∈ [−r, 0].

Remark 1
In assumptions (iii) and (iv) of Theorem 2, we can replace E0 by Es for s fixed in [−r, 0], since by construction,
we have

τ(δn(t))f
xs
n(t)

n ∈ Eu ∀u ∈ [s, 0]

Then,
τ(δn(t)f

xs
n(t)

n ) ∈
∩

s≤u≤0

Eu;

in particular, ED =
∩

−r≤u≤0

Eu then we deduce the following result.

Theorem 3
Let ED = {φ ∈ C0, φ(s) ∈ D, ∀s ∈ [−r, 0]}. Suppose that
(i) for all θ ∈ ED, F (t, θ) is measurable,
(ii) for all t ∈ [0, T ], F (t, θ) upper semi-continuous on ED,
(iii) there is a balanced convex compact K in E such that

F (t, θ) ⊂ (1 + ∥θ(0)∥)K, ∀(t, θ) ∈ [0, T ]× E0
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(iv) F (t, θ) ∩ TDθ(0) ̸= ∅, ∀(t, θ) ∈ [0, T ]× E0.
Then, ∀φ0 ∈ ED, there exists a continuous function x : [−r, T ] −→ E, absolutely continuous on [0, T ], such that

ẋ(t) ∈ F (t, τ(t)x) a.e. on [0, T ]

τ(t− s)x = xt−s ∀t ∈ [0, T ]

x(t) = φ0(t) ∀t ∈ [−r, 0].

(30)

4. Case of variable constraint

In the case of a variable constraint (D = Γ(t)), we obtain a version of existence theorem by reducing the problem
to a problem without delay and applying the following result due to [3].

Theorem 4
Let Γ be a set-valued function with closed graph G, F : G −→ ck(E) be an upper semi-continuous set-valued
function such that ∃K ∈ ck(E) :

F (t, x) ⊂ (1 + ∥x∥)K, ∀(t, x) ∈ G.

Suppose that for all t ∈ [0, T ], x ∈ Γ(t), and ε > 0, ∃(tε, xε) ∈ G such that

0 < tε − t ≤ ε,
xε − x

tε − t
∈ F (t, x) + εBE .

Then, for all a ∈ Γ(0), there exists an absolutely continuous function X : [0, T ] −→ E such that
X(t) = a+

∫ t

0
Ẋ(s)ds ∀t ∈ [0, T ]

X(t) ∈ Γ(t) ∀t ∈ [0, T ]

Ẋ(t) ∈ F (t,X(t)) a.e. on [0, T ].

(31)

Let’s define, for any t ∈ [0, T ] and s ∈ [−r, 0], the variable fully constrained set

Hs(t) = {φ ∈ C0 : φ(s) ∈ Γ(t)}.

We are able to give the existence of viable solution in these sets.

Theorem 5
Let Γ : [0, T ] −→ c(E) be a set-valued function with closed graph, F : [0, T ]× C0 −→ ck(E) be a globally upper
semi-continuous set-valued function (i.e. upper semi-continuous on [0, T ]×Hs(t)) such that there is a balanced
convex compact K ∈ E :

F (t, φ) ⊂ (1 + ∥φ(0)∥)K, ∀(t, φ) ∈ [0, T ]×H0(t).

Suppose that for all t ∈ [0, T ], ε ∈ H0(t), and ε > 0, ∃(tε, φε) ∈ gr(H0)such that

0 < tε − t ≤ ε,
φε(0)− φ(0)

tε − t
∈ F (t, φ) + εBE .

Then, for all φ0 ∈ Hs(t), there exists an absolutely continuous function xs : [−r, T ] −→ E such that
ẋs(t) ∈ F (t, τ(t− s)xs) a.e. on [0, T ]

τ(t− s)xs = xs
t−s ∈ Hs(t) ∀t ∈ [0, T ]

xs(t) = φ0(t) t ∈ [−r, 0].

(32)
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Proof: The proof is the same as that of Theorem 2, the difference being in the condition (iv). We define the
subdivision Pn, the function fx

1 and the set-valued function Sn
1 as in (13) and (14). The set-valued function Sn

1

satisfies the tangential condition ∀t ∈ [0, T ], ∀ε ∈ H0(t), ∀ε > 0, ∃(tε, φε) ∈ gr(H0)such that

0 < tε − t ≤ ε,
φε(0)− φ(0)

tε − t
∈ F (t, φ) + εBE .

Indeed let (t, x) ∈ gr(Γ) and assume φ = τ(tn1 )f
x
1 . We obtain φ ∈ C([−r, 0], E) and φ(0) = fx

1 (t
n
1 ) = x ∈ Γ(t) i.e.

φ ∈ H0(t).
Let ε > 0, by the condition (iii), there exists (tε, φε) ∈ gr(H0) such that

0 < tε − t ≤ ε,
φε(0)− φ(0)

tε − t
∈ Sn

1 (t, x) + εBE .

So Sn
1 verifies hypotheses of Theorem 4, then there exists an absolutely continous function xn

1 from [0, tn1 ] to E
such that 

xn
1 (t) = φ0(0) +

∫ t

0
ẋn
1 (w)dw ∀t ∈ [0, T ]

xn
1 (t) ∈ Γ(t) ∀t ∈ [0, tn1 ]

ẋn
1 (t) ∈ Sn

1 (t, x
n
1 (t)) a.e. on [0, tn1 ].

(33)

with
ẋn
1 (t) ∈ F (t, τ(tn1 )f

xn
1 (t)

1 ) a.e. on [0, tn1 ].

By following the same procedure of the proof of Theorem 2 we deduce that there exists an absolutely continuous
function xs

n : [−r, T ] −→ E satisfying
ẋs
n(t) ∈ F (t, τ(tnk )f

xs
n(t)

k ) a.e. on [tnk−1, t
n
k ]

xs
n(t) = xs

n(t
n
k−1) +

∫ t

tnk−1
ẋs
n(w)dw ∀t ∈ [tnk−1, t

n
k ]

xs
n(t) ∈ D ∀t ∈ [tnk−1, t

n
k ]

(34)

for all 0 ≤ k ≤ 2n. For any t ∈ [0, T ], f
xs
n(t)

n ∈ C([−r, δn(t)], E)

f
xs
n(t)

n (u) =


xs
n(u− s) u ∈ [−r, θn(t) + s]

xs
n(θn(t)) +

u−θn(t)−s
2−nT (xs

n(t)− xs
n(θn(t))) u ∈ [θn(t) + s, δn(t) + s]

xs
n(t) u ∈ [δn(t) + s, δn(t)].

(35)

It is clear by construction that xs
n is an absolutely continuous functions on [0, T ] verifying

ẋs
n(t) ∈ F (t, τ(δn(t))f

xs
n(t)

n ) a.e. on [0, T ]

xs
n(t) = φ0(0) +

∫ t

0
ẋs
n(w)dw ∀t ∈ [0, T ]

xs
n(t) ∈ Γ(t) ∀t ∈ [0, T ]

xs
n(t) = φ0(t) ∀t ∈ [0, T ].

(36)

By passing to the limit in (36) we obtain the existence of subsequence (xs
n)n still denoted (xs

n)n which converges
to an absolutely continous function xs and ẋs

n converges σ(L1, L∞) to ẋs. Similarly, we have

lim
n

τ(δn(t)f
xs
n(t)

n ) = τ(t− s)xs ∀t ∈ [0, T ].

Because F has a closed graph then we obtain xs(t) ∈ Γ(t) ∀t ∈ [0, T ] and xs is a solution of
ẋ(t) ∈ F (t, τ(t− s)x) a.e. on [0, T ]

x(t) = φ0(0) +
∫ t

0
ẋ(w)dw ∀t ∈ [0, T ]

x(t) ∈ Γ(t) ∀t ∈ [0, T ]

x(t) = φ0(t) ∀t ∈ [0, T ].

(37)
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5. Conclusion

In the present work, using a set-valued version of Scorza-Dragoni theorem, we weaken the regularity assumptions
for the existence of viable solution for first order differential inclusions without delay. Then, we use this result
to prove existence results of viable solutions for functional differential inclusions by means of a discretization
approach. The viability set is more natural and general than those used previously. We treat the case of a fixed
invariance set as well as the variable case.
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