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Abstract In this article we propose and study the so-called beta exponential Pareto (BEP) distribution. Several lifetime
distributions such as the beta Weibull, beta exponential, beta Rayleigh, generalized Weibull, Weibull among others are
embedded in the proposed distribution. Various mathematical properties of the BEP distribution are presented. We also
discuss the parameter estimation methods and simulation issues. The importance and flexibility of the proposed model is
illustrated by means of real data analysis.
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1. Introduction

The Pareto distribution is well known in the literature for its capability of modeling heavy-tailed data. Burroughs
and Tebbens [7] discussed applications of the Pareto distribution in modeling earthquakes, forest fire areas and oil
and gas field sizes. Newman [22] provided many other quantities measured in the physical, biological, and social
systems of various kinds, where the Pareto distribution has been found to be useful to model data. For detailed
review of Pareto distribution and related topics, readers are referred to Arnold [3] and the references therein. The
Pareto distribution has a scale parameter which acts as a threshold value of the observations. This means Pareto
distribution could be used only if it takes positive values greater than the threshold parameter. This restriction has
limited the usefulness of the Pareto distribution. To add flexibility to the Pareto distribution various generalizations
have appeared in the literature. For example, Alzaatreh et al. [5] proposed the Weibull-Pareto distribution,
Bourguignon et al. [8] introduced the Kumaraswamy-Pareto distribution, Alzaatreh et al. [6] introduced the
Gamma-Pareto distribution, Akinsete et al. [2] introduced the beta-Pareto distribution, Zea et al. [25] studied the
beta exponentiated Pareto distribution, Mahmoudi [19] proposed the beta generalized Pareto distribution, Elbatal
[13] studied the Kumaraswamy exponentiated Pareto distribution and Tahir et al. [24] studied a new Weibull-Pareto
distribution.

In this paper we define and study the so-called beta exponential Pareto (BEP) distribution which is obtained by
using the genesis of the Pareto distribution, beta distribution and exponential distribution. Although BEP will have
five parameters, the main advantage of this formulation is that the support of the proposed distribution is (0,∞)
which adds versatility and applicability to model data under study. The rest of the paper is unfolded as follows.
In the rest of Section 1, we provide the key ingredients of BEP distribution. In Section 2, we define the BEP
distribution and discuss some of its sub-models. Section 3 discusses some structural and mathematical properties
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of the BEP distribution. The elements of reliability analysis are discussed in Section 4. Parameter estimation
procedures using method of maximum likelihood are presented in Section 5. In Section 6, we discuss the simulation
issues related to parameter estimation. Applications to model real world data are discussed in Section 7. Section 8
provides some concluding remarks. Our calculations make use of the following special functions:
the gamma function defined by

Γ(a) =

∫ ∞

0

ta−1 exp (−t) dt;

the diagamma function defined by

ψ(x) =
d

dx
(ln Γ(x));

the beta function defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt;

the incomplete beta function defined by

By(a, b) =

∫ y

0

ta−1(1− t)b−1dt

= ya
{
1

a
+

1− b

1 + a
y + · · ·+ (1− b) · · · (n− b)

n!(a+ n)
yn + · · ·

}
,

where a > 0, b > 0 and 0 < y < 1;

and the Gaussian hypergeometric function defined by 2F1(c, d; e; z) =
∑∞

k=0
(c)k(d)k

(e)k
. z

k

k! , where (c)k is the
ascending factorial or Pochhammer symbol defined by (assuming that (c)0 = 1)

(c)k =
Γ(c+ k)

Γ(c)
=

{
c(c+ 1)(c+ 2) · · · (c+ k − 1) k = 1, 2, 3, · · ·
1 k = 0.

1.1. Review on Key Ingredients

In order to make this work more self contained we will briefly provide the key ingredients which will be used to
construct the BEP distribution.

1.1.1. Beta generated distribution Eugene, Lee and Famoye [14] used the beta distribution as a generator to
develop the so-called a family of beta-generated (BG) distributions based on the following formulation. Let G(x)
be the cumulative distribution function (cdf) of a random variable X . Then the cdf of the beta-G random variable
is given by

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0

wa−1(1− w)b−1dw, (1)

where a > 0 and b > 0 are shape parameters. Note that Iy(a, b) =
By(a,b)
B(a,b) is the incomplete beta function ratio,

By(a, b) is the incomplete beta function, and B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function and Γ(.) is the gamma function

as defined in Section 1.

The probability density function (pdf) of the Beta-G distribution has the form

f(x) =
1

B(a, b)
[G(x)]a−1

[
1−G(x)

]b−1
g(x). (2)

This class of generalized distribution has received considerable attention over the last few years and several classical
distributions have been generalized using this formulation.
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1.1.2. Exponential distribution A random variable X is said to have exponential distribution if its pdf and cdf are
given by

f1(x;α) = αe−αx

and
F1(x;α) = 1− e−αx

respectively, where x > 0 and α > 0 is the shape parameter.

1.1.3. Pareto distribution A random variable X is said to have Pareto distribution if its pdf and cdf are given by

g1(x;λ, θ) =
θλθ

xθ+1

and

G1(x;λ, θ) = 1−
(
λ

x

)θ

respectively, where x ∈ (λ,∞), θ > 0 is the shape parameter and λ > 0 is the (threshold) scale parameter.

1.1.4. Exponential Pareto distribution Al-Kadim and Boshi [4] introduced a new distribution that is dependent on
both the exponential distribution and Pareto distribution, called exponential Pareto (EP) distribution. The cdf of
exponential Pareto distribution is given by

G(x;α, θ, λ) = 1− e−α( x
λ )θ , x > 0. (3)

The corresponding pdf and hazard rate function (hrf) of EP distribution are, respectively, given by

g(x;α, θ, λ) =
θα

λ

(x
λ

)θ−1

e−α( x
λ )θ , x > 0 (4)

and

h(x;α, θ, λ) =
g(x;α, θ, λ)

1−G(x;α, θ, λ)
=
θα

λ

(x
λ

)θ−1

.

2. The Beta Exponential Pareto Distribution

In this section we study the beta exponential Pareto distribution and the sub-models of this distribution. Now
inserting (3) and (4) in (1) and (2), we have the cdf (FBEP ) and pdf (fBEP (x)) of beta exponential Pareto (BEP)
distribution specified, respectively, by

FBEP (x) =
1

B(a, b)

∫ 1−e−α( x
λ

)θ

0

wa−1(1− w)b−1dw (5)

and

fBEP (x) =
θα

λB(a, b)

(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

. (6)

Figure 1 displays the pdf and cdf of BEP distribution for selected values of the parameters.
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Figure 1. pdf (left panel) and cdf (right panel) of BEP distribution for selected parameters.

2.1. Special cases of beta exponential Pareto distribution

The BEP distribution is very flexible as it approaches to several different distributions when its parameters are
chosen appropriately. If X is a random variable with cdf (5), then we have the following distributions as special
case of BEP distribution.

• If a = b = 1, then (5) reduces to the exponential Pareto distribution.
• If α = 1, then (5) reduces to the beta Weibull distribution.
• If α = θ = 1, then (5) reduces to the beta exponential distribution.
• If α = 1/2 and θ = 2, then (5) reduces to the beta Rayleigh distribution.
• If a = b = 1, α = 1/2 and θ = 2, then (5) reduces to the Rayleigh distribution.
• If b = α = 1, then (5) reduces to the generalized Weibull distribution.
• If θ = b = α = 1, then (5) reduces to the generalized exponential distribution.
• If a = b = α = 1, then (5) reduces to the Weibull distribution.
• If a = b = α = θ = 1, then (5) reduces to the exponential distribution.

The sub-models of BEP for different choice of parameters are displayed in the Figure 2.
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Figure 2. Sub-models of BEP distribution: B=beta, E=exponential, G=generalized, P= Pareto, R=Rayleigh, W=Weibull.

2.2. Mixture representation

In this section we derive the series representations of the cdf and the pdf of the BEP distribution which will be useful
to study its mathematical and statistical characteristics. As we shall see both pdf and cdf of BEP distribution can
be expressed in terms of the exponential Pareto distribution. By using the power series expansion of (1− w)b−1,
we get

1

B(a, b)

∫ G(x)

0

wa−1(1− w)b−1dw =
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1

i

)
[G(x)]a+i

a+ i
,

with the binomial term
(
b−1
i

)
= Γ(b)

Γ(b−i)i! defined for any real b.
Therefore,for any b > 0, real non-integer, we write (5) as

FBEP (x;α, θ, λ, a, b) =
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1

i

)
[1− e−α( x

λ )θ ]a+i

a+ i
.

Using the incomplete beta function and the hypergeometric confluent function, the cdf of BEP can be expressed as
below (for details see Cordeiro and Nadarajah [12] ):

F (x) =

[
1− e−α( x

λ )θ
]a

B(a, b)

∞∑
k=0

(1− b)k[1− e−α( x
λ )θ ]k

(a+ k)k!
.

Hence,

F (x) =

[
1− e−α( x

λ )θ
]a

× 2F1

(
a, 1− b; a+ 1; 1− e−α( x

λ )θ
)

aB(a, b)
,

where 2F1(c, d; e; z) =
∑∞

k=0
(c)k(d)k

(e)k
. z

k

k! is the Gaussian hypergeometric function with (c)k, the ascending
factorial, defined by

(c)k =

{
c(c+ 1)(c+ 2) · · · (c+ k − 1) k = 1, 2, 3, · · ·
1 k = 0.
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Also using the power series expansion Equation (6) becomes

fBEP (x;α, θ, λ, a, b) =
θα

λB(a, b)

∞∑
i=0

(−1)i
(
b− 1

i

)(x
λ

)θ−1

e−α( x
θ )

θ
[
1− e−α( x

λ )
θ
]a+i−1

=
αθ

λB(a, b)

∞∑
i=0

∞∑
j=0

(−1)i+j

(
b− 1

i

)(
a+ i− 1

j

)(x
λ

)θ−1

e−(j+1)α( x
λ )

θ

=

∞∑
j=0

wjg(x; θ, λ, α(j + 1)),

where

wj =
1

(j + 1)B(a, b)

∞∑
i=0

(−1)i+j
(
b−1
i

)(
a+i−1

j

)
and g(x; θ, λ, α(j + 1)) is the pdf of exponential Pareto distribution with parameters θ, λ, and α(j + 1). Thus, the
BEP density function can be expressed as an infinite linear combination of exponential Pareto densities. Thus, some
of its mathematical properties can be obtained directly from those properties of the exponential Pareto distribution.

3. Statistical Properties

In this Section we study some statistical properties of the BEP distribution, specifically quantile function, moments,
incomplete moment and moment generating function.

3.1. Quantile function

The quantile function for a probability distribution has many uses in both the theory and applications. It can be used
to generate random numbers from an arbitrary distribution. On inverting (5), we have the BEP quantile function
given by

xq = λ

[
− 1

α
log
(
1− I−1

q (a, b)
)]1/θ

, (7)

where I−1
q (a, b) is the inverse of the incomplete beta function with parameters a and b. The inverse incomplete beta

function I−1
q (a, b) can be expressed in terms of beta functions as shown in Zea et al. [25] as below

I−1
q (a, b) =

∞∑
i=1

qi[aB(a, b)q]
i
a ,

where q1 = 1 and the remaining coefficients satisfy the following recursive relation

qi =
1

i2 + (a− 2)i+ (1− a)

{
i−1∑
r=2

(1− δi,2)qrqi+1−r [r(1− a)(i− r)− r(r − 1)]

+

i−1∑
r=1

i−r∑
s=1

qrqi+1−r−s [r(r − a) + s(a+ b− 2)(i+ 1− r − s)]

}

with

δi,2 =

{
1, if i = 2,
0, if i ̸= 2.
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We use the inverse transformation method to generate random numbers from the beta transmuted Pareto
distribution as F (x) = u, where u ∼ U(0, 1). Solving the expression F (x) = u gives

x = λ

[
− 1

α
log
(
1− I−1

u (a, b)
)]1/θ

, (8)

where I−1
u (a, b) is the inverse of the incomplete beta function. Further, we can use (7) to obtain the median, as well

as octiles and then the measure of Bowley’s skewness and Moors kurtosis. These measures are quartile alternatives
to the traditional skewness and kurtosis, and are more robust estimation of these measures as described in Kenney
and Keeping [16].

• Bowley skewness (Bsk): The Bowley skewness is defined using the quartiles as

Bsk =
Q3 +Q1 − 2Q2

Q3 −Q1
=
Q0.75 − 2Q0.5 +Q0.25

Q0.75 −Q0.25
,

where Qi is the ith quartile for i = 1, 2, 3.
• Moors kurtosis (Mku): The Moors kurtosis is defined using the octiles as

Mku =
(E7 − E5) + (E3 − E1)

E6 − E2
=
Q0.875 −Q0.625 +Q0.375 −Q0.125

Q0.75 −Q0.25
,

where Ei = F−1(i/8), i = 1, 2, 3, · · · , 7 is the ith octile. The graphs of the Bowley skewness and Moors kurtosis
for different values of a and b, with λ = 0.5, α = 2 and θ = 0.5, are shown in Figure 3. It is evident that both
Bowley skewness and Moors kurtosis depend on the choice of the parameters a and b.
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Figure 3. Plots of the Bowley skewness and Moors kurtosis of BEP distribution.

The quantiles are also useful to study the quantile spread (QS) function of a random variable which describes
how the probability mass is placed symmetrically about its median and hence can be used to formalize concepts
such as peakedness and tail weight traditionally associated with kurtosis. The QS is defined as

QSX(p) = F−1(p)− F−1(1− p) ∀ p ∈ (0.5, 1).
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The QS function for BEP is given by

QSX(p) = λ

{[
− 1

α
log
(
1− I−1

p (a, b)
)]1/θ

−
[
− 1

α
log
(
1− I−1

(1−p)(a, b)
)]1/θ}

.

The QS function as a function of p for BEP distribution is displayed in Figure 4.
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Figure 4. Quantile spread function of BEP distribution for selected parameters.

3.2. Ordinary and incomplete moments

In this subsection, we derive the expressions for the ordinary and incomplete moments of BEP. The moments of
different orders are helpful to study different characteristics of a distribution and its usefulness to model real life
data. Lemma 3.1, Lemma 3.2 and Lemma 3.3 summarize the moment properties of BEP distribution.

Lemma 3.1: If X has BEP distribution then the kth moment of X, k = 1, 2, .... has the following form:

µ
′

k =
λk

αk/θB(a, b)

∞∑
i=0

(−1)i
(
a− 1

i

)
1

(b+ i)k/θ+1
Γ

(
k

θ
+ 1

)
. (9)
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Proof: Let X be a random variable with density function (6). The kth ordinary moment of the BEP distribution is
given by

µ
′

k =

∫ ∞

0

xkfBEP (x)dx

=

∫ ∞

0

xk
θα

λB(a, b)

(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

dx

=
θα

λθB(a, b)

∞∑
i=0

(−1)i
(
a− 1

i

)∫ ∞

0

xθ+k−1e−(b+i)α( x
λ )θdx.

Setting t = (b+ i)α(xλ )
θ, one gets

µ
′

k =
αλk

B(a, b)

∞∑
i=0

(−1)i
(
a− 1

i

)
1

(α(b+ i))k/θ+1

∫ ∞

0

e−ttk/θdt

=
λk

αk/θB(a, b)

∞∑
i=0

(−1)i
(
a− 1

i

)
1

(b+ i)k/θ+1
Γ

(
k

θ
+ 1

)
.

This completes the proof. �
Furthermore, the kth order moments can be expressed as

µ
′

k =

∫ ∞

0

xk
αθ

λB(a, b)

∞∑
i=0

∞∑
j=0

(−1)i+j

(
b− 1

i

)(
a+ i− 1

j

)(x
λ

)θ−1

e−(j+1)α( x
λ )

θ

dx

=
λk

αk/θB(a, b)

∞∑
i=0

∞∑
j=0

(−1)i+j

(
b− 1

i

)(
a+ i− 1

j

)
1

(j + 1)k/θ+1
Γ

(
k

θ
+ 1

)
.

In Figure 5, we display the effect of the choice of parameters a and b on the mean and the variance of BEP by
choosing λ = 2, θ = 0.5 and α = 2.5. Similarly, the effect of the choice of the parameters a and b on the skewness
and the kurtosis is displayed in Figure 6 for λ = 2, θ = 0.5 and α = 2.5.
Lemma 3.2: If X has BEP distribution, then the moment generating function MX (t) has the following form

MX (t) =
1

B(a, b)

∞∑
k=0

∞∑
i=0

(−1)i
(
a− 1

i

)
tkλk

k!αk/θ

1

(b+ i)k/θ+1
Γ

(
k

θ
+ 1

)
. (10)

Proof: The moment generating function MX(t) can be written as M
X
(t) = E(etX) =

∞∑
k=0

tk

k!E(Xk). On using (9)

the MGF of BEP distribution is given by

M
X
(t) =

1

B(a, b)

∞∑
k=0

∞∑
i=0

(−1)i
(
a− 1

i

)
tkλk

k!αk/θ

1

(b+ i)k/θ+1
Γ

(
k

θ
+ 1

)
which completes the proof. �

Furthermore, using (10) the MGF of BEP distribution is given by

MX (t) =
1

B(a, b)

∞∑
k=0

∞∑
i=0

∞∑
j=0

(−1)i+j

(
b− 1

i

)(
a+ i− 1

j

)
tkλk

k!αk/θ

1

(j + 1)k/θ+1
Γ

(
k

θ
+ 1

)
.
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Figure 5. Plots of mean and variance of BEP distribution.
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Figure 6. Plots of skewness and kurtosis of BEP distribution.

Lemma 3.3: If X has BEP distribution then the conditional moments for X is given by

E(Xs | X > t) =
λs

αs/θB(a, b)

∞∑
i=0

(−1)i
(
a− i

i

)
1

(b+ i)s/θ+1
Γ

(
s

θ
+ 1, (b+ i)α

(
t

λ

)θ
)
.
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Proof: Using the definition of conditional moment we have

E (Xs | X > t) =

∫ ∞

t

xsf(x)dx

=

∫ ∞

t

xs
θα

λB(a, b)

(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

dx.

=
θα

λθB(a, b)

∞∑
i=0

(−1)i
(
a− 1

i

)∫ ∞

t

xθ+s−1e−(b+i)α( x
λ )θdx.

Setting y = (b+ i)α(xλ )
θ we get

E(Xs | X > t) =
λs

αs/θB(a, b)

∞∑
i=0

(−1)i
(
a− i

i

)
1

(b+ i)s/θ+1
Γ

(
s

θ
+ 1, (b+ i)α

(
t

λ

)θ
)
,

where Γ(s, t) =
∫∞
t
xs−1e−xdx is the upper incomplete gamma function which is also known as incomplete

gamma function of second kind.�

3.3. Mean deviation

Let X be a BEP random variable with mean µ = E(X) and median M . Note that we can find the mean µ by
substituting r = 1 in equation (9). The mean deviation from the mean (µ) and the mean deviation from the median
(M ) can be expressed as

δ1(x) =

∫ ∞

0

|x− µ|f(x)dx =

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx = 2[µF (µ)− J(µ)],

δ2(x) =

∫ ∞

0

|x−M |f(x)dx =

∫ M

0

(M − x)f(x)dx+

∫ ∞

M

(x−M)f(x)dx = µ− 2J(M),

where F (.) is the cdf of the BEP distribution and J(t) =
∫ t

0
xf(x)dx.

On proceeding similar to the proof of Lemma 3.3, we can compute J(t) as

J(t) =

∫ t

0

xf(x)dx

=

∫ t

0

x
θα

λB(a, b)

(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

dx

=
θα

λB(a, b)

∫ t

0

x
(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

dx

=
λ

α1/θB(a, b)

∞∑
i=0

(−1)i
(
a− i

i

)
1

(b+ i)1/θ+1
Γ

(
1

θ
+ 1, (b+ i)α

(
t

λ

)θ
)
.

4. Reliability Analysis

The reliability function, also known as the survival function, of a probability distribution is the characteristic of
an explanatory variable that maps a set of events, usually associated with mortality or failure of some system onto
time. It is the probability that the system will survive beyond a specified time. The reliability function R(x) is
defined by R(x) = 1− F (x), where F (.) is the cdf of the distribution. The other characteristic of interest of a
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random variable is its hazard rate function which is also known as instantaneous failure rate of a random variable
X which is an important quantity characterizing life phenomenon. The hazard function h(x) is defined as

h(x) =
f(x)

1− F (x)
,

where F (.) and f(.) are, respectively, the cdf and pdf of the given distribution. Using Equations (5) and (6), the
hazard rate function of BEP distribution can be expressed as

h(x) =
θα

λB(a, b)

1

[I
{1−e−α( x

λ
)θ}

(b, a)]

(x
λ

)θ−1

e−bα( x
λ )θ
[
1− e−α( x

λ )θ
]a−1

.

The flexibility of BEP distribution to model reliability data is illustrated by varying shape of the hazard rate function
in Figure 7. Note that the hazard rate possesses several different shapes by virtue of the choice of the parameters.
In particular, Figure 7 illustrates the following shapes of the hazard rate function: constant, decreasing, increasing,
upside-down bathtub shape, bathtub shape etc.
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Figure 7. Hazard rate function of BEP distribution.
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Since many standard distributions are embedded in BEP as its special case, the shape of the hazard rate function
can be easily specified by choosing appropriate values of the parameters. For example, if we choose α = 1,
the resulting distribution reduces to beta Weibull distribution. Therefore, based on the results of Glaser [15] as
described in Lee et al. [18] BEP has

• constant failure rate when a = α = θ = 1,
• decreasing failure rate when α = 1, aθ ≤ 1 and θ ≤ 1,
• increasing failure rate when α = 1, aθ ≥ 1 and θ ≥ 1,
• a bathtub failure rate when α = 1, aθ < 1 and θ > 1,
• upside down bathtub (or unimodal) failure rate when α = 1, aθ > 1 and θ < 1.

5. Parameter Estimation

In order to carry out statistical inference, estimation of the parameters plays the vital role. Several methods for
parameter estimation have been proposed in the literature but the maximum likelihood estimation (MLE) method
is commonly used as the MLEs are usually unbiased and have minimum variance. These estimators can be used
to construct confidence intervals and hypothesis testing procedures. Here, we outline the method to estimate the
parameters of BEP distribution for complete sample (no censoring). Let x1, x2, x3, · · · , xn be a random sample
of size n from the BEP distribution given by (6). Let φ = (α, θ, λ, a, b)ᵀ be 5× 1 vector of parameters. Then the
log-likelihood function for φ is given by

ℓ = n ln(θ) + n ln(α)− nθ ln(λ) + n ln (Γ(a+ b))− n ln (Γ(a))− n ln (Γ(b))

+(θ − 1)

n∑
i=1

ln(xi)− bα

n∑
i=1

(xi
λ

)θ
+ (a− 1)

n∑
i=1

[
1− e−α(

xi
λ )θ
]
. (11)

Equation (11) can be maximized directly by using the R (optim function), SAS (PROC NLMIXED), Ox
program (MaxBFGS sub-routine) and MATH-CAD program or by solving the nonlinear likelihood equations
obtained by differentiating (11).
The score vector components, say U (φ) = ∂ℓ

∂φ = ( ∂ℓ
∂α ,

∂ℓ
∂θ ,

∂ℓ
∂λ ,

∂ℓ
∂a ,

∂ℓ
∂b )

ᵀ, of BEP are given by

∂ℓ

∂α
=

n

α
− b

n∑
i=1

(xi
λ

)θ
+ (a− 1)

n∑
i=1

(xi
λ

)θ e−α(
xi
λ )θ[

1− e−α(
xi
λ

)θ
] ,

∂ℓ

∂θ
=

n

θ
− n ln(λ) +

n∑
i=1

ln(xi)− bα

n∑
i=1

(xi
λ

)θ
ln

(xi
λ

)
+ (a− 1)α

n∑
i=1

(xi
λ

)θ
ln

(xi
λ

) e−α(
xi
λ )θ[

1− e−α(
xi
λ

)θ
]

∂ℓ

∂λ
= −

nθ

λ
+
bαθ

λ

n∑
i=1

(xi
λ

)θ
−

(a− 1)αθ

λ

n∑
i=1

(xi
λ

)θ e−α(
xi
λ )θ[

1− e−α(
xi
λ

)θ
]

∂ℓ

∂a
= n [ψ(a+ b)− ψ(a)] +

n∑
i=1

[
1− e−α(

xi
λ

)θ
]
,

∂ℓ

∂b
= n [ψ(a+ b)− ψ(b)]− α

n∑
i=1

(xi
λ

)θ
,

where ψ(.) is the digamma function, i.e. ψ(x) = d
dx (ln Γ(x)).

The MLEs of φ, say φ̂ , is obtained by solving the nonlinear system of equations U(φ) = 0. Usually, it is more
efficient to obtain the MLEs by maximizing ℓ directly. We can use the optim function in R [23] software for direct
numerical maximization of ℓ. optim is based on a quasi-Newton algorithm. Throughout this article we will use
Nelder-Mead method using AdequacyModel library of the R-package written by Marinho et al. [20] to estimate
the parameters. The initial values for numerical maximization can be determined by the method of moments; that
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is, by equating the first five moments of the BEP distribution with the corresponding empirical moments. The
simultaneous roots of these five equations will be determined by the routine multiroot in the R software. The optim
routine always converged when the method of moments estimates are used as initial values.

For interval estimation of the parameters, we obtain the 5× 5 observed information matrix J(φ) =
{

∂2ℓ
∂r ∂s

}
(for r, s = α, θ, λ, a, b), whose elements can be computed numerically. Under standard regularity conditions when
n→ ∞, the distribution of φ̂ can be approximated by a multivariate normal N5

(
φ, J (φ̂)

−1
)

distribution to
construct approximate confidence intervals for the parameters, where J (φ̂) is the total observed information matrix
evaluated at φ̂. An (1− γ)100% asymptotic confidence interval for each parameter φr (for r = 1, 2, · · · , 5) is given
by (

φ̂r − Zγ/2

√
Jrr, φ̂r + Zγ/2

√
Jrr
)

where Jrr denotes the (r, r)th element of J (φ̂)
−1
.

6. Simulation

In this Section, we shall investigate the stability of the MLE estimates of BEP distribution with different sample
size (n) through a Monte-Carlo study. The simulation procedure as outlined below was performed in R (Statistical
software)[23] using AdequacyModel library.

1. Simulate a random sample of size n from the BEP distribution with parameters a, b, α, λ, θ using the inversion
method using Equation (8).

2. Set initial values for the parameters (a0, b0, α0, λ0, θ0).
3. Compute the mle of the parameters of the BEP distribution.
4. Repeat steps 1- 3 for 1000 (N) times.
5. Compute the mean, standard deviation (standard error), and mean square error (MSE) of the 1000 estimates

of each parameter.
6. Repeat steps 1- 5 with different sample sizes.

For different combinations of a, b, λ, θ and α, samples of sizes n=50, 100, 150, 200, 250, 300 and 500 are generated
from the BEP distribution. From the 1000 repetitions we calculated the mean, the root mean square errors (RMSEs)
and the mean absolute errors (MAEs). Table 1 provides the results of the simulations for a = 2, b = 1, λ = 2, θ = 1
and α = 2 .

Similarly, we have performed the simulation for another combination of the parameters by choosing a = 1, b =
1, λ = 1.5, θ = 4 and α = 1. Table 2 provides the mean, the root mean square errors (RMSEs) and the mean
absolute errors (MAEs) from 1000 repetitions. It can be observed that as sample size increases the root mean
square error and mean absolute error decreases and the estimates are stable to the true value of the parameters. The
effect of sample size on the bias of each parameter for both simulated data is displayed in Figure 8.
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Table 1. Empirical means, the RMSEs and MAEs of the BEP distribution for a = 2, b = 1, λ = 2, θ = 1 and α = 2.

n Error â b̂ λ̂ θ̂ α̂

50 3.9560 1.3926 2.3144 1.2454 2.8239
RMSE 14.6592 2.4814 2.8747 0.7339 6.1358
MAE 2.8249 0.9608 1.3291 0.4007 1.5715

100 2.7723 1.2587 2.1548 1.0868 2.3108
RMSE 3.3949 1.7036 2.4368 0.3086 1.9935
MAE 1.3947 0.7642 1.0490 0.2368 0.8740

150 2.3455 1.1575 2.0867 1.0633 2.1670
RMSE 1.5215 1.1606 1.6414 0.2589 0.9833
MAE 0.8934 0.5884 0.8418 0.2000 0.6619

200 2.2744 1.1571 2.0857 1.0543 2.1737
RMSE 1.5940 1.2265 1.3668 0.2329 1.0121
MAE 0.7657 0.5685 0.7515 0.1776 0.6073

250 2.2015 1.1459 2.0822 1.0438 2.1094
RMSE 0.9836 1.0622 1.4900 0.2015 0.8625
MAE 0.6636 0.5343 0.7380 0.1601 0.5792

300 2.1377 1.1024 2.0664 1.0367 2.1476
RMSE 0.8095 0.8715 1.2447 0.1765 0.9314
MAE 0.5556 0.4898 0.6609 0.1396 0.5405

500 2.1173 1.0890 2.0853 1.0204 2.1238
RMSE 0.6539 0.9087 1.3261 0.1498 0.7142
MAE 0.4598 0.4376 0.5953 0.1187 0.4659
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Figure 8. Sample size Vs. bias of BEP distribution for simulated data.
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Table 2. Empirical means, the RMSEs and MAEs of the BEP distribution for a = 1, b = 1, λ = 1.5, θ = 4.0 and α = 1.

n Error â b̂ λ̂ θ̂ α̂

50 1.7133 1.7917 1.6824 4.5826 1.3868
RMSE 2.4905 3.7096 1.6637 2.5761 2.0975
MAE 1.0759 1.1633 0.4359 1.6108 0.7583

100 1.2442 1.3550 1.6227 4.2383 1.2677
RMSE 1.1434 1.6844 0.8743 1.3292 1.3755
MAE 0.5287 0.6527 0.2874 0.9564 0.5241

150 1.1010 1.3259 1.6049 4.2098 1.1604
RMSE 0.5581 1.2503 0.5243 1.0697 0.7693
MAE 0.3674 0.5651 0.2235 0.8018 0.3868

200 1.0953 1.3158 1.5966 4.0911 1.1140
RMSE 0.4641 1.2834 0.5793 0.8738 0.6331
MAE 0.3072 0.5185 0.1956 0.6665 0.3155

250 1.0651 1.1995 1.5669 4.0695 1.1154
RMSE 0.3573 0.8211 0.3302 0.7185 0.4902
MAE 0.2483 0.4015 0.1632 0.5584 0.2789

300 1.0415 1.1893 1.5651 4.0826 1.0965
RMSE 0.3134 0.7720 0.2970 0.6722 1.0965
MAE 0.2312 0.3697 0.1480 0.5277 0.2593

500 1.0203 1.1071 1.5390 4.0477 1.0560
RMSE 0.2127 0.4264 0.1805 0.4998 0.2966
MAE 0.1655 0.2627 0.1110 0.3964 0.1788
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7. Applications

In this Section we illustrate the usefulness of BEP distribution to model real data sets. We consider two different
data sets that have been studied by several authors.

7.1. The flood peaks of the Wheaton river

The data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada. The data consists of 72 exceedances for the years 1958-1984. These data have been analyzed by many
authors including Choulakian and Stephens [11], Nadarajah [21], Akinsete et al. [2], and Chhetri et al. [9, 10],
among others. A summary of the descriptive statistics of the data set is given in Table 3 below.

Table 3. Descriptive statistics for the Wheaton river data.

Min. Q1 Median Mean Q3 Max. skewness kurtosis
0.100 2.125 9.500 12.200 20.12 64.00 1.4725 5.8895

The fitting of BEP distribution is compared with the results from few commonly used distributions in the
literature generated from Pareto distribution. In particular we compare the BEP with exponential Pareto (EP),
the Kumaraswamy transmuted Pareto distribution (KwTP), the beta transmuted Pareto (BTP), Kumaraswamy
Pareto distribution (KwP), the beta Pareto (BP), the transmuted Pareto distribution (TP), the exponentiated Pareto
distribution (ExP) and the Pareto distribution (P). Using the method of maximum likelihood procedure we estimate
the distribution parameters. The goodness of fit measures, including the log-likelihood function (−ℓ), Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information Criterion
(CAIC), and Hannan-Quinn Information Criteria (HQIC) are obtained for the fitted models. As mentioned earlier,
all required computations are carried out using the AdequacyModel script of R-package by Marinho et al. [20].
Table 4 lists the values the MLEs and their standard errors. Note that except for EP and BEP distribution the
estimated value of the threshold parameter λ is the smallest value of the data which is 0.1 but for EP and BEP
there is no such constraint so the value of λ is estimated. It should also be noted that for transmuted distributions
(TP, BTP and KwTP) the transmuted parameter is denoted by θ. The values of −ℓ̂, AIC, CAIC, HQIC, BIC
are given in Table 5. Observe that the BEP distribution has the lowest value of −ℓ̂. Note that KWTP and BTP
and BEP has equal number of parameters and BEP yields significantly better model than BTP and KwTP whereas
EP has smaller value of AIC, BIC, CAIC and HQIC due to fewer number of parameters. One can employ the
likelihood ratio test statistic to check the superiority of the BEP distribution over the other distributions (as shown in
next example, Section 7.2). The plots comparing the BEP distribution with other distributions are given in Figure 9.
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The values in Table 5 and the plots in Figure 9 all indicate that the BEP distribution is superior and fits the data
more adequately than any other distributions listed in the Table 3.

Table 4. Estimated parameters and their standard errors for the Wheaton river data.

model a b θ α λ

BEP 0.5482 0.4984 1.2985 0.0332 0.7474
(0.2923) (0.7055) (0.4979) (0.1188) (2.6729)

EP – – 0.9011 0.1210 1.1169
– – (0.0856) (1.3308) (13.6455)

KwTP 4.2684 17.0139 -0.3687 0.2003 0.1
(1.5669) (12.6727) (0.5308) (0.0609) –

KwP 2.8553 85.8468 - 0.0528 0.1
(0.3371) (60.4213) - (0.0185) –

BTP 3.9118 17.3874 -0.8518 0.1159 0.1
(1.8159) (11.7365) (0.2588) (0.0509) –

BP 3.1473 85.7508 - 0.0088 0.1
(0.4993) (0.0001) - (0.0015) –

TP – – -0.952 0.3490 0.1
– – (0.089) (0.072) –

ExP 2.8797 – - 0.4241 0.1
(0.4911) – – (0.0463) –

P – – – 0.2438 0.1
– – – (0.0287) –

Table 5. The AIC, CAIC, BIC and HQIC statistics of the Wheaton river data

Model statistics
−ℓ(., x) AIC CAIC BIC HQIC

BEP 250.979 511.959 512.868 523.342 516.491
EP 251.499 508.998 509.350 515.827 511.716
KwTP 254.017 516.034 516.641 525.085 519.634
BTP 256.577 521.154 521.760 530.204 524.753
KwP 271.200 548.400 548.753 555.230 551.119
BP 283.700 573.400 573.753 580.230 576.119
TP 286.201 576.402 576.575 580.954 578.214
ExP 287.300 578.600 578.774 583.153 580.413
P 303.100 608.200 608.257 610.477 609.106
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Figure 9. Fitted pdf (left panel) and cdf (right panel) of Wheaton river data.

7.2. Failure times of communication receiver

The data set given by Lawless[17] represents the repair times (in hours) for 46 failures of an airborne
communications receiver. This data has been analyzed by several authors to fit different reliability models including
the transmuted size- biased exponential distribution by Ahmad and Ahmad [1]. We apply the BEP to fit this data and
compare the results with its sub-model Exponential Pareto (EP). We provide in Table 6 the estimated parameters
and their standard errors for BEP and EP models using the subject data.

Table 6. Estimated parameters and their standard errors for repair time data.

Distribution â b̂ λ̂ α̂ θ̂

BEP 7.0497 0.2545 0.6076 2.6895 0.5438
(7.4964) (0.4561) (15.3900) (37.2816) (0.2968)

EP – – 2.4017 0.7384 0.8891
– – (162.6504) (44.4653) (0.0954)

The values of the test statistics including the value ofAIC, Anderson-Darling (A∗) and Cramér-von Mises (W ∗),
Kolmogorov-Smirnov (KS) and p-value of KS test are provided in Table 7.

Table 7. The value of −ℓ, AIC, W ∗, A∗, D and p-value for repair time data

Distribution −ℓ AIC W ∗ A∗ D p-value
BEP 101.2551 212.5101 0.0232 0.1703 0.0763 0.9516
EP 104.4492 214.8984 0.0948 0.6467 0.1151 0.5756
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One can compute the maximized unrestricted and restricted log-likelihood functions to construct the likelihood
ratio (LR) test statistic for testing the models.

H0 : EP distribution is appropriate
Ha : BEP distribution is appropriate

The LR test statistic for testing H0 versus Ha is

ω = 2(ℓ(φ̂, x)− ℓ(φ̂0, x)),

where φ̂ and φ̂0 are the MLEs under Ha and H0, respectively. The statistic ω is asymptotically distributed as
χ2
k, where k is the length of the parameter vector of interest. Note that for the subject data ω = 6.3882 with

p-value = 0.0410. Therefore at 0.05 level of significance, the BEP is superior to EP for the subject data. Plots
comparing the exact BEP distribution with EP distribution for repair time data is given in Figure 10 and Figure 11.
It is evident that the BEP fits better than EP distribution for this data set. It should be noted that BEP also fits better
than any of the distributions discussed in Ahmad and Ahmad [1].

Time (hours)

D
e

n
si

ty

0 5 10 15 20 25

0
.0

0
.1

0
.2

0
.3

EP−Distribution

BEP−Distribution

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (in hours)

F
(x

)

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
(x

)

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
(x

)

Empirical−Distribution

EP−Distribution

BEP−Distribution

Figure 10. Fitted pdf (left panel) and cdf (right panel) of EP and BEP distribution for repair time data.

8. Concluding Remarks

In this article we have studied the beta exponential Pareto (BEP) distribution. This is a generalization of
the exponential Pareto distribution. Several lifetime distributions such as the beta Weibull, beta exponential,
beta Rayleigh, generalized Weibull, Weibull among others are embedded in the proposed distribution. Various
mathematical properties of the BEP distribution are presented. We also discuss the parameter estimation methods
and simulation issues. The importance and flexibility of the proposed model is illustrated by means of analyzing
two sets of real life data.

Stat., Optim. Inf. Comput. Vol. 7, June 2019



GOKARNA ARYAL 437

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

EP−Distribution

Observed

Ex
pe

cte
d

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

BEP−Distribution

Observed

Ex
pe

cte
d

Figure 11. Q-Q plot for EP and BEP distribution for repair time data.
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