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Abstract Retraction maps on Lie groups can be successfully used in mechanics and control theory to generate numerical
integration schemes, for ordinary differential equations with a variational origin, recovering at the same time a discrete
version of the energy and symplectic structure conservation properties, that are characteristic of smooth variational
mechanics. The present work fixes the specific tool that plays in gauge field theories the same role as retraction maps on
geometric mechanics. This tool, the covariant reduced projectable forward difference operator, can be used for a covariant
discretization of the main elements of a variational theory: the jet bundle, the Lagrangian density and the associated action
functional. Particular interest is dedicated to the trivialized formulation of a gauge field theory, and its reduction into a
theory where fields are given as principal connections and H-structures. Main characteristics of the presented method are its
covariance by gauge transformations and the commutation of the discretization and the reduction processes.
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1. Introduction

Classical numerical algorithms formulated on a linear space can, in many cases, be generalized to an arbitrary
manifold, if we fix some operator that allows to measure the difference between two elements of the manifold as
an object on a linear space. A second operator, inverse to this one, allows to determine the translation of a point by
one of these linear elements. With these simple tools, several classical numerical algorithms, originally developed
for affine spaces, can be extended to new numerical algorithms on manifolds [1]. The choice of the mechanism to
compute such linear differences determines which numerical properties of the classical algorithm are maintained
by the new one on manifolds, and is also relevant for the behaviour of the algorithm with respect to geometrical
transformations on the manifold.

A particular successful example of these ideas is obtained in geometric mechanics, where the linear difference
∆(g, h) ∈ LieG between two points on a Lie group G is determined by τ(∆(g, h)) = g−1h using τ : LieG→ G
the exponential, the Cayley transform, or any other choice of what is called a retraction map on a Lie group [26].
Using this idea, the linear differences are preserved, ∆(tg, th) = ∆(g, h), if one translates the pair of points on G
using left multiplication by any other group element t ∈ G. As a consequence, one can devise tools that associate
an element of a discrete variational theory to each element of a smooth variational theory, preserving at the same
time many of the symmetries available in the smooth formulation. One can then explore the consequences, in the
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discrete formulation, of the existence of symmetries in the original smooth objects. In particular, to obtain discrete
conservation laws and discrete reduction schemes, resembling those results existing in the smooth theory.

A natural step forward is to extend this kind of ideas to field theories. In Lagrangian gauge field theories, where
a subgroup H ⊆ G acts by symmetries of the Lagrangian, it is known that classical Euler-Lagrange equations
can be reduced as Euler-Poincaré equations, where dependent variables are a principal connection and an H-
structure [14]. Its applications appear in several areas. Classical gauge fields with symmetry breaking considered
in theoretical physics can be described as solutions of these equations. Many geometrical field theories consider
energy minimizing mappings or immersions from a manifold X into another one (for example harmonic maps). In
the case that the immersion is into a Lie group G or an homogeneous space G/H (which is a frequent situation),
fields can be seen as sections of a trivial principal bundle X ×G or an H-reduction of such a section, fitting
in our model. Euler-Poincaré equations in this situation are necessary conditions for a field to minimize an
action functional described by a first order Lagrangian. In natural sciences such minimization principles are also
common for the determination of an equilibrium state or dynamics of a certain continuous medium with or without
microstructure. These theories include molecular strands, liquid crystals, fluid flows, or magnetohydrodynamics
for example [22].

Discrete formulations of the notion of principal connection have already been explored in geometric mechanics
[24, 32]. There exist approaches to discrete reduced field theories in certain particular cases. The simplest case is
that of a field with values on a Lie group (that is, a field that is a section of a trivial principal bundle). Another
approach is to consider a discrete field theory as a discrete mechanical theory, where the configuration at a fixed
time is composed by many degrees of freedom, and to apply then the available results from discrete geometric
mechanics. There has been a certain amount of works exploring these situations [18, 23, 25, 39, 40]. Many of
these formulations are purely discrete versions of the smooth theory, and don’t explore the several alternative ways
that lead from a smooth field theory to a discrete one. This article takes the most general gauge field theory (not
necessarily on a trivial bundle) and explores a general covariant mechanism to discretise a variational principle
and its possible reduction by a symmetry group, extending to principal bundles ideas that have been originally
formulated for the reduction to discrete Euler-Poincaré equations in mechanics on a Lie group.

Our work starts in section 2 with a review of the notions of retraction maps and finite difference operators on
manifolds, the relation between them, and how translation-invariant retraction or finite difference maps can be
seen as reduced retraction maps. Section 3 reminds how reduced retraction maps on Lie groups render a covariant
discretization in variational theories of geometric mechanics. Section 4 explores smooth variational field theories
on principal G-bundles and its reduction when a subgroup H ⊆ G acts as symmetries of the Lagrangian density.
Section 5 describes how a forward difference operator on the principal bundle can be used to relate the main
objects of the smooth variational theory with its discrete analogues. Section 6 explores Ehresmann’s groupoid
associated to a principal bundle as the natural discrete counterpart of the bundle of principal connections. Section 7
explores the notion of covariant forward difference operator and how it is equivalent to a notion of reduced forward
difference operator. Section 8 introduces the discrete connection space, related with the smooth bundle of principal
connections through a corresponding reduced forward Jacobi operator (that can be generated by a reduced forward
difference operator).

To make the article self-contained we include (sections 2, 3 and partly 4) a description of the basic notions
and properties of difference operators and retractions, a description of the particular case of discretization of these
theories in mechanics, leading to discrete Euler-Poincaré equations, and the needed machinery for gauge field
theories and its reduction. Several useful objects in principal bundle theory, like Ehresmann’s gauge groupoid,
are also presented in the work. However we assume the reader has a good knowledge of differential calculus and
geometry on fibered manifolds, in particular knowledge of the usual notation in this area.

Our main results, besides presenting and relating all these areas, are described next:
We give a trivialization, in terms of principal connections, of the jet bundle and of its H-reduction (proposition

4.5 and corollary 4.1), introducing and describing the properties of forward difference operators on fibered
manifolds, and of its associated objects, the n-Jacobian map, which allows to discretize volume forms, and the
Forward Jacobi operator, which identifies the jet bundle with a multi-point manifold (Theorem 5.1) allowing to
discretize lagrangian densities (definition 5.12). We identify in which cases this discretization of the jet bundle is
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coherent with a limit process (counter-example 5.1 and theorem 5.2) and prove the covariance of the discretization
mechanism. The discretization mechanism is covariant, in the sense given by Proposition 5.3.

We introduce then the reduction process. We obtain in theorem 6.2 a description of the tangent space of
Ehresmann’s gauge groupoid bundle and its possible trivializations using Atiyah’s bundle (corollary 6.1), determine
a notion of parallelism and how it may be generated from a principal connections if a forward difference operator
is fixed (theorem 6.4). The particular case of forward difference operators that are covariant for the natural action
of the Lie group lead to the notion of reduced forward difference operators and its properties (proposition 7.2). We
prove the existence and describe the structure of a projectable, faithful, reduced forward difference operators on
a bundle, fixing a forward difference operator on the base manifold, a parallelism on the principal bundle, and a
retraction map on the gauge bundle (theorem 7.3).

Finally, we study the reduction of variational formulations of gauge field theories. We show that for the reduced
theory, a reduced forward difference operator leads to a discretization process, identifying the connection bundle
of the theory with a discrete version, and the H-reduced jet bundle with another discrete version, with the desired
behaviour in the limit case for multi-points coalescing to a diagonal point (theorem 8.3, theorem 8.4). This allows
to introduce a discretization of H-reduced lagrangian densities (definition 8.3). This object maintains all the
symmetries of the smooth object, if the RFD operator admits these symmetries, in such a way that both processes
of H-reduction and of discretization (in the smooth and in the discrete formulations) commute (in the sense of
Figure 2 and theorem 8.5).

The present work shows that a single object, the faithful, projectable, reduced forward difference operator,
represents a central element in the discretization of variational gauge field theories, leading to mechanisms that
relate reduced or un-reduced, smooth or discrete gauge fields, in a compatible way, and preserving the available
symmetries.

2. Retraction maps and Forward difference operators

An ordinary differential equation (ODE) on a Lie group G has the fundamental form ġ(t) = g(t) · ξ(t, g(t)), for
some mapping ξ : R×G→ LieG determining the ODE. In the case that this mapping has a constant value ξ ∈
LieG, the differential equation admits left translations as symmetries and the trajectory g(t) = g0 · exp((t− t0)ξ)
is a solution for initial conditions g(t0) = g0 ∈ G. This trajectory generated by the exponential map plays, on
a Lie group, the role played by line segments in linear spaces. In this sense, ODEs on Lie groups can be
numerically solved translating numerical schemes from the vector space LieG to the nonlinear space G by means
of the exponential map, as done in Crouch-Grossman, or Runge-Kutta-Munthe-Kaas methods [17, 26]. Several
optimization algorithms on manifolds rely also on some Lie group exponential map [2, 20]. Moreover, these ideas
can be easily generalized (and the numerical schemes improved) substituting the exponential map by the more
general notion of reduced retraction maps on Lie groups.

Definition 2.1
We call reduced retraction map on a Lie group G any injective local diffeomorphism τ : U0 → G defined on an
open neighborhood U0 ⊂ LieG of the null element 0 ∈ LieG, such that

τ(0) = e, d0τ = Id ∈ End(LieG)

where e ∈ G is the unit element of G and in d0τ : T0LieG→ TeG we use the identifications TeG ≃ LieG,
LieG ≃ T0LieG.

From this definition, a retraction map is a diffeomorphism from U0 to some open neighbourhood Ue = τ(U0) ⊂
G of the of the unit element e ∈ G. In this sense, they have been also called generalized coordinates. They have
proved to be a key element, to derive numerical methods associated to Euler-Lagrange equations of a discrete
variational problem, arising in geometric mechanics, with Noether current conservation properties in the presence
of symmetries [5, 8, 27, 28, 29, 35]. This approach has also been employed for the dynamics of continuous media
[18]. This reduced retraction map notion on a Lie group is simply the reduced version in some quotient space of a
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more general notion of retraction map on any manifold. The origin of such retraction maps in numerical schemes
on any manifold can be tracked back to [38], where it is used to generalize Newton’s method for the problem of
finding the zeros on a manifold for some Rn-valued function. It is used in several other algorithms for optimization
in manifolds [1].

Definition 2.2 (Adapted from [1, 2], originated in [38])
Consider a manifold X , its tangent bundle πTX : TX → X , and the zero section z : x ∈ X 7→ 0x ∈ TX .
A smooth retraction on a manifold X is a smooth mapping R : Uz → X defined on an open subset Uz ⊂ TX
containing the image of the zero section, such that for each restriction Rx : Ux → X to the x-fiber Ux = Uz ∩ TxX
there holds:

1. Rx(0x) = x
2. d0xRx : T0x(TxX) → TxX is the identity map

(using the natural identification TvV ≃ V for the vector v = 0x in the vector space V = TxX)

We say the retraction is covariant for some smooth automorphism φ : X → X , if Uz ⊂ TX is invariant by the
induced differential mapping dφ : TX → TX and R ◦ dφ = φ ◦R.

In Newton’s method [2], a retraction is usually chosen as a way to take small steps in the direction of a tangent
vector of a manifold, allowing to generate a new point x̄ = Rx(δx) ∈ X from a (small enough) tangent vector
δx ∈ Ux ⊂ TxX . A usual choice of retraction is the exponential on a Riemannian manifold, which solves the
geodesic equation using δ ∈ TX as initial conditions. Alternative choices may be used to avoid the computational
cost of determining the exact exponential in several situations.

For the case of a Lie group X = G, this definition of retraction map R : Uz → G (where Uz ⊂ TG) does not
coincide with the previously given (reduced) notion as a mapping τ : U0 → G (where U0 ⊂ LieG).

Proposition 2.1
For any reduced retraction map τ : U0 → G on a Lie group G, the locally defined mappings Rg = lg ◦ τ ◦
(delg)

−1 : TgG→ G generate a retraction map R : Uz → G on the manifold G that is covariant for left translations
lh : g ∈ G 7→ hg ∈ G. Conversely, any retraction mapR on the manifoldG covariant for left translations determines
a reduced retraction map τ that generates R (in the mentioned sense), on some open neighborhood Uz ⊂ TG of
the zero section.

Proof
Consider the natural isomorphism G× LieG ≃ TG that identifies (h, ξ) with (delh)(ξ), for any ξ ∈ TeG = LieG
(using the left translation morphism lh : g ∈ G 7→ hg ∈ G). With this isomorphism, the automorphism dlg on
TG gets identified with lg × IdLieG on G× LieG, the projector πTG : TG→ G gets identified with the natural
projector πG : G× LieG→ G, and the null section z : G→ TG with the section (Id, 0) : G→ G× LieG.

Any reduced retraction map τ : U0 → G naturally extends to (g, ξ) ∈ G× U0 7→ g · τ(ξ) ∈ G. Using G×
LieG ≃ TG, we have a neighborhood Uz ⊂ TG (identified with G× U0) and a smooth mapping R : Uz → G
defined on fibers Ug = Uz ∩ TgG = (delg)(U0) ⊂ TgG, for which Rg = lg ◦ τ ◦ (delg)−1 holds. Using τ(0) = e,
d0τ = IdLieG there easily follows Rg(0g) = g, d0gRg = IdTgG, hence R is a retraction map. Moreover, this
retraction map has the particularity that Rhg ◦ dglh = lh ◦Rg on Ug (therefore the retraction is covariant with
respect to the left action morphisms of the group G on itself).

Conversely, using TG ≃ G× LieG, any retraction map R : Uz → G on the manifold G (where Uz ⊂ TG)
can be seen as a particular mapping R̄ : Ūz → G with Ūz ⊂ G× LieG and R̄(g, ξ) ∈ G. In the case that the
retraction map is covariant with respect to left translations, the domain Ūz is invariant by left-translations on
the component G, and has the form Ūz = G× U0 where U0 ⊂ LieG is an open neighbourhood of 0 ∈ LieG.
Moreover, we get R̄(hg, ξ) = hR̄(g, ξ) and this covariant retraction map takes the form R̄(g, ξ) = gτ(ξ) for some
mapping τ : U0 → G for which τ(0) = e, d0τ = Id (because d0gRg = Id: TgG→ TgG). This implies that τ is
a local diffeomorphism at 0, and there exists a possibly smaller open neighbourhood of 0 ∈ LieG where τ is a
reduced retraction map. There easily follows that this reduced retraction map generates R.
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A smooth retraction on any manifold X also determines a smooth morphism τR = (πTX , R) : Uz → X ×X ,
defined on the open neighborhood Uz ⊂ TX of the zero section z : X → TX . The null section z ⊂ TX is
transformed onto the diagonal d1(X) ⊂ X ×X , and any fiber Ux = Uz ∩ TxX is transformed into an open
neighborhood {x} × Vx ⊂ {x} ×X of the diagonal point (x, x). As the diagonal and the fiber {x} ×X are
transversal submanifolds, we conclude that τR is a local diffeomorphism. Taking a restriction to a smaller
neighborhood of the zero section, if needed, we may admit that τR is an injective local diffeomorphism, from
Uz onto an open neighbourhood Ud = τR(Uz) ⊂ X ×X of the diagonal section d1 : x ∈ X 7→ (x, x) ∈ X ×X .
Moreover, τR is a locally defined fibered mapping covering IdX , when one considers the bundle πTX : TX → X
and the bundle π0 : (x0, x1) ∈ X ×X 7→ x0 ∈ X (that we call the pair bundle associated toX). We have π0 ◦ τR =
πTX . Taking the locally defined inverse bundle morphism τ−1

R : Ud = τR(Uz) → TX , we obtain a particular
instance of a finite difference map ∆: X ×X → TX , as defined below.

Definition 2.3 (Adapted from [31])
A finite difference map ∆ is an injective local diffeomorphism ∆: Ud → TX defined on an open neighbourhood
Ud ⊂ X ×X of the diagonal section d1 : x ∈ X 7→ (x, x) ∈ X ×X of the pair bundle, which satisfies the
following:

∆(x, x) = 0x ∈ TxX, ∀x ∈ X

We say a difference map ∆ is covariant with respect to some automorphism φ : X → X , if Ud is invariant by φ× φ
and ∆ ◦ (φ× φ) = dφ ◦∆.

Again, the condition that ∆ is an injective local diffeomorphism indicates that it is a diffeomorphism onto some
open neighborhood Uz ⊂ TX of the zero section.

Observe that ∆(x0, x1) ∈ TX is a tangent vector at a point κ(x0, x1) ∈ X , for some smooth mapping κ =
πTX ◦∆: X ×X → X . We shall be interested in finite difference maps, such that πTX ◦∆ = π0 : (x0, x1) ∈
X ×X 7→ x0 ∈ X:

Definition 2.4
We call forward difference (FD) operator on a manifold X , any finite difference map ∆: Ud → TX (in the sense
of Definition 2.3) covering IdX for the first projector π0 : (x0, x1) ∈ X ×X 7→ x0 ∈ X and the natural projector
πTX : TX → X (that is, πTX ◦∆ = π0).

In a similar way, a backward difference operator is determined demanding that πTX ◦∆ coincides with
the projector π1 : (x0, x1) 7→ x1 on its domain of definition. Composition with (x0, x1) 7→ (x1, x0) transforms
backward into forward difference operators. More general finite difference maps and its properties are studied
in [31, 35].

For any retraction R, computing a local inverse of τR = (πTX , R) leads to a FD operator ∆. If the retraction is
covariant for φ, also ∆ will be covariant for φ. As a consequence, on Lie groups, there is a relation leading from
a reduced retraction map τ : U0 ⊂ LieG→ G to a covariant retraction R : Uz ⊂ TG→ G and then to a covariant
FD operator ∆: Ud ⊂ G×G→ TG (inverse of τR = (πTG, R)). The particular conditions imposed on a retraction
map indicate that the differential of τR on the πTX -vertical vectors, at the zero elements 0x ∈ TxX should be the
identity mapping, if we use the appropriate identifications. The same can be said about the differential of τ−1

R on the
π0-vertical vectors, at the diagonal elements (x, x) ∈ X ×X , with the appropriate identifications that we describe
next.

For any local X-bundle morphism D : X ×X → TX , between the bundles π0 : X ×X → X and πTX : TX →
X , defined on a neighborhood of the diagonal, demanding thatD is a local diffeomorphism at (x0, x1) is equivalent
to demanding that the vertical component (for the π0-fibration) of its differential d(x0,x1)D : V π0

(x0,x1)
(X ×X) →

V πTXD(x0,x1)
(TX) is a linear isomorphism.

We may observe that there exist natural identifications V π0

(x0,x1)
(X ×X) ≃ Tx1X and V πTXδx

(TX) ≃ TxX . For
any X-bundle morphism D : X ×X → TX , the vertical component of the differential d(x0,x1)D can be then
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represented using a linear morphism V D(x0,x1) : Tx1X → Tx0X , that makes the following diagram commutative:

V π0

(x0,x1)
(X ×X)

d(x0,x1)D

��

∼
// Tx1X

V D(x0,x1)

��

V πTXD(x0,x1)
(TX)

∼ // Tx0X

The particular hypothesis d0τ = Id (or d0xRx = Id) imposed to retractions and reduced retraction maps lead to
particular FD operators, that we characterize next:

Definition 2.5
A FD operator ∆ is called faithful, if at any point of the diagonal, the vertical component of its differential
V∆(x,x) : TxX → TxX is the identity map IdTxX (using the natural identifications V π0

(x0,x1)
(X ×X) ≃ Tx1

X and
V πTXδx

TX ≃ TxX).

Example 2.1

• For an affine space X modelled over a vector space X⃗ , a faithful FD operator can be defined by ∆(x0, x1) =
−−→x0x1 ∈ X⃗ ≃ Tx0X , where we use the classical notation x0 +

−−→x0x1 = x1 and the natural identification
TxX ≃ X⃗ , at any point x ∈ X .
In particular, (t0, t1) ∈ R×R 7→ (t1 − t0)(∂/∂t)t0 ∈ TR is a faithful FD operator.

• For any manifold, using any X-bundle injective local diffeomorphism D : Ud → TX (Ud ⊂ X ×X open
subset containing the diagonal), the local diffeomorphism condition ensures that V D(x,x) : TxX → TxX is
invertible and one may derive a FD operator ∆ defined on Ud as ∆(x0, x1) = D(x0, x1)−D(x0, x0), and a
faithful FD operator just by taking ∆(x0, x1) = (V D(x0,x0))

−1(D(x0, x1)−D(x0, x0)).
• On a Lie group G, considering the exponential map exp: TeG→ G, we may determine a smooth

map τexp : TG→ G×G using τexp(δg) = (g, g · exp((delg)−1(δg))), for each δg ∈ TgG. This mapping
transforms the null vector δg = 0g ∈ TgG into the diagonal point (g, g) ∈ G×G. Moreover, we observe
that (delg)

−1(0g) = 0e, (delg)
−1 : TgG→ TeG is linear, therefore its differential TgG ≃ T0g (TgG) →

T0e(TeG) ≃ TeG coincides with (delg)
−1 itself, and d0e exp: TeG ≃ T0(TeG) → TeG is the identity map.

Hence, d0gτexp, restricted to vectors δ0 ∈ V πTG0g
(TG) (that is, tangent vectors at 0g of the fiber π−1

TG(g) =

TgG ⊂ TG) determines the identity map Ag ∈ TgG 7→ delg ◦ d0e exp ◦(delg)−1(Ag) = Ag ∈ TgG. We
conclude that d0gτexp : TgG→ V π0

(g,g)(G×G) = TgG is the identity map and consequently any local inverse
∆: G×G→ TG of τexp determines a faithful FD operator on the Lie group G.

• On a Riemannian manifold X , we may determine an open subset U ⊂ TX containing the null vectors
0x ∈ TxX , where the Riemannian exponential is well defined, exp: U0 → X . This Riemannian exponential
has the property that for each Ax ∈ TxX and for values ϵ ≥ 0 such that ϵAx ∈ U0, the trajectory
exp(ϵAx) is a minimal geodesic on X , with tangent vector Ax for ϵ = 0. The Riemannian exponential
is then a local diffeomorphism defined on a neighborhood of the null section, such that exp 0x = x ∈ X
for the null element 0x ∈ TxX , and whose differential at 0x is IdTxX : TxX → TxX . Consequently,
τRie : δx ∈ TxX 7→ (x, exp δx) ∈ X ×X is a local diffeomorphism, transforming the null section into the
diagonal on X ×X . A faithful FD operator is obtained using any local inverse of the mapping τRie.

In the presence of faithful FD operators we may generate curve segments with analogous properties to line
segments in affine geometry, as shown below:

Theorem 2.2
Consider any faithful FD operator ∆: Ud → TX , where ∆(Ud) ⊂ TX is a star-convex neighbourhood of the zero
section (that is, an open subset containing ϵδx for each δx ∈ ∆(Ud) and each ϵ ∈ [0, 1]).
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There exists a unique smooth mapping α : (x0, x1, ϵ) ∈ Ud × [0, 1] 7→ αx0x1(ϵ) ∈ X satisfying

∆(x0, αx0x1(ϵ)) = ϵ∆(x0, x1) (1)

The mapping α determines curve segments {αx0x1(ϵ)}0≤ϵ≤1 ⊂ X joining x0 at ϵ = 0 to x1 at ϵ = 1, with tangent
vector ∆(x0, x1) ∈ Tx0X at ϵ = 0.

Moreover, for each point xc = αx0x1
(c) there holds αx0xc(ϵ) = αx0x1

(cϵ).

Proof
When we apply the inverse mapping ∆−1 to (1) we get:

(x0, αx0x1(ϵ)) = ∆−1(ϵ∆(x0, x1))

Consider the natural projectors π0 : (x0, x1) 7→ x0, π1 : (x0, x1) 7→ x1 and πTX : TX → X . We know
πTX(ϵ∆(x0, x1)) = πTX(∆(x0, x1)) = x0, therefore the smooth mapping α defined as αx0x1(ϵ) = π1 ◦
∆−1(ϵ∆(x0, x1)) is smooth and satisfies (1).

From the definition and ∆(x0, x0) = 0 it is clear that αx0x1(0) = x0, αx0x1(1) = x1 and taking derivatives in (1)
at ϵ = 0 we have

(d(x0,x0)∆)(0, (d/dϵ)0αx0x1(ϵ)) = (d/dϵ)0(ϵ∆(x0, x1))) = ∆(x0, x1)

which, taking into account (d(x0,x0)∆) = Id for a faithful FD operator, shows that the tangent vector at ϵ = 0 of
the trajectory αx0x1 is ∆(x0, x1).

The trajectory αx0x1 is characterized by (1). Hence for xc = αx0x1(c) there holds:

∆(x0, αx0xc(ϵ)) = ϵ∆(x0, xc) = ϵ∆(x0, αx0x1(c)) = ϵc∆(x0, x1) = ∆(x0, αx0x1(ϵc))

leading then to αx0xc(ϵ) = αx0x1(ϵc).

3. Reduction and discretization of variational principles on Lie groups

We present here the discretization and numerical integration mechanisms introduced for Euler-Poincaré equations
in mechanics [5, 8, 27, 28, 29, 39]. For a given Lie group G, assume we have a Lagrangian density L(t, g, ġ)dt
determined by a smooth Lagrangian function L : Rt × TG→ R, and the corresponding action functionals
LK(g(t)) =

∫
K
L(t, g(t), ġ(t))dt defined for compact intervals K ⊂ Rt (so that, integration makes sense) and

smooth trajectories g : t ∈ R 7→ g(t) ∈ G. Critical trajectories for these action functionals and for infinitesimal
variations, whose support is in the interior of K, are characterized by Euler-Lagrange equations of the Lagrangian
density:

0 =
(
delg(t)

)∗ (∂L
∂g

(t, g(t), ġ(t))− d

dt

(
∂L
∂ġ

(t, g(t), ġ(t))

))
∈ Map(R, (LieG)∗)

where lg : G→ G is the left-product by an element g ∈ G and the usual Euler-Lagrange equations have been
translated to (LieG)∗ = (TeG)

∗ using (delg)
∗ : θ ∈ (TgG)

∗ 7→ θ ◦ delg ∈ (LieG)∗, in order to have an expression
on a common space (LieG)∗, instead of having it on different spaces (Tg(t)G)

∗, for all t ∈ R. In the case that
the Lagrangian is invariant for the action on the left of the Lie group on itself (that is, L(t, g, ġ) = L(t, hg, hġ))
this density can be written as ℓ(t, g−1ġ)dt, where the smooth function ℓ(t, ξ) : Rt × LieG→ R is the reduced
Lagrangian. Euler-Lagrange equations take the Euler-Poincaré form [34]:

0 = ad∗ξ(t)
∂ℓ

∂ξ
(t, ξ(t))− d

dt

(
∂ℓ

∂ξ
(t, ξ(t))

)
∈ Map(R, (LieG)∗), ξ(t) = g(t)−1ġ(t) ∈ Map(R,LieG)

where ad∗ξ is the linear endomorphism on (LieG)∗ induced by the adjoint representation of Lie algebras
ad: LieG→ End(LieG). Determining trajectories g(t) that satisfy Euler-Lagrange equations is reduced to
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finding solutions ξ(t) : R → LieG of Euler-Poincaré equations and then solving the reconstruction equation
ξ(t) = (g(t))−1ġ(t).

Fixing a (reduced/covariant) retraction map on G and a discrete sequence of time events allows to discretize
this situation. If we fix an unbounded increasing sequence of time points (tk)k∈Z (hence with a finite number
of terms on any compact interval), with time-steps hk = tk+1 − tk > 0 (usually constant time-steps), we may
seek for a discrete sequence of configurations (gk)k∈Z, that serve as good approximation of the values g(tk) of a
smooth trajectory on our time grid. We also need values that serve as good approximations of ξ(tk), for the curve
ξ(t) = g(t)−1ġ(t). This is achieved using the following result:

Lemma 3.1
Consider a smooth trajectory g(t) ∈ Map(R, G) on a Lie group G and the induced trajectory ξ(t) = g(t)−1ġ(t) ∈
Map(R,LieG) on its Lie algebra. Consider any reduced retraction map τ : U0 ⊂ LieG→ G and the Lie algebra
elements:

ξ0(ϵ) =
τ−1(g−1

0 g1(ϵ))

t1(ϵ)− t0
∈ LieG

associated to points (t0, g0 = g(t0)), (t1(ϵ) = t0 + ϵ, g1(ϵ) = g(t0 + ϵ)) on the trajectory graphic {(t, g(t))}t∈R, for
two temporal events t0, and t1(ϵ) with ϵ > 0. There exists ϵmax such that, for 0 < ϵ < ϵmax, the elements ξ0(ϵ) are
well defined and there holds:

lim
ϵ→0+

ξ0(ϵ) = ξ(t0)

Proof
As limϵ→0 g(t0 + ϵ) = g(t0) = g0, we have limϵ→0 g

−1
0 g1(ϵ) = e and as we know that τ(U0) is an open

neighbourhood of e ∈ G, we may conclude the existence of ϵmax such that g−1
0 g1(ϵ) ∈ τ(U0), when 0 < ϵ < ϵmax.

Applying τ−1 to this element and dividing by t1(ϵ)− t0, which is possible if t1(ϵ) ̸= t0 (that is, for ϵ ̸= 0).
As g1(0) = g0 and τ−1(e) = 0 we get:

ξ0(ϵ) =
τ−1(g−1

0 g1(ϵ))

t1(ϵ)− t0
=
τ−1(g−1

0 g1(ϵ))− τ−1(g−1
0 g1(0))

ϵ

Therefore, taking the limit as ϵ→ 0 leads to the definition of tangent vector at ϵ = 0, for a trajectory τ−1(g−1
0 g1(ϵ))

on the vector space LieG. Applying the chain rule and knowing (d/dϵ)0g1(ϵ) = (d/dϵ)0g(t0 + ϵ) = ġ(t0), we get

lim
ϵ→0

ξ0(ϵ) = (d0τ)
−1(g−1

0 ġ(t0))

which, using g0 = g(t0), d0τ = Id and the definition ξ(t) = g(t)−1ġ(t), proves our statement.

As a consequence, if g0, g1 are considered to be good approximations of g(t0), g(t1), for two time events with
small time-step t1 − t0 = h0 > 0, the element ξ0 =

τ−1(g−1
0 g1)

h0
should be considered a good approximation to ξ(t0).

The application of the rectangle quadrature rule to approximate the integral
∫ t1
t0

L(t, g(t), ġ(t))dt, for the function
L(t, g, ġ) = ℓ(t, g−1ġ), on a compact interval I0 = [t0, t1], leads to the approximate value∫ t1

t0

L(t, g(t), ġ(t))dt ≃ L(t0, g(t0), ġ(t0))(t1 − t0) = ℓ(t0, g(t0)
−1ġ(t0))h0 ≃ ℓ(t0, ξ0)h0

Definition 3.1
We call discrete Lagrangian induced by the reduced Lagrangian density ℓ(t, ξ)dt and the reduced retraction map
τ : U0 → G, the following function defined on an open subset of (R×G)× (R×G):

Ld(t0, g0, t1, g1) = ℓ(t0, ξ0)h0, ξ0 =
τ−1(g−1

0 g1)

t1 − t0
, h0 = t1 − t0
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We know that τ−1 is defined on some neighborhood of e ∈ G and the quotient is possible when t1 ̸= t0. Therefore
Ld is well defined and smooth on an open subset R̃×G ⊂ (R×G)× (R×G) not including diagonal points, but
adherent to these diagonal points.

Recall that for small time-step tk+1 − tk > 0, the value Ld(tk, gk, tk+1, gk+1) with gk = g(tk), gk+1 = g(tk+1)

can be considered as a good approximation for
∫ tk+1

tk
ℓ(t, g(t)−1ġ(t))dt. Then, the smooth action functional

LK(g(t)) =
∫
K
L(t, g(t), ġ(t))dt associated to the Lagrangian density ℓ(t, g−1ġ)dt on a compact set K ⊂ R can

be approximated as:

LK(g(t)) ≃ LK(gi)i∈Z =
∑

[tk,tk+1]⊂K

ℓ(tk, ξk)hk, ξk =
τ−1(g−1

k gk+1)

hk
, hk = tk+1 − tk

Here, the definition of ξk leads to
gk+1 = gkτ(hkξk) (2)

Let us now determine critical points (gi)i∈Z ∈ Map(Z, G) of this discrete action functional. For any fixed k ∈ Z,
when we consider a compact interval K large enough so that tk−1, tk, tk+1 ∈ K, demanding that a sequence of
configurations (gi)i∈Z is critical for the discrete action functional LK leads to the condition that, for each ξ ∈ LieG,
the action functional restricted to the curve gk(ϵ) = gk exp ϵξ, gi = constant (∀i ̸= k) is a function LK(ϵ) with a
stationary value at ϵ = 0. As we are varying a single component gk, the summation defining LK(ϵ) has many
constant terms, being the only non-constant ones precisely those that explicitly depend on gk. This dependence
may arise only in the terms ξk−1, ξk ∈ LieG. Stationarity at ϵ = 0 implies then:

0 =

(
d

dϵ

)
ϵ=0

(ℓ(tk−1, ξk−1(ϵ))hk−1 + ℓ(tk, ξk(ϵ))hk)

where τ(hkξk(ϵ)) = (gk exp ϵξ)
−1gk+1 = (exp−ϵξ)g−1

k gk+1 = rg−1
k gk+1

exp(−ϵξ),

τ(hk−1ξk−1(ϵ)) = g−1
k−1gk exp ϵξ = rg−1

k−1gk
exp ϵAdg−1

k−1gk
ξ

Here, rg : G→ G stands for the right product with an element g ∈ G and Ad: G→ Aut(LieG) stands for the
adjoint representation of the Lie group on its Lie algebra (hence expAdh ξ = r−1

h ◦ lh(exp ξ)).
The differential of τ at any given point ξ ∈ LieG can be described as dξτ : TξLieG→ Tτ(ξ)G or, using

natural identifications TξLieG ≃ LieG and (derg)
−1 : TgG ≃ TeG = LieG, can be described as an endomorphism

(dτ)ξ = (derτ(ξ))
−1 ◦ dξτ ∈ End(LieG) (the trivialized differential). In this situation, deriving the relations

above:

hk

(
d

dϵ

)
ϵ=0

ξk(ϵ) = −(dτ)−1
hkξk

ξ,

hk−1

(
d

dϵ

)
ϵ=0

ξk−1(ϵ) = (dτ)−1
hk−1ξk−1

Adτ(hk−1ξk−1) ξ

therefore, taking the derivative at ϵ = 0 we get, as a necessary condition for criticality, the discrete Euler-Poincaré
equations [33]:

0 = (
∂ℓ

∂ξ
(tk−1, ξk−1)) ◦ (dτ)−1

hk−1ξk−1
◦Adτ(hk−1ξk−1) −(

∂ℓ

∂ξ
(tk, ξk)) ◦ (dτ)−1

hkξk

where ∂ℓ
∂ξ ∈ (LieG)∗ stands for the LieG-component of the differential of the function ℓ : R× LieG→ R, at any

point (t, ξ), and (dτ)ξ is the endomorphism on LieG determined by the differential of τ , at any point ξ ∈ LieG,
using the right-trivialization to identify TgG with LieG, as indicated above.

Equivalently, we may state:
µk = Ad∗τ(hk−1ξk−1)

µk−1 (3)
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where Ad∗g ∈ Aut((LieG)∗) is the linear automorphism on (LieG)∗ induced by the adjoint representation
Ad: G→ Aut(LieG) of G on its Lie algebra, and where we define

µk = (
∂ℓ

∂ξ
(tk, ξk)) ◦ (dτ)−1

hkξk
= µ(k, ξk) (4)

In this regard the mapping

Momτ,ℓ : (k, ξ) ∈ Z× LieG 7→ (k, µ(k, ξ)) ∈ Z× (LieG)∗, µ(k, ξ) = (
∂ℓ

∂ξ
(tk, ξ)) ◦ (dτ)−1

hkξ

plays a central role. It shall be called the momentum map associated to the reduced Lagrangian ℓ and retraction
map τ . Values µk = µ(k, ξk) are called LieG-valued momenta at time tk.

Equations (2), (4) (definition of discrete trivialized velocity ξk and momentum µk, respectively), together with
equation (3) (condition of criticality for the discrete action functional) represent the three steps that allow a discrete
integration of Euler-Poincaré equations, using an iterative scheme. The hard part of the integration scheme is
reduced to the determination of a right-inverse momentum map

Mom−1
τ,ℓ : (k, θ) ∈ Z× (LieG)∗ 7→ (k, ξ(k, θ)) ∈ Z× LieG

characterized by Momτ,ℓ ◦Mom−1
τ,ℓ = Id, that is, µ(k, ξ(k, θ)) = θ, ∀k ∈ Z, ∀θ ∈ (LieG)∗.

Integrating discrete Euler-Poincaré equations relies in:

• From µi−1 and using Mom−1
τ,ℓ(k, θ) = (k, ξ(k, θ)) one may obtain ξi−1 = ξ(i− 1, µi−1), for which (4)

holds (at the k = i− 1 value). This inverse could be replaced by some algorithm that determines numerical
solutions of the equation Momτ,ℓ(i− 1, ξi−1) = (i− 1, µi−1).

• From ξi−1, µi−1 and using τ one may obtain µi, for which (3) holds (at the k = i value).

Iterative application of the first two steps allows to recover (µk, ξk)k∈N from µ0.

• From (gi−1, ξi−1), and using τ one may obtain gi for which (2) holds (at the k = i− 1 value).

Finally application of the last step allows to recover (gk, µk, ξk)k∈N from (g0, g1), from (g0, ξ0) or from (g0, µ0)
(which are related one to another by (2) and by (4) at k = 0). Observe that in this iterative scheme the original
smooth reduced Lagrangian ℓ is used and the specific computation of τ−1 or its derivative is not needed, except
possibly for the computation of ξ0 if we give (g0, g1) as initial data.

The reduction procedure we have presented, translating the determination of a trajectory g(t) on the Lie group
into a new problem of determining a trajectory ξ(t) on the Lie algebra is not specific of geometric mechanics. It
also appears in the dynamics of continuous media and in field theories. For field theories on a principal G-bundle
that admit the structure group G as symmetries, the corresponding variational formalism leads to Euler-Poincaré
equations, as described in [14, 15]. In the case of dynamics of continuous media, the corresponding field theories
have been discretized [18, 25], using a very large group G, where each single element contains all configurations
of several points in the media, choosing then a particular retraction map on this large group, and representing the
discretized evolution of the media as a sequence (gk)k∈Z for a discrete sequence of time events (tk)k∈Z. In other
situations, Euler-Poincaré equations in field theories have been discretized [13, 19, 39], using fields on Z2 with
values on a simple Lie group, that is, considering fields as sections of the trivial bundle Z2 ×G→ Z2. In the
same particular case, [39] explored the reduction process using the notion of discrete connection in this particular
situation.

4. Reduction of a Lagrangian density in field theories

Before discretizing and reducing by some group of symmetries the main elements of variational field theories, we
present in a suitable form the Ehresmann theory of jets and connections on fibered manifolds.

Stat., Optim. Inf. Comput. Vol. 6, March 2018



52 REDUCTION OF FORWARD DIFFERENCE OPERATORS IN PRINCIPAL G-BUNDLES

4.1. The connection and jet bundles

A field theory deals with local sections of a bundle π : Y → X . Such sections are also called (local) fields. For any
bundle π : Y → X the linear morphism dπ : TY → π∗TX is surjective and determines an exact sequence of vector
bundles over Y :

0 → V Y ↪→ TY → π∗TX → 0 (5)

Definition 4.1
Splittings of the exact sequence (5) are called connections on the bundle π : Y → X .

Any splitting can be determined as a linear immersion π∗TX → TY covering IdTX . It is equivalent to give
the immersion or to give its image (we know that the morphism covers IdTX ), a vector sub-bundle Hor ⊂ TY
transversal to the projection dπ, that is, such that the restricted projector dπ|Hor : Hor → π∗TX is an isomorphism.
Elements in Hor are called horizontal tangent vectors on Y with respect to the connection.

Observe that a linear mapping Jy : TxX → TyY (with x = π(y)) covers the identity on TxX if and only if
dyπ ◦ Jy = Idx : TxX → TxX . Recall that linear morphisms of vector bundles fromE → X to F → X can be seen
as sections of the tensor product bundle F ⊗ E∗ → X , and the composition g ◦ f ∈ Γ(V ⊗ E∗) of f ∈ Γ(F ⊗ E∗)
with g ∈ Γ(V ⊗ F ∗) gets identified with cF (g ⊗ f), where the linear mapping cF : V ⊗ F ∗ ⊗ F ⊗ E∗ → V ⊗ E∗

stands for the contraction on the F ∗, F -components.

Proposition 4.1
Consider the vector bundle morphism cπ : Jy ∈ TY ⊗ π∗T ∗X 7→ cTY (dyπ ⊗ Jy) ∈ π∗(TX ⊗ T ∗X). There is a
one-to-one correspondence between connections (splittings of the exact sequence (5)) and global sections of the
bundle TY ⊗ π∗T ∗X for which cπ(Jy) = Idπ(y) ∈ (π∗TX ⊗ π∗T ∗X)y holds.

As cπ is a morphism of vector bundles and IdTX : Y → π∗TX ⊗ π∗T ∗X is a global section, the equation
cπ(Jy) = Idπ(y) determines an affine sub-bundle JY ⊆ TY ⊗ π∗T ∗X , modelled over the vector sub-bundle
ker cπ = V Y ⊗ π∗T ∗X ⊆ TY ⊗ π∗T ∗X .

Definition 4.2
We call bundle of connections associated to Y → X and denote it by πJ : JY → Y , the sub-bundle of elements
Jy ∈ TyY ⊗ T ∗

π(y)X for which cπ(Jy) = Idπ(y) holds.
We call bundle of first-jets of sections associated to Y → X (or simply jet-bundle associated to Y ) the bundle

jπ : JY → X (where jπ = π ◦ πJ ).

As a manifold, the bundle of jets and the bundle of connections coincide, but the fibration is considered on
different base manifolds. Global sections J ∈ Γ(Y, JY ) of the bundle of connections can be seen as connections
on the bundle Y → X , that is, as splittings of the exact sequence (5). Local sections of the bundle of connections
shall be called local connections on the bundle Y → X .

Each local section y : X → Y determines at each point on its domain a linear morphism dxy : TxX →
Ty(x)Y (which we might represent by the Jacobian matrix associated to the mapping y). This allows to define a
local section jy : X → TY ⊗ π∗T ∗X of the vector bundle TY ⊗ π∗T ∗X . This section takes values on the affine
sub-bundle JY ⊆ TY ⊗ π∗T ∗X and jy ∈ Γ(jπ) is called the jet extension of y ∈ Γ(Y ).

A system of first order partial differential equations is simply a submanifold D ⊂ JY . Solutions of such a
system are local sections y ∈ Γ(Y ) whose jet extension jy ∈ Γ(jπ) take values on the submanifold D. A section
σ ∈ Γ(jπ) is a holonomic section of the jet bundle if it is a jet extension of some section y ∈ Γ(Y ), necessarily the
jet extension of the projected section y = πJ ◦ σ : X → Y . Holonomic sections σ are characterized by the condition
σ = j(πJ ◦ σ), which represent a system of first order partial differential equations for sections of jπ : JY → X
(the holonomy system of equations for sections on JY ). Seeking for a solution of a system of differential equations
D is equivalent to seeking local sections σ ∈ Γ(jπ) that are contained in D and are holonomic. Higher order partial
differential equations might be defined in a similar way [36], using submanifolds of J(J . . . (JY )).
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4.2. The bundle of principal connections

We shall be interested in the behaviour of first order partial differential equations in the presence of a group of
symmetries. By this we mean a representation of some Lie group G as automorphisms of the configuration bundle
π : Y → X of the field theory.

Definition 4.3
An action of a Lie group G on a bundle π : Y → X is a morphism of groups λ : g ∈ G 7→ λg ∈ Aut(Y ) from G to
the group of bundle automorphisms. We say the action is smooth if ac : (g, y) ∈ G× Y 7→ λg(y) ∈ Y is smooth (in
a similar way, we may talk of proper actions if ac is proper). Each λg : Y → Y projects into λXg : X → X , defining
thus an action on the base manifold X . We call fibered action any smooth action such that λXg = IdX (hence the
group morphism λ takes values on the subgroup AutX(Y ) of X-bundle automorphisms).

The most simple situation of a fibered group action appears when we have a smooth proper action of a Lie group
G on the bundle π : Y → X , by X-bundle morphisms and free and transitive on each fiber (so that X = Y/G).
This is the case of a principal G-bundle.

Definition 4.4
For any Lie group G we call principal G-bundle any fiber bundle π : P → X , together with a proper, smooth,
fibered action of G on P , that is free and transitive on the fibers of P .

The automorphism λg : Px → Px is called the left translation determined by g ∈ G on the fiber Px. Using the
notation λg(px) = gpx for left translations there holds:

π(gpx) = π(px) = x, g(hpx) = (gh)px, Gpx = Px, gpx = px ⇔ g = e

Remark 4.1
For historical reasons, and originating in Ehresmann [21], principal G-bundles are usually defined using a group
anti-homomorphism from G to AutX(P ), that is, using right actions instead of left actions. However, in geometric
mechanics the principal bundle R×G→ R is implicit in each step, and the reduction mechanism described in
section 3 is always performed for the left action of G on this bundle. To maintain the parallelism of reduced
variational field theories with reduced mechanical formalisms, we adopt the less common choice of left actions in
the definition of a principal bundle.

Apart from the group G, faithfully represented as the group of left-translations on any fiber, a second subgroup
of automorphisms is relevant in the theory of principal bundles: the subgroup of gauge transformations on a fiber.

Definition 4.5
We denote by GauPx and call Gauge group associated to a fiber Px of a principal G-bundle π : P → X , the group
of automorphisms of the fiber Px that commute with all left-translations λg.

The set of all gauge transformations GauP = ⊔x∈X GauPx has a natural smooth bundle structure
πGau : GauP → X , called gauge bundle, where each fiber GauPx is a Lie group, with composition of mappings
as product and the identity mapping Idx : Px → Px as unit element.

Definition 4.6
For a Lie group (G, ·), we call reverse Lie group structure the one induced in the manifold G by the reversed
product ◦, defined as g ◦ h = h · g. The manifold G with the reverse product ◦ is a different Lie group that shall be
denoted by Gr.

Principal G-bundles defined as a group anti-homomorphism ρ : G→ AutX(P ) (right action ρgh = ρh ◦ ρg) can
be seen as principal Gr-bundles (in this case ρ is a left-action, because ρh◦g = ρh ◦ ρg for the element h ◦ g = gh).

The following notation recovers Ehresmann’s original notation [21], with a reversed writing due to our choice
of left actions in the definition of a principal G-bundle:

Definition 4.7
Let π : P → X be a principal G-bundle. For any pair (px, p̄x) ∈ P×XP we denote by p̄xp

−1
x ∈ G the unique
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group element g ∈ G whose associated left-translation transforms px into p̄x (that is gpx = p̄x). The mapping
(px, p̄x) ∈ P×XP 7→ p̄xp

−1
x ∈ G shall be called the group difference map on the principal G-bundle P .

For any pair (px, p̄x) ∈ P×XP the mapping qx ∈ Px 7→ (qxp
−1
x )p̄x ∈ Px is a gauge transformation on the fiber

Px, the only one transforming px into p̄x. We denote this transformation as p−1
x p̄x ∈ GauPx. The mapping

(px, p̄x) ∈ P×XP 7→ p−1
x p̄x ∈ GauP shall be called the gauge difference map on the principal G-bundle P .

Ehresmann (with a reversed convention in [21]) characterized as P−1
x Px the group G of left translations and

PxP
−1
x the gauge group GauPx on any fiber of the principal G-bundle. On the Lie group (GauPx, ◦), we may

denote the reverse product by · or simply by juxtaposition of elements, therefore for φx, ϕx ∈ GauPx we denote
by ϕxφx = ϕx · φx = φx ◦ ϕx ∈ GauPx the automorphism px ∈ Px 7→ φx(ϕx(px)) ∈ Px. Using these notations
and ϕx(px) = pxϕx, for gauge transformations acting on a fiber Px, we have (∀ϕx, φx ∈ GauPx, ∀px, qx, rx ∈ Px
∀g ∈ G)

g(pxϕx) = (gpx)ϕx, (qxp
−1
x )px = qx, qx(q

−1
x px) = px

π(pxϕx) = π(px) = x, (pxϕx)φx = px(ϕxφx), pxϕx = px ⇔ ϕx = Idx

(gqx)p
−1
x = g(qxp

−1
x ), p−1

x (qxϕx) = (p−1
x qx)ϕx, px(q

−1
x rx) = (pxq

−1
x )rx,

pxq
−1
x = e⇔ px = qx, pxq

−1
x = (qxp

−1
x )−1, (pxϕx)(qxϕx)

−1 = pxq
−1
x

p−1
x qx = Idx ⇔ px = qx q−1

x px = (p−1
x qx)

−1, (gpx)
−1(gqx) = p−1

x qx

The listed properties can be proved from the corresponding definitions. Recall that there is no meaning for the
concept of a product or the inverse of elements in Px (in the same manner as there is no meaning for the concept
of addition or opposite of points in an affine space, but the difference of points is meaningful as an element in the
underlying vector space).

Remark 4.2
On a trivialG-bundle P = X ×G, there holds (x, ḡ)(x, g)−1 = ḡg−1 ∈ G. Moreover, all gauge transformations on
a fibe Px of this bundle have the form rh : (x, g) 7→ (x, gh), the reverse product of any pair of gauge transformations
is rh · rh̄ = rh̄ ◦ rh = rhh̄, and the only gauge transformation that takes (x, g) into (x, ḡ) is rh for h = g−1ḡ. This
justifies our notation choice and establishes an identification GauP = X ×Gr, for the trivial bundle P = X ×G.

Smooth actions of a Lie group G by λg on a bundle π : Y → X induce smooth actions on TY by dλg,
on π∗T ∗X = Y×XT ∗X by λg × (dλXg−1)∗, and on TY ⊗ π∗T ∗X by the tensor product of these actions. The
submanifold JY ⊂ TY ⊗ π∗T ∗X is invariant by this action, leading to a new action jλg of the group on JY .
This action transforms a jet jxy associated to a section y(x) at x ∈ X into the jet jx̄ȳ associated to the section
ȳ = λg ◦ y ◦ λXg−1 at x̄ = λXg (x) ∈ X . (See [36] for more on group actions on a jet bundle)

We explore now, for the particular case of principal G-bundles, the subset of G-covariant connections. For each
g ∈ G, we have a commutative diagram of linear morphisms, each of them covering λg : P → P :

We will not enter into the particular details of the existence of quotient manifolds, when we deal with the structure
Lie group and its natural action on natural bundles derived from a principalG-bundle (for a good general reference,
consult [37]). In all cases considered in our work, the existence of this quotient can be proved taking into account
that the principal G-bundle is locally trivial and studying the situation for trivial bundles. Taking the quotient by
these actions on the exact sequence (5) of vector bundles on Y = P , we obtain an induced exact sequence of vector
bundles on X

0 → V P/G→ TP/G→ π∗TX/G→ 0

Definition 4.8
We call πAt : TP/G→ P/G Atiyah bundle, and denote it by πAt : TGP → X . We call πAd : V P/G→ P/G
adjoint bundle, and denote it by πAd : AdP → X .
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Using these notations we have an exact sequence (so-called Atiyah sequence [3]) of vector bundles:

0 → AdP → TGP → TX → 0 (6)

There is a clear interpretation of the quotients: P/G = X , (π∗TX)/G = TX . A geometrical interpretation is
possible also for the bundles TGP = TP/G→ X and AdP = V P/G→ X .

Consider for any fiber Px ⊂ P , the action mapping (px, ϕx) ∈ Px ×GauPx 7→ pxϕx ∈ Px. It induces a cor-
responding linear isomorphism of bundles over Px, given by (px, ax) ∈ Px × LieGauPx 7→ (d/dϵ)0px exp ϵax ∈
T (Px) = (V P )x (bijectivity is easy to check working with trivializations Px ≃ G, GauPx ≃ Gr of the fiber and
gauge group). This linear isomorphism covariates with the action λg × Id on Px × LieGauPx and dλg on V Px,
and leads to a linear isomorphism LieGauPx → (V P )x/G = AdPx. To be more specific, for any choice px ∈ Px
the identification

ax ∈ LieGauPx 7→ πG((d/dϵ)0px exp ϵax) ∈ (V P )x/G = AdPx (7)

where πG : V P → V P/G = AdP , does not depend on the particular choice px ∈ Px, and establishes a natural
isomorphism LieGauPx ≃ AdPx

Proposition 4.2
The natural mapping A ∈ TP → (πTP (A), π

G(A)) ∈ P × TGP establishes a natural diffeomorphism of the
bundle πTP : TP → P with the pull-back π∗TGP = P×(π,πAt)TGP → P of Atiyah’s bundle πAt : TGP → X by
π : P → X . Moreover, the left action dλg on TP is identified in the pull-back bundle with λg × IdTGP .

The natural mapping A ∈ V P → (πV P (A), π
G(A)) ∈ P ×AdP establishes a natural diffeomorphism of the

bundle πV P : V P → P with the pull-back π∗ AdP → P of the adjoint bundle πAd : AdP → X by π : P → X .
Moreover, the left action dλg on V P is identified in the pull-back bundle with λg × IdAdP .

TP ≃ π∗TGP, V P ≃ π∗ AdP as bundles with a fibered G-action

Proof
We give the proof for Atiyah’s bundle (the adjoint bundle case parallels this one). For each (p, a) ∈ P×(π,πAt)TGP
we may consider the fiber Px associated to x = π(p) = πAt(a). As G acts freely and transitively on this fiber, and
a ∈ TGP = TP/G is an equivalence class, there exists exactly a unique representative Ap ∈ (πG)−1(a) ⊂ TP
with πTP (Ap) = p, πG(Ap) = a. Thus the mapping in the statement is injective and its image is precisely
P×(π,πAt)TGP . As the given natural mapping is a regular smooth mapping, injectivity allows to conclude that
it is a diffeomorphism with its image, which is the pull-back π∗TGP = P×(π,πAt)TGP .

Moreover, for Ap ≃ (p, πG(Ap)) ∈ TP ≃ P×XTGP the element (dpλg)(Ap) ∈ TgpP gets identified with
(gp, πG ◦ (dpλg)(Ap)) = (gp, πG(Ap)) ∈ P×XTGP hence the action dλg on TP gets identified with λg ×
IdTGP .

Following this result, sections a : x ∈ X 7→ ax ∈ TGP extend to sectionsA : π∗X → π∗TGP , therefore to vector
fields A : P → TP that are covariant for the action λg on P and dλg on TP , hence elements in Γ(X,TGP )
can be seen as vector fields on P that are invariant by the natural action of G on the module of vector fields.
Conversely, invariant vector fields A : P → TP factor through the action λG on P and dλg on TP inducing
sections a : P/G = X → (TP )/G = TGP of the Atiyah bundle. There is an immersion Γ(X,TGP ) ⊂ Γ(P, TP ),
whose image is the set of G-invariant vector fields. Atiyah’s bundle TGP can be called the bundle of G-invariant
vector fields on P .

The surjective morphism dπ : TP → π∗TX induces in the quotient byG a surjective morphism of vector bundles
dπ : TGP → TX , whose kernel is the subbundle of vertical (over X) invariant vector fields on P . This subbundle
may be identified with V P/G (observe that dλg leaves invariant the vector subbundle V P ⊂ TP , so the quotient
makes sense). The adjoint bundle AdP can be called the bundle ofG-invariant vertical vector fields on P , or bundle
of infinitesimal gauge transformations (its fiber are the Lie algebras associated to the gauge Lie groups GauPx).

Definition 4.9
[3] We call principal connection any splitting of the exact sequence (6).
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Again, as in Definition 4.1 such a splitting can be described as a linear immersion TX → TGP covering IdTX .
It is equivalent to give the immersion or to give its image (we know that the morphism covers IdTX ), a vector sub-
bundle Hor ⊂ TGP transversal to the projection dπ, that is, such that the restricted projector dπ

∣∣
Hor

: Hor → TX
is an isomorphism.

Similar to Proposition 4.1, we conclude here

Proposition 4.3
Consider the vector bundle morphism c̄π : χx ∈ TGP ⊗ T ∗X 7→ cTGP (dπx ⊗ χx) ∈ TX ⊗ T ∗X . There is a one-
to-one correspondence between principal connections (splittings of the exact sequence (6)) and global sections χ
of the bundle TGP ⊗ T ∗X for which c̄π(χ) = IdTX ∈ Γ(X,TX ⊗ T ∗X) holds.

Definition 4.10
We call bundle of principal connections associated to π : P → X and denote it by πCP : CP → X the sub-bundle
of elements χx ∈ TGP ⊗ T ∗X for which c̄π(χx) = Idx ∈ TX ⊗ T ∗X holds.

As c̄π is a morphism of vector bundles and IdTX : X → TX ⊗ T ∗X is a global section, the equation
c̄π(χx) = IdTX(x) determines an affine sub-bundle CP ⊆ TGP ⊗ T ∗X , modelled over the vector sub-bundle
ker c̄π = AdP ⊗ T ∗X ⊆ TGP ⊗ T ∗X .

Regarding the linear morphisms cπ and c̄π that define the connection bundle JP → P and the bundle of
principal connections CP → X (respectively by conditions cπ(J) = Id, c̄π(χ) = Id), we have commutative
diagrams, where the left side arises for any choice of g ∈ G:

Figure 1. Commutative diagrams.

here πG denotes the quotient maps by the naturalG-action, iJ , iC denote the natural inclusion maps, and Id denotes
the identity section of the vector bundle TX ⊗ T ∗X .

Proposition 4.4
Consider any principal G-bundle π : P → X . The bundle πCP : CP → X of principal connections has a natural
identification with the quotient JP/G→ X of the connection bundle JP → P by the action jλg of G.

Proof
From Figure 1 we see that for any element Jx ∈ JP , seen as iJ (Jx) ∈ TP ⊗ π∗T ∗X , its projection by πG is
an element πG(iJ(Jx)) = χx ∈ TGP ⊗ T ∗X such that c̄π(χx) = Idx, therefore, by definition, χx is an element
contained (using iC) in CP ⊂ TGP ⊗ T ∗X .

Hence, πG ◦ iJ on JP factors as the composition iC ◦ π̄, for some mapping π̄ : JP → CP . This mapping,
missing in diagram Figure 1, describes CP as a quotient manifold JP/G, if it is a regular projection whose fibers
coincide with the G-orbits on JP .
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As the quotient manifolds are taken with respect to the action of the group G, in the diagram Figure 1 on each
horizontal line we may state πG ◦ (dλg ⊗ (λg × 1)) = πG, πG ◦ (λg × 1) = πG, πG ◦ λg = πG, respectively.

We shall see that the fibers of π̄ are precisely the orbits in JP by the jλg action.
Indeed, if we have two elements Jx, (jλg)(Jx) ∈ JP on the same G-orbit, then

iC ◦ π̄ ◦ (jλg)(Jx) = πG ◦ iJ ◦ (jλg)(Jx) = πG ◦ (dλg ⊗ (λg × 1)) ◦ iJ (Jx) = πG ◦ iJ(Jx) = iC ◦ π̄(Jx)

As iC is an immersion, we conclude that π̄ ((jλg)(Jx)) = π̄(Jx). Elements in the same G-orbit in JP project by π̄
into the same element in CP.

Conversely, given two elements J1, J2 ∈ JP such that π̄(J1) = π̄(J2), we have iC ◦ π̄(J1) = iC ◦ π̄(J2) hence
πG ◦ iJ(J1) = πG ◦ iJ (J2), which implies (πG is the quotient map by the group action) the existence of
some element g ∈ G with (dλg ⊗ (λg × 1)) ◦ iJ(J1) = iJ(J2) and therefore iJ ◦ jλg(J1) = iJ (J2). As iJ is an
immersion, we conclude jλg(J1) = J2. Two elements that project by π̄ into the same element χ ∈ CP are,
necessarily, elements in the same orbit by the action of the group G on JP .

We conclude that π̄ : JP → CP is the quotient map πG : JP → JP/G by the group G acting as jλg.

As the bundle of principal connections can be seen as a quotient bundle, the geometrical meaning of principal
connections, and its relation to the general notion of connection J ∈ Γ(JP ) is clarified next.

Proposition 4.5
The natural mapping Jx ∈ JP → (πJ (Jx), πG(Jx)) ∈ P × CP establishes a natural diffeomorphism of the
connection bundle πJ : JP → P with the pull-back π∗CP = P×(π,πCP)CP → P of the bundle of principal
connections πCP : CP → X by π : P → X . Moreover, the left action jλg on JP is identified in the pull-back
bundle with λg × IdCP.

The natural projector πG : JP → CP determines a mapping that identifies the set ΓG(P, JP ), of globally defined
G-covariant connections, with the set Γ(X,CP), of globally defined principal connections.

Proof
We use the morphisms in the Figure 1, now completed with the quotient morphism πG : JP → CP. As
π ◦ πJ = πCP ◦ πG on JP , it is clear that the fibered regular projector Jx ∈ JP → (πJ (Jx), πG(Jx)) ∈ P × CP
takes values on the sub-bundle P×(π,πCP)CP → P . It suffices to prove that the regular mapping Jx ∈ JP →
(πJ(Jx), πG(Jx)) ∈ P×(π,πCP)CP is bijective to prove that it is a global diffeomorphism.

Consider any element (px, χx) ∈ P×XCP. Using iC , we get an element (px, iC(χx)) ∈ P×X(TGP ⊗ T ∗X).
Using the identifications P×XTGP = TP and P×XT ∗X = π∗T ∗X , we get (px, iC(χx)) ∈ TP ⊗ π∗T ∗X . To
prove that this element belongs to JP ⊂ TP ⊗ π∗T ∗X , it suffices to see that its image by πG ◦ cπ is Idx ∈
(TX ⊗ T ∗X)x. In fact:

πG(cπ(px, iC(χx))) = c̄π(π
G(px, iC(χx))) = c̄π(iC(χx)) = Id(πCP(χx)) = Idx

This proves that (px, iC(χx)) ∈ JP ⊂ TP ⊗ π∗T ∗X . The projection of this element by (πJ , π
G) is the original

element (px, χx) ∈ P×XCP, hence we have surjectivity of the mapping in our statement.
As we know (πTP , π

G) : TP → P × TGP and i : π∗T ∗X ↪→ P × T ∗X are immersions whose images are
P×XTGP = π∗TGP and P×XT ∗X = π∗T ∗X , respectively. Therefore they determine a bundle immersion for
the tensor products TP ⊗ π∗T ∗X → π∗(TGP ⊗ T ∗X). The restriction to the sub-bundle JP is Jx ∈ JP →
(πJ(Jx), πG(Jx)) ∈ P×X(TGP ⊗ T ∗X), which is still injective and, as we already know, has image P×XCP.
This proves our statement and allows to identify the pull-back π∗CP = P×XCP of the bundle of principal
connections with the connection bundle JP .

Moreover, as πJ ◦ jλg = λg ◦ πJ and πG ◦ jλg = πG we may also state that the action jλg on JP is transformed
into (λg, IdCP) on π∗CP = P×XCP

Finally, to prove the equivalence between ΓG(P, JP ) with Γ(X,CP), observe that any connection J : P →
JP such that J ◦ λg = jλg ◦ J determines a smooth mapping on the quotient χ : P/G→ JP/G, that is a
principal connection χ ∈ Γ(X,CP). Conversely, any smooth mapping χ ∈ Γ(X,CP) determines an induced
mapping J = (IdP , χ) : π

∗X = P×XX → π∗CP = P×XCP, such that J ◦ (λg, IdX) = (λG, IdCP) ◦ J . Using
our identification π∗CP = JP , this is a section J ∈ Γ(P, JP ) covariant in the sense J ◦ λg = jλg ◦ J .
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4.3. Reduction by closed subgroups

The quotient manifold JP/H for some subgroup H ⊆ G has a more convenient expression in the trivialization
given in our last proposition. In this case:

Corollary 4.1
Consider π : P → X a principal G-bundle, H ⊆ G a closed subgroup, and πHStr : HStr = P/H → X the quotient
bundle (bundle of H-structures). The natural projectors πJ : JP → P and πG : JP → CP determine a natural
identification (π̄J , π̄

G) : JP/H → HStr×XCP.

Variational principles for sections of the bundle P are characterized by the choice of a Lagrangian density,
a ΛnT ∗X-valued function on the jet bundle JP . Fixing a particular (non-vanishing) volume element volX ∈
Ωn(X) = Γ(X,ΛnT ∗X), this section can be expressed as L · volX where L is a smooth function on JP .

Definition 4.11
Let π : P → X be a principal G-bundle. We call Lagrangian function any smooth function L ∈ C∞(JP ). We say
a Lagrangian function is φ-invariant for some X-bundle automorphism φ : P → P , if L ◦ jφ = L. We say L is
translation-invariant if it is invariant for all left translations λg.

As the induced action jφ : JP → JP , for some translation morphism φ = λg : P → P , is identified with φ× Id
on P×XCP, λg-symmetries are then more easy to deal with in the fibered product representation P×XCP than
in the jet bundle JP . Field variational theories on principal G-bundles may be trivialized, using the bundle of
principal connections CP and the following notions:

Definition 4.12
For any Lagrangian function L(jp) : JP → R, we call associated trivialized Lagrangian ℓ the function
ℓ(p, χ) : P×XCP → R induced by L, using the natural identification JP ≃ π∗CP = P×XCP. If the Lagrangian
function L is invariant for jλh, for each translation h ∈ H on a certain closed subgroup H ⊂ G, the values
ℓ(p, χ) only depend on the connection and the H-structure Hp ∈ P/H , determining a smooth function
ℓ(q, χ) : HStr×XCP → R, called the H-reduced Lagrangian associated to L, where πHStr : HStr = P/H → X is
the bundle of H-structures and πCP : CP → X the bundle of principal connections.

For the case H = {e}, the H-reduced Lagrangian ℓ is simply the trivialized Lagrangian associated to the
Lagrangian function L(jp). For the case H = G, with a G-invariant Lagrangian L, the associated H-reduced
Lagrangian ℓ is called the reduced Lagrangian, which is a function on CP. Conversely, any smooth function
ℓ(q, χ) onHStr×XCP defines, by composition with πH : P×XCP → HStr×XCP, a smooth function on P×XCP
invariant for the action λh × Id, determining then a Lagrangian function L ∈ C∞(JP ) that is invariant for the action
jλh, for each h ∈ H .

Regarding the behaviour of the Lagrangian, the trivialized Lagrangian, or the reduced Lagrangian, when we use
other symmetries (not just G-translations) we get:

Proposition 4.6
Consider any X-bundle automorphism ϕ : P → P commuting with all left translations λg (we say ϕ is a gauge
transformation). Consider the induced bundle morphism jϕ : JP → JP . Both ϕ and jϕ factor by translations
leading to acϕ : HStr → HStr on the bundle HStr = P/H of H-structures, defined by acϕ(Hp) = H(pϕ),
cϕ : CP → CP on the bundle of principal connections CP = JP/G defined by cϕ(χx) = (dϕ⊗ 1)(χx) where
dϕ⊗ 1: TGP ⊗ T ∗X → TGP ⊗ T ∗X is induced by dϕ : TP → TP , and also leading to jϕ : JP/H → JP/H on
the quotient jet bundle JP/H , in such a way that jϕ is identified with (acϕ, cϕ) when we use the trivialization
JP/H ≃ HStr×XCP.

Proof
Taking into account that jϕ : JP → JP is determined on the affine sub-bundle JP ⊂ TP ⊗ π∗T ∗X as the
restriction of dϕ⊗ 1 ∈ End(TP ⊗ π∗T ∗X), we easily get that dϕ⊗ 1: TGP ⊗ T ∗X → TGP ⊗ T ∗X restricts to
CP ⊂ TGP ⊗ T ∗X as the induced mapping cϕ : CP → CP.
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The mapping induced by ϕ on the quotient P/H is again clear, and can be expressed as acϕ : Hp 7→ H(pϕ).
Finally, using the identification JP ≃ P×XCP, we may identify jϕ with (ϕ, cϕ). As jλh is identified with (λh, Id)
on HStr×XCP, we conclude that jϕ is expressed in the quotient P/H×XCP as (acϕ, cϕ).

Corollary 4.2
If L : JP → R is ϕ-invariant for some gauge transformation ϕ : P → P and H-invariant (invariant for jλh : JP →
JP , for each h ∈ H) for some closed subgroup H ⊂ G, then the associated H-reduced Lagrangian function
ℓ : HStr×XCP is also invariant for the corresponding action (acϕ, cϕ).

5. Discretization of Lagrangian densities using Forward Difference operators

In order to introduce a discretization mechanism for all the objects that have been introduced in field theories, we
go back to the notions of retraction and finite difference maps, now for a fibered manifold.

Definition 5.1
Let π : Y → X be a bundle and ∆: Ud → TY a FD operator on Y defined on an open neighbourhood Ud ⊂ Y × Y
of the diagonal (Definition 2.4). We say ∆ is projectable if it is a locally defined bundle morphism from
π × π : Y × Y → X ×X to dπ : TY → TX , covering a mapping ∆X : UXd = (π × π)(Ud) → TX .

Lemma 5.1
If ∆: Ud → TY is a FD operator on Y , projectable as ∆X : UXd → TX , then ∆X is also a FD operator on X .
Moreover, if ∆ is faithful so is ∆X .

Proof
In this situation (compare Definitions 2.4 and 2.5) we get a pair of diagrams where all the sides, except for the right
hand side triangle, are known to be commutative:

As π × π is a submersion, the image (π × π)(Ud) ⊂ X ×X is an open subset. If the smooth mapping ∆ factors
as ∆X by the submersion, also ∆X will be smooth. As π × π transforms the diagonal into the diagonal and dπ
the null vector into the null vector, we conclude that if ∆ transforms the diagonal into the null vector so does ∆X .
Moreover, being π × π, surjective we easily verify that the right hand side triangle is also commutative, and we
conclude that for a projectable FD operator the projected mapping ∆X is also a FD operator on X . Finally, as
dyπ is surjective we easily conclude that V∆(y,y) = IdTyY implies V∆X

(x,x) = IdTxX and then if ∆ is faithful so is
∆X .

We shall indicate how a projectable FD operator on a fiber bundle allows to discretize a smooth Lagrangian
density, and study its particular structure in the case of G-invariant Lagrangian densities.

Definition 5.2
For any manifold Y , we denote by Y ×n the product

∏i=n
i=0 Y of n+ 1 copies of Y , and denote by πi : Y ×n → Y the
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projection that maps y×n = (y0, . . . , yn) ∈ Y ×n into yi. For any bundle π : Y → X , we denote by π×n : Y ×n →
X×n the product bundle of n+ 1 copies.

For any bundle π : Y → X , we denote by Y ×πn → X the fibered product Y×XY×X . . .×XY of n+ 1 copies
of the bundle π : Y → X .

Pull-back with πi : Y ×n → Y allows to construct, from any bundle πE : E → Y , a new bundle π∗
iE → Y ×n,

whose fiber at a point (y0, . . . , yn) ∈ Y ×n is simply Eyi . . Observe that the bundle π×n
E : E×n → Y ×n obtained

as a fibered product of n+ 1 copies of a vector bundle πE : E → Y can be seen as a direct sum of the bundles
π∗
iE → Y ×n, namely

E×n = π∗
0E ⊕ π∗

1E ⊕ . . .⊕ π∗
nE → Y ×n

Consider now a FD operator ∆: Ud → TY on a manifold Y (where d1(Y ) ⊂ Ud ⊂ Y × Y ). As ∆ is a
locally defined Y -bundle morphism from the bundle π0 : Y × Y → Y to πTY : TY → Y , it determines, for any
n ∈ N, a morphism ∆×n−1 : (y0, yi)i=1...n ∈ (Ud)

×π0n−1 7→ (∆(y0, yi))i=1...n ∈ (TY )×πTY n−1, that establishes
a diffeomorphism of an open domain (Ud)

×π0n−1 with an open domain (Uz)
×πTY n−1. Using the natural

identifications (Y × Y )×π0n−1 = Y × Y ×n−1 = Y ×n and (TY )×πTY n−1 = TY ⊕ . . .⊕ TY ≃ TY ⊗Rn, this
locally defined diffeomorphism ∆×n−1 determines a map that is relevant for the discretization of jets:

Definition 5.3
For any fixed n ∈ N, a FD operator ∆: Ud → TY induces the n-Jacobian map:

JY : UdYn → TY ⊗Rn JY (y0, . . . , yn) =

n∑
i=1

∆(y0, yi)⊗ ei

defined on the open subset UdYn = (Ud)
×π0n−1 ⊂ Y ×n, neighbourhood of the diagonal dn : Y ↪→ Y ×n.

We may also write ⟨JY (y×n), ei⟩ = ∆(y0, yi), where e1, . . . , en stands for the natural basis on Rn, yi = πi(y
×n),

and ⟨ϕ, e⟩ stands for the contraction cRn(ϕ⊗ e), that is, the application of ϕ to a vector e ∈ Rn if we identify
elements in TY ⊗Rn with linear mappings Rn → TY .

As ∆: Ud → ∆(Ud) = Uz is a diffeomorphism, the n-Jacobian map establishes a diffeomorphism of UdYn with
its image, an open neighborhood (Uz)

×πTY n−1 ⊂ TY ⊕ . . .⊕ TY ≃ TY ⊗Rn of the null section z : y ∈ Y 7→
0y ∈ TY ⊗Rn.

Lemma 5.2
If ∆ is projectable to ∆X , then the associated Jacobian maps JY and JX are related by:

JX ◦ π×n = (dπ ⊗ 1) ◦ JY

If φ : Y → Y is an automorphism on the manifold Y , and if ∆: Y × Y → Y is covariant for φ, then JY : Y ×n →
TY ⊗Rn is also covariant, that is:

JY ◦ φ×n = (dφ⊗ 1) ◦ JY

Proof
In the case of a projectable FD operator, we know dπ ◦∆ = ∆X ◦ (π × π), hence:

⟨JX ◦ π×n(y0, . . . , yn), ei⟩ = ⟨JX(π(y0), . . . , π(yn)), ei⟩ = ∆X(π(y0), π(yi)) = dπ(∆(y0, yi))

⟨(dπ ⊗ 1)(JY (y0, . . . , yn)), ei⟩ = dπ
(
⟨JY (y0, . . . , yn), ei⟩

)
= dπ(∆(y0, yi))

thus proving our statement.
In the case that ∆ is φ-covariant, we know dφ ◦∆ = ∆ ◦ (φ× φ), and the same arguments as before changing

∆X with ∆, JX with JY and π with φ proves our statement.
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One interesting aspect of the n-Jacobian map is the following: consider the domain Ud ⊂ X ×X and the image
Uz ⊂ TX of some FD operator ∆X . Using smaller domains if needed, we may assume that Ux = TxX ∩ Uz are
convex open subsets. The inverse of the FD operator τR : Uz ⊂ TX → Ud ⊂ X ×X transforms 0x0 ∈ Tx0X into
(x0, x0) ∈ X ×X and has the form (πTX , R) for some smooth retraction R : Uz → X . For any choice of sequence
(x0, x1, . . . , xn) ∈ (Ud)

×π0n−1 ⊂ X×n, such that vi = ∆X(x0, xi) ∈ Tx0X are linearly independent vectors, we
know that Rx0(0) = x0, Rx0(vi) = xi. Hence, Rx0 transforms the simplex {s1v1 + . . .+ snvn : si ≥ 0, s1 + . . .+
sn ≤ 1} with vertices 0, v1, . . . , vn on the linear space Tx0X , into a simplicial domainK(x0,...,xn) ⊂ X with vertices
x0, x1, . . . , xn. Moreover, we know that J0 = JX(x0, . . . , xn) ∈ Tx0X ⊗Rn is a linear transformation, taking the
canonical basis e1, . . . , en of Rn into ∆X(x0, xi) = vi, hence the composition Rx0 ◦ J0 is a smooth map from
Rn to X transforming ei into xi, 0 into x0, and the simplex generated by 0, e1, . . . , en into a simplicial domain
K(x0,...,xn) with vertices x0, . . . , xn.

For any density ωX ∈ Ωn(X), its integral on the simplicial domain K(x0,...,xn) ⊂ X can be computed using
the pull-back ωRn = φ∗ωX ∈ Ωn(Rn) through φ = Rx0 ◦ J0 : Rn → X and integrating on the simplicial domain
S = φ−1(K(x0,...,xn)) ⊂ Rn with vertices 0, e1, . . . , en (with a possible sign change if φ is not orientation-
preserving). At 0 ∈ Tx0X we know that d0Rx0 : Tx0X → Tx0X is the identity mapping. Therefore, the differential
form ωRn has a value at 0 ∈ Rn given by ω0 = J∗

0ωx0 ∈ ΛnRn ⊂ Ωn(Rn). Any skew tensor field on Rn can
be approximated by the unique translation-invariant (constant) skew tensor field with coincident value at the
origin 0 ∈ Rn, and the integral of these vector fields on the simplex generated by 0, e1, . . . , en can be considered
one approximation to another, a mechanism that represents the extension to simplices of the classical rectangle
quadrature rule for integration in some interval of the real line. The integral of a constant differential form ω0

on the simplicial domain S is simple to compute: 1
n!ω0(e1, . . . , en). For any density ω ∈ Ωn(X) and sequence

(x0, . . . , xn) ∈ X×n near the diagonal, we have:∫
K

ω ≃ ± 1

n!
ωx0(J0(e1), . . . , J0(en)), J0 = JX(x0, . . . , xn) ∈ Tx0X ⊗Rn (8)

where K is a simplicial domain with vertices x0, . . . , xn, and the sign depends on the choice of orientation on X
and the ordering of these vertices. The following definition is then justified:

Definition 5.4
Given a volume form volX ∈ Ωn(X) on an n-dimensional manifold, we call volume function induced on the bundle
TX ⊗Rn, the function:

volTX⊗Rn(J0) =

∣∣∣∣∫
S

J∗
0volx0

∣∣∣∣ = ∣∣∣∣ 1n!volx0(⟨J0, e1⟩, . . . , ⟨J0, en⟩)
∣∣∣∣

where x0 = πX(J0) ∈ X , volx0
∈ ΛnT ∗

x0
X is the value associated to volX at x0, J∗

0 : Λ
nT ∗

x0
X → ΛnRn is the

extension of J∗
0 : T

∗
x0
X → Rn to the exterior algebra, and S ⊂ Rn is the simplicial domain given by n+ 1 vertices

0, e1, . . . , en ∈ Rn (domain S of points (s1, s2, . . . , sn) ∈ Rn with s1 + . . .+ sn ≤ 1, si ≥ 0).

We observe that volTX⊗Rn(J0) ̸= 0 holds precisely if J0 : Rn → Tx0X is invertible. The set of elements
J0 ∈ TX ⊗Rn representing an invertible linear mapping shall be called the regular domain, or frame bundle
FX ⊂ TX ⊗Rn → X in the bundle TX ⊗Rn. The frame bundle is a dense open subset contained in TX ⊗Rn.

Definition 5.5
Consider some n-dimensional manifold X with a FD operator ∆X : Ud → TX , and consider the associated n-
Jacobian map JX : Udn → TX ⊗Rn (defined on points (x0, . . . , xn) such that (x0, xi) ∈ Ud). Points x×n ∈ Udn ⊂
X×n whose image by this map are frames (that is, points in the inverse image of the frame bundle), are called
regular points in X×n for the FD operator ∆X . Regular points are an open subset:

X̃ = (JX)−1(FX) ⊂ Udn ⊂ X×n

In a similar way, given a projectable FD operator on a bundle Y → X , forN = dimY , we might consider a domain
of regular points Ỹ ⊂ Y ×N . However, we call regular points on Y ×n (in this case n = dimX < dimY ) the open
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sub-bundle given by those elements (y0, . . . , yn) such that (y0, yi) is on the domain of ∆ and whose projection
by π×n is a regular point (x0, . . . , xn) ∈ X̃ ⊂ X×n. This set of regular points is denoted by J̃Y . It has a natural
bundle structure π×n : J̃Y → X̃ .

The regular domains X̃ ⊂ (Ud)
×TXn−1 ⊂ X×n, J̃Y ⊂ (UYd )×TY n−1 ⊂ Y ×n are dense open subsets in the open

neighborhoods (Ud)×TXn−1, (UYd )×TY n−1 of the diagonals dn(X), dn(Y ), respectively. However diagonal points
do not belong to these regular domains.

Remark 5.1
This generalizes to manifolds X the process that leads from a line element dt on R and an interval (tk, tk+1) to the
difference value hk = tk+1 − tk, used in definition 3.1 to discretize reduced lagrangian mechanics.

Definition 5.6
Let volX ∈ Ωn(X) be a volume element and ∆X a faithful FD operator on X . Consider X̃ ⊂ X×n the set of
regular points for this FD operator. We call discrete volume function ṽol : X̃ → R+ associated to volX ,∆

X the
following:

ṽol(x̃) = volTX⊗Rn (JX(x̃)
)
=

∣∣∣∣ 1n!volx0(∆
X(x0, x1), . . . ,∆

X(x0, xn))

∣∣∣∣ , x̃ = (x0, . . . , xn) ∈ X̃ ⊂ X×n

(9)

We still aim to discretize Lagrangian densities, not just volume forms.

Definition 5.7
For any bundle π : Y → X , consider π0 : X×n → X and the induced bundle π∗

0(TY ⊗Rn) → X×n, whose
elements can be described as (J0, x1, . . . , xn) with J0 ∈ TY ⊗Rn and xi ∈ X . Consider moreover the bundle
π∗
0Y → X×n whose elements can be described in the form (y0, x1, . . . , xn) for y0 ∈ Y , xi ∈ X . There

exists a natural bundle structure (π×n, π0) : Y
×n → π∗

0Y ⊂ (X×n)×(π0,π)Y and a natural bundle structure
Id×πTY⊗Rn : π

∗
0(TY ⊗Rn) → π∗

0Y (induced by πTY⊗Rn : TY ⊗Rn → Y ).

Lemma 5.3
If ∆: Ud → TY is a projectable FD operator, the associated n-Jacobian map JY determines a π∗

0Y -bundle injective
local immersion (π×n, JY ) : UdYn ⊂ Y ×n → π∗

0(TY ⊗Rn) (that we call n-Jacobian immersion). Its image is
contained in the subset:

{(J0, x1, . . . , xn) ∈ π∗
0(TY ⊗Rn) : ⟨(dπ ⊗ 1)(J0), ei⟩ = ∆X(πX(J0), xi), ∀i = 1 . . . n} ⊂ π∗

0(TY ⊗Rn)

where πX = π ◦ πTY : TY ⊗Rn → X is the natural projector.

Proof
When we consider any element in the image (J0, x1, . . . , xn) = (π×n, JY )(y0, . . . , yn), in our defini-
tion ∆(y0, yi) = ⟨JY (y0, . . . , yn), ei⟩, we may apply dπ and obtain ⟨(dπ ⊗ 1)(J0), ei⟩ = dπ(∆(y0, yi)) =
∆X(π(y0), π(yi)) = ∆X(πX(J0), xi). Therefore the image of (π×n, JY ) is contained in the subset given in the
statement.

It is obvious that (π×n, JY ) : Y ×n → π∗
0(TY ⊗Rn) respects the fibers associated to any (y0, x1, . . . , xn) ∈ π∗

0Y .
It is a Q-bundle morphism, where Q = π∗

0Y . To prove that it is an injective local immersion it suffices to prove
that, on each fiber over q = (y0, x1, x2, . . . , xn) ∈ π∗

0Y , the mapping JY is an injective local immersion. However,
the bundles under consideration are fibered products of bundles on Q:

Y ×n = D1×Q . . .×QDn Di = π∗
i Y, (πi : q ∈ Q 7→ xi ∈ X)

Elements in Di can be described in the form (y0, x1, . . . , yi, . . . , xn) where y0, yi ∈ Y , xj ∈ X .

π∗
0(TY ⊗Rn) = F1 ⊕Q . . .⊕Q Fn, Fi = π∗

0(TY ⊗Rei)
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Elements in Fi can be described in the form (δ ⊗ ei, x1, . . . , xn) where δ ∈ TY , ei is the i-th vector in the canonical
basis of Rn and xj ∈ X .

Moreover, on the q = (y0, x1, . . . , xn)-fiber the mapping (π×n, JY ) arises from the consideration of φi : yi ∈
(Di)q 7→ ∆(y0, yi)⊗ ei ∈ (Fi)q on each component. As we know, ∆ is an injective local diffeomorphism from
an open subset in {y0} × Y to Ty0Y , therefore ∆ is also an injective local immersion when restricted to the xi-
fiber {y0} × Yxi . We conclude that each of the mappings φi : Yxi = (Di)q → (Fi)q = Ty0Y ⊗Rei ≃ Ty0Y (for
i = 1 . . . n) are injective local immersions and consequently produce an injective local immersion φ1 ⊕ . . .⊕ φn =
(π×n, JY ) : Y ×n → π∗

0(TY ⊗Rn) on an open domain of the fibered product.

Following this result, the n-Jacobian operator JY takes values in a space somehow resembling the jet bundle,
substituting vectors ei with vectors ∆X(x0, xi). We can mend this situation using JX as follows.

On the bundle TX ⊗Rn, we have the dense open subset of invertible mappings, that we called the bundle of
linear frames FX . In the same way, on the bundle Rn ⊗ T ∗X we have the dense open subset of invertible mappings,
the bundle CFX of linear coframes. Between these open sub-bundles there exists a natural smooth morphism, the
inversion morphism inv : J ∈ FX 7→ J−1 ∈ CFX defined by the condition cRn(J ⊗ J−1) = IdTX . This inversion
morphism transforms a given frame into its dual coframe.

Definition 5.8
We call reverse n-Jacobian map, the morphism J−1

X = inv ◦ JX : X̃ → CFX ⊂ Rn ⊗ T ∗X . It is univocally
determined by the condition cRn(JX ⊗ J−1

X ) = IdTX .

For a bundle π : Y → X on an n-dimensional manifoldX and for any FD operator ∆ on Y covering ∆X : UXd →
TX , if we denote by JY , JX the associated n-Jacobian maps, then cTY (dy0π ⊗ JY (ỹ)) = JX(x̃) (for any
ỹ ∈ J̃Y ⊂ Y ×n, y0 = π0(ỹ) and x̃ = π×n(ỹ) ∈ X̃ ⊂ X×n). As a consequence, the tensor JYX (ỹ) = cRn(J

Y (ỹ)⊗
J−1
X (x̃)) ∈ Ty0Y ⊗ T ∗

π(y0)
X defined for ỹ ∈ J̃Y satisfies cTY (dy0π ⊗ JYX (ỹ)) = IdTx0X , so it belongs to (JY )y0 ⊂

(TY ⊗ π∗T ∗X)y0 .

Definition 5.9
For a fixed bundle Y → X over an n-dimensional manifold X , and given a projectable FD operator ∆: Ud → TY ,
we call induced forward Jacobi (FJ) operator the mapping:

JYX : J̃Y → π∗
0(JY ) JYX (ỹ) =

(
cRn

(
JY (ỹ)⊗ J−1

X (x̃)
)
, x1, . . . , xn

)
where x̃ = π×n(ỹ), xi = πi(x̃).

Theorem 5.1
Consider a projectable FD operator ∆: Ud → TY on a bundle π : Y → X . Consider π0 : X×n → X the projector
to the first component and X̃ ⊂ X×n the set of regular points.

The induced FJ operator JYX : J̃Y → π∗
0(JY ) is an injective local diffeomorphism of X̃-bundles. Moreover, for

any X-bundle automorphism φ : Y → Y , if ∆ is covariant for φ, there holds:

JYX ◦ φ×n = jφ ◦ JYX

Proof
We already know (Lemma 5.3) that (π×n, JY ) : UdYn → π∗

0(TY ⊗Rn) is an injective local immersion, and remains
so when restricted to the open domain J̃Y ⊂ UdYn ⊂ Y ×n.

On the other hand, if we restrict bundles on X×n to the open subset X̃ of regular points, for this restriction there
exists a smooth X̃-bundle morphism and its inverse:

(JY , x1, . . . , xn) ∈ X̃×(π0,πX)(TY ⊗Rn) 7→ cRn(J
Y ⊗ (J−1

X (x0, . . . , xn))) ∈ X̃×(π0,πX)(TY ⊗ π∗T ∗X)

(JYX , x1, . . . , xn) ∈ X̃×(π0,πX)(TY ⊗ π∗T ∗X) 7→ cTX(JYX ⊗ (JX(x0, . . . , xn))) ∈ X̃×(π0,πX)(TY ⊗Rn)

Hence both morphisms are smooth diffeomorphisms, inverse one to the other.
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As a consequence, composing the already studied immersion with this diffeomorphism shows that, the forward
Jacobi operator JYX : J̃Y → π∗

0(TY ⊗ T ∗X) is an injective local immersion. We already know that it takes values
on the subbundle π∗

0(JY ).
To prove that it is an injective local diffeomorphism on its domain, it suffices to observe that J̃Y and π∗

0(JY )
have the same dimension.

Using n = dimX , n+m = dimY (the fiber on Y has dimension m), we know that the affine bundle JY → Y
has a fiber with dimension dimVyY ⊗ TxX = m · n and JY → X has then fiber with dimension m+m · n.
On the other hand, π0 : X×n → X has a fiber with dimension n · dimX = n2, hence π∗

0(JY ) → X has a fiber
with dimension n2 +m+mn, and as a manifold it has dimension n+ n2 +m+mn = (n+ 1) · (n+m) =

(n+ 1) · dimY , which is precisely the dimension of Y ×n (and of its open subset J̃Y ) as a manifold.
To prove the desired covariance property, we observe that if φ projects as φX = IdX then, jφ : JY → JY is

simply the restriction of dφ⊗ 1: TY ⊗ π∗T ∗X → TY ⊗ π∗T ∗X to JY . Therefore, the stated covariance property
is a simple consequence of being JY covariant (Lemma 5.2).

Remark 5.2
The FJ operator JYX generalizes to any fibered manifold Y → X the mechanism that allowed to generate an

element χ =
τ−1(g−1

0 g1)

t1−t0 ∈ LieG from (t0, g0, t1, g1) ∈ (R×G)×1, used in definition 3.1 to discretize lagrangian
functions in mechanics.

This results illustrates that a choice of n+ 1 elements on Y is, for a certain regular family of choices, in one-to-
one correspondence to a choice of n+ 1 fibers (points x0, x1, . . . , xn) and a single jet of section on the x0-fiber.
This correspondence can be obtained fixing a projectable FD operator. A natural question now is to determine if, in
a similar way to lemma 3.1, for any smooth section y(x) and any regular sequence ỹ = (y(x0), . . . , y(xn)) of n+ 1
elements on the section y(x), that are close enough to a diagonal element (y, . . . , y) ∈ Y ×n, the induced elements
(jx0y, x1, . . . , xn) ∈ π∗

0(JY ), and JYX (ỹ) ∈ π∗
0(JY ), are good approximations one to another, in some sense. The

intuitive affirmative answer can be misleading, as shown in the following example.

Example 5.1
Consider the bundle π : Y = R3

(y1,y2,y3) → X = R2
(x1,x2) with the projection x1 = y1, x2 = y2. Sections

of this bundle are smooth functions y3(x1, x2). We may consider on Y the projectable faithful FD
operator ∆((y10 , y

2
0 , y

3
0), (y

1
1 , y

2
1 , y

3
1)) = (y11 − y10)(∂/∂y

1)y0 + (y21 − y20)(∂/∂y
2)y0 + (y31 − y30)(∂/∂y

3)y0 . Using
the natural matricial notation for linear transformations, the associated 2-Jacobian map transforms any three points
y0 = (y10 , y

2
0 , y

3
0), y1 = (y11 , y

2
1 , y

3
1), y2 = (y12 , y

2
2 , y

3
2) on Y into:

JY =

y11 − y10 y12 − y10
y21 − y20 y22 − y20
y31 − y30 y32 − y30


Moreover, if the projection of these points to R2 is a non-degenerate triangle (non co-linear points on the plane
R2

(x1,x2)), the corresponding FJ operator produces:

JYX =

y11 − y10 y12 − y10
y21 − y20 y22 − y20
y31 − y30 y32 − y30

 ·
[
y11 − y10 y12 − y10
y21 − y20 y22 − y20

]−1

As the FD operator was chosen to be faithful, for any smooth curve y(ϵ) ⊂ Y the curve ∆(y(0), y(ϵ)) on Ty(0)Y
takes the null value for ϵ = 0, and has a tangent vector at ϵ = 0 that gets identified with (d/dϵ)ϵ=0y(ϵ) ∈ Ty0Y .
Hence, for a given smooth curve y(ϵ) = (y1(ϵ), y2(ϵ), y3(ϵ)) on Y , with y(0) = y0 ∈ Y and for any sequence
(ϵk)k∈N converging to zero, the sequence of tangent vectors 1

ϵk
∆(y0, y(ϵk)) ∈ Ty0Y converge to the tangent vector

ẏ(0) of the curve y(ϵ) at ϵ = 0.
We might think that for any given sequence x̃(k) = (x0, x1(k), x2(k)) of non-degenerate triangles (regular points

on X̃ ⊂ X×2 = X ×X ×X) with a common vertex x0 = (x10, x
2
0), a sequence converging to the diagonal, and for
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any given function y(x) : R2 → R, the associated triangles defined in Y by (x1, x2, y(x1, x2)) would be transformed
by JYX into some convergent sequence on (JY )x0 and that the limit is somehow related to the 1-jet jx0y associated
to y(x) at x0 = (x10, x

2
0) ∈ R2. Next we show that this is not necessarily true.

For example, for a sequence of nondegenerate triangles x̃(k) =
(
(0, 0), (1/k, 1/k2), (−1/k, 1/k2)

)
(k ∈ N), its

image by some section y : (x1, x2) 7→ (x1, x2, g(x1, x2)) given through g(x1, x2) = x1 + x2 or ȳ given through
ḡ(x1, x2) = x1 · (1 + x1) (observe that j(0,0)y ̸= j(0,0)ȳ) are exactly the same sequence of triangles on Y = R3,
ỹ(k) =

(
(0, 0, 0), (1/k, 1/k2, (1 + k)/k2), (−1/k, 1/k2, (1− k)/k2)

)
, always lying on the linear space y1 + y2 =

y3 (because the sequence of triangles was intentionally chosen to lie in x2 = x1 · x1). Therefore the image by the FJ
operator of ỹ(k) = ȳ×2(x̃(k)) = y×2(x̃(k)) (constructed using either g(x1, x2) or ḡ(x1, x2)) leads to the constant
sequence JYX (k) = JYX

(
(0, 0, 0), (1/k, 1/k2, (1 + k)/k2), (−1/k, 1/k2, (1− k)/k2)

)
on (JY )(0,0):

JYX (k) =

1 0
0 1
1 1

 = j(0,0)y ̸= j(0,0)ȳ =

1 0
0 1
1 0


Against our original guess, this sequence, ỹ(k) = ȳ×2(x̃(k)) = y×2(x̃(k)), does not converge to the 1-jet of
ȳ(x1, x2) = (x1, x2, x1(1 + x1)) at (0, 0).

It would also be easy to construct a sequence of triangles so that, its image by ȳ×2 defines a sequence on J̃Y
converging to the diagonal point, but with an image by JYX that is not converging any more. It suffices a sequence of
triangles that, for even terms, lie on x2 = x1 · x1, and for odd terms lie on 2x2 = x1 · x1, for example. The image
by ȳ×2 produces triangles on R3 that, for even terms lie on the plane y1 + y2 − y3 = 0 and for odd terms on the
plane y1 + 2y2 − y3 = 0, hence its associated image by FJ operator oscillates between two points.

As shown in the previous example, convergence of regular points in J̃Y to some diagonal point (which does not
belong to J̃Y ) does not imply convergence of the corresponding images by the FJ operator (which is only defined
in J̃Y ). Let us further assume that the FD operator is faithful and that regular elements in X̃ ⊂ X×n converging to
a diagonal point (x0, . . . , x0) ∈ X×n are well chosen, in the following sense:

Definition 5.10
Let X be an n-dimensional manifold. We call trajectory on X×n coalescing to a diagonal point any curve
α(ϵ) = (x0(ϵ), · · · , xn(ϵ)) ⊂ X×n defined on some open interval 0 < ϵ < ϵmax, contained in a single π0-fiber
(therefore π0(α(ϵ)) = x0(ϵ) = x0 ∈ X does not depend on ϵ), such that limα(ϵ) ∈ dn(X) for ϵ→ 0+ (hence
limα(ϵ) = dn(x0) = (x0, . . . , x0)), and such that ẋi(0) ∈ Tx0X for i = 1 . . . n exist and determine a frame on
Tx0X (basis of tangent vectors at x0).

In the presence of a trajectory coalescing to a diagonal point (in contrast with the previous example) and any
faithful FD operator, we get the following fundamental property of the associated FJ operator:

Theorem 5.2
Let ∆: Ud → TY be a projectable faithful FD operator on the bundle π : Y → X and JYX : J̃Y → π∗

0(JY )
the FJ operator determined on the corresponding regular domain. Consider any smooth trajectory x̃(ϵ) =

(x0, x1(ϵ), . . . , xn(ϵ)) ⊂ X̃ contained in a single π0-fiber of the regular domain X̃ ⊂ X×n and coalescing to a
diagonal point.

For each smooth section y : X → Y defined on a neighbourhood of x0 ∈ X , there exists ϵmax > 0 so that, the
induced smooth trajectory ỹ(ϵ) = y×n ◦ x̃(ϵ) ⊂ Y ×n belongs to the regular domain J̃Y , for 0 < ϵ < ϵmax and
is transformed by the FJ operator into a trajectory JYX (ϵ) ∈ (JY )x0 , whose limit value for ϵ→ 0+ (if it exists)
coincides with jx0y ∈ (JY )x0 .

Proof
We observe first that Ud is an open neighborhood of the diagonal, hence limxi(ϵ) = x0 leads to lim y(xi(ϵ)) =
y(x0) and therefore for some ϵmax we can assure that (y(x0), y(xi(ϵ))) ∈ Ud, for 0 < ϵ < ϵmax. As the trajectory
x̃(ϵ) = (x0, x1(ϵ), . . . , xn(ϵ)) was contained in X̃ for ϵ ̸= 0, we get that ỹ(ϵ) = y×n(x̃(ϵ)) is contained in the regular
domain J̃Y , for 0 < ϵ < ϵmax.
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Both JX , JY are smooth mappings, so they transform smooth curves x̃(ϵ) and ỹ(ϵ) into smooth curves JX(ϵ),
JY (ϵ) in the vector spaces Tx0X ⊗Rn and Ty(x0)Y ⊗Rn, respectively. Observe that by definition, there holds
⟨JYX (ϵ), ⟨JX(ϵ), e⟩⟩ = ⟨JY (ϵ), e⟩, for any ϵ > 0 and any e ∈ Rn.

Denote by yi(ϵ) = y(xi(ϵ)) the components of ỹ. As y(x) is smooth and x̃(ϵ) coalesces to (x0, . . . , x0), we get
lim yi(ϵ) = y0 with y0 = y(x0), as ϵ→ 0+ and ẏi(0) = (dx0y)(ẋi(0)). As the FD operator ∆ is smooth and faithful
we get:

ẏi(0) = (d∆)(y0,y0)(ẏi(0)) = lim
ϵ→0+

∆(y0, yi(ϵ))−∆(y0, y0)

ϵ
= lim
ϵ→0+

⟨JY (ϵ), ei⟩ − 0

ϵ

ẋi(0) = (d∆X)(x0,x0)(ẋi(0)) = lim
ϵ→0+

∆X(x0, xi(ϵ))−∆X(x0, x0)

ϵ
= lim
ϵ→0+

⟨JX(ϵ), ei⟩ − 0

ϵ

where ẋi(0) ∈ Tx0X , ẏi(0) ∈ Ty0Y stand for the tangent vectors at ϵ = 0 of the given curve xi(ϵ) and its image
yi(ϵ).

Hence, if there exists a limit J0 for JYX (ϵ) ∈ Ty(x0)Y ⊗ T ∗
x0
X as ϵ tends to zero, we have:

⟨J0, ẋi(0)⟩ =
⟨

lim
ϵ→0+

JYX (ϵ), lim
ϵ→0+

⟨JX(ϵ), ei⟩
ϵ

⟩
= lim
ϵ→0+

⟨JYX (ϵ), ⟨JX(ϵ), ei⟩⟩
ϵ

= lim
ϵ→0+

⟨JY (ϵ), ei⟩
ϵ

= ẏi(0)

We also know by definition that ⟨jx0y, ẋi(0)⟩ = (dx0y)(ẋi(0)) = ẏi(0) for yi = y ◦ xi. Therefore, both J0 and jx0y
coincide on a certain basis of Tx0X , which proves that they coincide as linear mappings from Tx0X to Ty(x0)Y .

This result is analogue to the fundamental Lemma 3.1, used to discretize variational principles in geometric
mechanics on Lie groups. We will not pursue a condition to warrant the existence of a limit. However, the previous
result establishes, in the case of trajectories x̃(ϵ) coalescing to a diagonal point dn(x0) in X̃ ⊂ X×n, a strong
relation between the jet at x0 associated to a section y(x) and the extended trajectory y×n(x̃(ϵ)) determined on
Y ×n by the same section. This relation is given by the Forward Jacobi operator and might be exploited when one
considers a family of discrete theories and its limit case when the diameter of the discretized elements tends to
zero.

Definition 5.11
We call discrete Lagrangian function on a bundle π : Y → X any function Ld : UdYn → R defined on an open subset
UdYn ⊂ Y ×n adherent to the diagonal dYn : Y ↪→ Y ×n.

As the FJ operator establishes a relation between the jet bundle JY and the bundle J̃Y ⊂ Y ×n, on the
corresponding regular domains, we arrive to a discretization notion for Lagrangian densities, extending to the
general case the notion of discretization of lagrangian densities that was introduced for mechanics in definition 3.1:

Definition 5.12
For a fixed Lagrangian density LvolX described by a smooth volume form volX ∈ Ωn(X) and a smooth function
L : JY → R, we call associated discrete Lagrangian determined by a projectable faithful FD operator ∆ on Y the
following function:

Ld = (L ◦ JYX ) · (ṽol ◦ π×n) : J̃Y → R

where JYX is the FJ operator associated to ∆, ṽol is defined in (9) and π×n : J̃Y → X̃ is the restriction of
π×n : Y ×n → X×n to the set of regular points.

Remark 5.3
We may observe from the definition of JYX and ṽol that, for any smooth function on the base manifold f ∈ C∞(X),
any Lagrangian function L ∈ C∞(JY ) and any volume form volX ∈ Ωn(X), there holds

(f · L) ◦ JYX = (f ◦ π0) · (L ◦ JYX ), f̃ · vol = (f ◦ π0) · ṽol

where π0 : X̃ → X is the projector to the first component. As a consequence, the discrete Lagrangian Ld defined
above only depends on the particular FD operator ∆ and on the Lagrangian density LvolX , but not on the particular
decomposition as a volume form volX ∈ Ωn(X) and a smooth function L ∈ C∞(JY ).
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Following the approximation formula (8) and definitions introduced in this section, if y ∈ Γ(Y ) is a local section,
and if K ⊂ X is a simplicial domain with vertices x0, x1, . . . , xn ∈ X , ordered so that ∆X(x0, xi) are a positively
oriented basis on Tx0X , we shall consider Ld(y(x0), . . . , y(xn)) ∈ R to be a good approximation of the action
functional associated to LvolX , on the domain K:∫

K

L(jxy)volX ≃ Ld(y(x0), . . . , y(xn))

This discretization mechanism is, furthermore, covariant:

Proposition 5.3
If ∆ is a projectable faithful FD operator, covariant for someX-bundle automorphism φ : Y → Y , then the discrete
Lagrangian associated to (L ◦ jφ) · volX is Ld ◦ φ×n.

In particular, if L is φ-invariant, the discrete Lagrangian Ld associated to the Lagrangian density L · volX is also
φ-invariant.

Proof
Knowing that φ is fibered on IdX , together with the covariance of JYX , as stated in Theorem 5.1 leads to:

((L ◦ jφ) ◦ JYX ) · (ṽol ◦ π×n) = (L ◦ JYX ◦ φ×n) · (ṽol ◦ π×n) = ((L ◦ JYX ) · (ṽol ◦ π×n)) ◦ φ×n = Ld ◦ φ×n

Therefore, we may generate discrete variational principles, from any smooth variational principle given by a
Lagrangian density, using as only tools a simplicial decomposition of the base space X and a particular choice of
a projectable faithful FD operator on the bundle π : Y → X . Moreover, if the Lagrangian density is invariant for
some X-bundle automorphisms φ : Y → Y , the induced discrete variational principle will maintain this symmetry,
when ∆ is chosen to be covariant by this automorphism (for the study of variational principles, symmetries and
conservation laws in discrete field theories, compare for example [10, 11, 39, 40]).

6. A notion of parallelism on a principal bundle

The notion of G-covariant projectable FD operator on a principal G-bundle is that of a particular smooth morphism
∆: P × P → TP that covariates with the diagonal action λg × λg on P × P and dλg on TP . This leads to the
study of a quotient manifold (P × P )/G, a manifold known as Ehresmann Gauge groupoid [7, 9, 30]. This section
explores the geometrical structure of (P × P )/G.

6.1. The groupoid of fiber-to-fiber endomorphisms

Definition 6.1
We call fiber-to-fiber endomorphism on the principal G-bundle π : P → X , any morphism ψ : Px → P whose
domain is a single fiber Px ⊆ P and such that ψ(gp) = gψ(p), ∀p ∈ Px, g ∈ G. The set of all fiber-to-fiber
endomorphisms is denoted by EndP .

Covariance by the action of the whole Lie group implies that ψ ∈ EndP is in fact an isomorphism of G-spaces,
between the whole (source) fiber Px0 and a single image fiber Px1 ⊂ P .

Definition 6.2
We call source map s : EndP → X the mapping that transforms an element ψ ∈ EndP into its domain, a G-orbit
s(ψ) ∈ P/G that we may identify with a point x0 = s(ψ) ∈ X . We call target map t : EndP → X the mapping
that transforms an element ψ ∈ EndP into its image, a G-orbit t(ψ) ∈ P/G that we may again identify with a
point x1 = t(ψ) ∈ P/G = X .
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There is a natural groupoid structure (see [9] for introductory material on groupoids) in the set EndP , of fiber-
to-fiber endomorphisms (also called Eheresmann gauge groupoid). Namely, if s(ψ2) = t(ψ1), both mappings can
be composed to get ψ2 ◦ ψ1, whose source is s(ψ1), and whose target is t(ψ2). Hence, (s, t) : EndP → X ×X is a
groupoid morphism into the pair groupoidX ×X (where composition is (x1, x2) ◦ (x0, x1) = (x0, x2)). Moreover,
GauP , the gauge bundle, is the isotropy sub-groupoid (elements where s(ψ) = t(ψ)) associated to EndP .

The idea of using fiber-to-fiber endomorphisms as discrete versions of the connection notion has its basis in the
concept of parallel transport, and has been explored for a trivial bundle in [16, 24, 32]. We shall focus on a natural
differentiable structure of the bundle s : EndP → X and its relation with the theory of covariant FD operators. We
begin by fixing some notation, coherent with the choices made in section 4 for the gauge bundle.

For any ψ ∈ EndP and any element p ∈ Ps(ψ), we denote its image by ψ(p) = pψ ∈ Pt(ψ). For any
(composable) pair of fiber-to-fiber endomorphisms (ψ1, ψ2) ∈ EndP×(s,t) EndP , we denote its composition
p ∈ Ps(ψ2) 7→ ψ1(ψ2(p)) ∈ Pt(ψ1) by ψ1 ◦ ψ2, or defining · as the reverse product ψ2 · ψ1 = ψ1 ◦ ψ2, also as
ψ2 · ψ1 = ψ2ψ1. In this notation, the concatenation of endomorphisms represents the composition in the reverse
order.

A fiber-to-fiber endomorphism ψ : Px0 → P is totally determined if we fix the image by ψ of a single element
p0 ∈ P , namely if p0ψ = p1 then (gp0)ψ = gp1, for each element in {gp0}g∈G = Px0 .

Definition 6.3
For any pair of elements p0 ∈ Px0 , p1 ∈ Px1 , we call fiber-to-fiber endomorphism induced by (p0, p1), denoting it as
p−1
0 p1 ∈ EndP , the mapping q0 ∈ Px0 7→ (q0p

−1
0 )p1 ∈ P , unique fiber-to-fiber endomorphism ψ : Px0 → P that

transforms p0 into p1. The mapping πG : (p0, p1) ∈ P × P 7→ p−1
0 p1 ∈ EndP shall be called the gauge difference

map on P × P .

In the same way as the gauge group GauPx associated to a fiber was denoted by PxP
−1
x , the gauge

groupoid EndP was denoted by Ehresmann by PP−1 (with a reverse notation in [21]). The restriction of πG

to P×XP ⊂ P × P takes values on GauP ⊂ EndP and coincides with the gauge difference mapping defined in
section 4. Our notation choice is consistent with the notation indicated in that section for gauge transformations
ϕx ∈ GauP ⊂ EndP acting on elements px ∈ Px. There still holds:

p0(p
−1
0 p1) = p1, π(p0ψ01) = t(ψ01), p0ψ01 = p0 ⇔ ψ01 = Idπ(p0)

q0(p
−1
0 p1) = (q0p

−1
0 )p1, (s, t)(p−1

0 p1) = (π(p0), π(p1)), (p−1
0 p1)

−1 = p−1
1 p0

(gp0)
−1(gp1) = p−1

0 p1, (gp0)ψ01 = g(p0ψ01), p−1
0 (p1ψ12) = (p−1

0 p1)ψ12

(p0ψ01)ψ12 = p0(ψ01ψ12), (q0ψ01)(p0ψ01)
−1 = q0p

−1
0 , (ψ01ψ12)

−1 = ψ−1
12 ψ

−1
01

(s, t)(ψ01ψ12) = (s(ψ01), t(ψ12)), p−1
0 p1 = IdPπ(p0)

⇔ p0 = p1,

(g ∈ G, p0, q0, p1 ∈ P , ψ01, ψ12 ∈ EndP , s(ψ01) = π(p0) = π(q0), t(ψ01) = s(ψ12) = π(p1))

Proposition 6.1
Consider the bundle of fiber-to-fiber endomorphisms EndP associated to a principal G-bundle π : P → X .

The mapping πG : (p0, p1) ∈ P × P → p−1
0 p1 ∈ EndP is surjective and its fibers are the G-orbits on P × P by

the diagonal action λg × λg of the group G. There exists a unique smooth structure on EndP , such that πG is a
surjective submersion. This submersion factors by a bundle isomorphism π̄G : (P × P )/G

∼→ EndP .

Proof
The mapping πG is surjective: for any ψ ∈ (EndP )x0,x1 it suffices to take any p ∈ Px0 and p̄ = pψ ∈ Px1 to
obtain πG(p, p̄) = p−1p̄ = p−1pψ = ψ. Moreover, for any other pair (q, q̄) defining a fiber-to-fiber endomorphism
with source Px0 , there holds q = gp for some g ∈ G (in which case g = qp−1 ∈ G). In this case q−1q̄ = ϕ holds
if and only if q̄ = qϕ = (gp)ϕ = g(pϕ) = gp̄, hence if and only if (q, q̄) = (λg × λg)(p, p̄) for some g ∈ G. We
therefore conclude that πG is surjective and its fibers are the orbits by the diagonal action. As a consequence, there
exists a unique natural bijection (P × P )/G ≃ EndP through which πG : P × P → EndP gets identified with
the quotient mapping πG : P × P → (P × P )/G.
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Considering the diagonal action of G by λg × λg on P × P , there exists (check it in the trivial case P = X ×G)
a unique smooth structure (the quotient structure) on (P × P )/G such that, the natural projection πG : P × P →
(P × P )/G is a smooth surjective submersion. Therefore, the unique smooth structure on EndP , for which πG is
a surjective submersion, must be the quotient structure translated to EndP by the natural bijection given above.

Therefore, (P × P )/G (quotient by the diagonal action) exists and can be identified with EndP , using the
gauge difference mapping πG. The corresponding groupoid structure and several geometrical interpretations are
also considered in [7, 9, 30]. We want a better knowledge of the tangent bundle associated to EndP .

Any fiber-to-fiber endomorphism ψ01 ∈ (EndP )x0x1 determines a mapping (p0, p̄0) ∈ Px0 × Px0 7→
(p0ψ01, p̄0ψ01) ∈ Px1 × Px1 . This mapping factors in the quotient as a Lie group morphism Conjψ01

: ϕ0 ∈
GauPx0 7→ ψ−1

01 ϕ0ψ01 = ψ01 ◦ ϕ0 ◦ ψ−1
01 ∈ GauPx1 .

Definition 6.4
We call adjoint action by ψ ∈ EndP on LieGauPs(ψ), the linear morphism Adψ : LieGauPs(ψ) → LieGauPt(ψ)
induced between the corresponding Lie algebras by the Lie group morphism Conjψ. We call parallel transport
by ψ on AdPs(ψ), the linear morphism (ψ·) : AdPs(ψ) → AdPt(ψ) determined by Adψ, using the identifications
LieGauPx ≃ AdPx given in (7).

Recall that any a ∈ LieGauPx is identified with the G-covariant vector field A : px 7→ (d/dϵ)0px exp ϵa on
Px. When ψ ∈ (EndP )x acts by the adjoint representation, we get exp(ϵAdψ(a)) = ψ−1(exp ϵa)ψ ∈ GauPt(ψ),
therefore the G-covariant vector field associated to Adψ(a) is pt(ψ) 7→ (d/dϵ)0pt(ψ)ψ

−1(exp ϵa)ψ =

(d/dϵ)0ψ
(
pt(ψ)ψ

−1 exp ϵa
)
. This vector field takes on any point ψ(p) = pψ ∈ Pt(ψ), the value

(dψ)((d/dϵ)0p exp ϵa), which is the dψ-image of the value on p of the vector field A ∈ X(Ps(ψ)) associated
to a. As a consequence, the parallel transport (ψ·) : AdPs(ψ) → AdPt(ψ) is simply the transformation of any
vertical G-invariant vector field A on Ps(ψ) into the corresponding vertical G-invariant vector field ψ ·A on Pt(ψ),
defined by (ψ ·A)ψ(p) = dψ(Ap), using the diffeomorphism ψ : Ps(ψ) → Pt(ψ).

Theorem 6.2
The differential of the bundle morphism πG : P × P → EndP induces a surjective vector bundle morphism
s∗TGP ⊕ t∗TGP → T EndP , whose kernel Sym is given by elements (ψ,A, ψ ·A) ∈ s∗ AdP ⊕ t∗ AdP ⊂
s∗TGP ⊕ t∗TGP with π(A) = s(ψ) (π : AdP → X).

Consequently, there exists an exact sequence:

0 → Sym ↪→ s∗TGP ⊕ t∗TGP → T EndP → 0 (10)

Sym =
{
(ψ,A, ψ ·A) : ψ ∈ EndP, A ∈ AdPs(ψ)

}
and we may write T EndP = (s∗TGP ⊕ t∗TGP )/Sym.

Proof
Using the natural projections πi : P × P → P , i = 0, 1 and the tangent bundle TP → P , we get vector bundles
π∗
i TP → P × P . In the same way, using π0 : X ×X → X (we maintain the same name for the first projector on
P × P and X ×X) and the Atiyah bundle TGP → X we get a vector bundle π∗

0TGP → X ×X .
It is known that T (P × P ) = π∗

0TP ⊕ π∗
1TP . Consider πG : P × P → EndP , and the induced surjective vector

bundle morphism dπG : π∗
0TP ⊕ π∗

1TP = T (P × P ) → (πG)∗T EndP .
The quotient of P × P by λg × λg is EndP , consequently the quotient of (πG)∗T EndP by λg × λg is T EndP .

Observe also that the quotient of π∗
0TP ⊕ 0 → P × P by the action (dλg, λg) is precisely s∗TGP → EndP

(because TP/G = TGP and s : EndP → X is the projector induced by π0 : P × P → P ).
Therefore, dπG restricted to π∗

0TP ⊕ 0 ⊂ T (P × P ) factors by the action (dλg, λg) (because dλg(0p) = 0gp),
inducing in the quotient a natural morphism s∗TGP ⊕ 0 → T EndP .

In the same manner, dπG restricted to 0⊕ π∗
1TP factors by (λg, dλg) by a natural morphism 0⊕ t∗TGP →

T EndP .
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As dπG was a surjective morphism of vector bundles over P × P , we conclude that it factors by an induced
surjective morphism of vector bundles over (P × P )/G = EndP :

s∗TGP ⊕ t∗TGP → T EndP → 0

If dimX = n, dimG = m, then dimP = n+m and we know that TP → P has rank n+m, hence TGP → X
has rank n+m and consequently s∗TGP ⊕ t∗TGP has rank 2n+ 2m. On the other hand, dimEndP = dim(P ×
P )/G = n+m+ n+m−m = 2n+m, and therefore T EndP has rank 2n+m. The surjective morphism under
consideration will have as kernel some m-rank vector bundle over EndP . The proposed sub-bundle Sym has the
needed rank. We only have to prove that these elements map to the null vector on T EndP , when we apply the
morphism induced by πG(p0, p1) = p−1

0 p1 on the quotient manifold.
Fix ψ ∈ EndP and (p0, p1) ∈ P × P projecting to ψ = p−1

0 p1. For any choice of A ∈ AdPx0 , we know that
there exists a 1-parameter group of gauge transformations generated by A, that is, there exists ϕϵ : Px0 → Px0

such that (d/dϵ)ϵ=0p0ϕϵ = Ap0 ∈ Vp0P . The 1-parameter group of gauge transformations generated by ψ ·A
is, correspondingly, ψ ◦ ϕϵ ◦ ψ−1 = ψ−1ϕϵψ : Px1 → Px1 (here we use the reverse notation for composition of
elements in EndP ). That is, (d/dϵ)ϵ=0p1ψ

−1ϕϵψ = (ψ ·A)p1 ∈ Vp1P .
Consider the curve (p0ϕϵ, p1(ψ ◦ ϕϵ ◦ ψ−1)) = (p0ϕϵ, p1ψ

−1ϕϵψ) on P × P . This curve projects to EndP as:

(p0ϕϵ)
−1p1ψ

−1ϕϵψ = ϕ−1
ϵ (p−1

0 p1)ψ
−1ϕϵψ

taking into account that p−1
0 p1 = ψ, the curve has a constant value ψ ∈ EndP , for each ϵ.

Therefore, the tangent vector at ϵ = 0 to the curve α(ϵ) = (p0ϕϵ, p1ψ
−1ϕϵψ) ⊂ P × P is transformed by dπG

into the null vector 0 ∈ Tψ EndP . However, the curve under consideration has tangent vector (Ap0 , (ψ ·A)p1) ∈
Tp0P ⊕ Tp1P . As was indicated, the projection into T EndP can be done factoring by Tp0P ⊕ Tp1P → (TGP )x0 ⊕
(TGP )x1 . We conclude that (A,ψ ·A) ∈ (TGP )x0 ⊕ (TGP )x1 (which in particular is a pair of vertical invariant
vector fields) projects into the null vector, no matter the choice of A ∈ (AdP )x0 ⊂ (TGP )x0 .

Corollary 6.1
Consider the vertical sub-bundles V s EndP , V t EndP , V (s,t) EndP of the bundle T EndP → EndP ,
corresponding to vertical tangent vectors for the projections s : EndP → X , t : EndP → X and (s, t) : EndP →
X ×X , respectively.

Denote by Skew → EndP the vector sub-bundle {(ψ,A,−ψ ·A) ∈ s∗ AdP ⊕ t∗ AdP} ⊂ s∗ AdP ⊕ t∗ AdP .
The inclusion maps t∗TGP ↪→ s∗TGP ⊕ t∗TGP , s∗TGP ↪→ s∗TGP ⊕ t∗TGP and Skew ↪→ s∗TGP ⊕ t∗TGP

determine natural identifications:

V s EndP = (s∗ AdP ⊕ t∗TGP )/Sym ≃ t∗TGP

V t EndP = (s∗TGP ⊕ t∗ AdP )/Sym ≃ s∗TGP

V (s,t) EndP = (s∗ AdP ⊕ t∗ AdP )/Sym ≃


s∗ AdP

t∗ AdP

Skew

We call the natural identifications V s EndP ≃ t∗TGP the target-trivialization, V t EndP ≃ s∗TGP the source
trivialization (which induce a target and a source trivialization for V (s,t) EndP in terms of t∗ AdP and s∗ AdP ,
respectively), and call V (s,t) EndP ≃ Skew the equilibrated trivialization for the vertical bundle associated to
(s, t) : EndP → X ×X .

6.2. Parallelisms and principal connections

A fundamental element in the theory of discrete connections was denoted as discrete Atiyah sequence in [32]. In
our notation this sequence is simply:

0 → GauP ↪→ EndP → X ×X → 0
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This is an exact sequence of groupoids. A discrete connection was defined in [24, 32] as a G-equivariant subset
Hor ⊂ P × P transversal to the diagonal, specifically:

{(p, p)}p∈P = d1(P ) ⊂ Hor ⊂ P × P, (Id×π)|Hor : Hor → P ×X invertible (11)

In this situation, any pair (x0, x1) ∈ X ×X on a certain open neighborhood of the diagonal d1(X) determines a
fiber-to-fiberG-covariant morphism H(x0,x1) ∈ EndP , transforming p0 ∈ Px0 into the only element p1 ∈ Px1 such
that (p0, p1) ∈ Hor, that is, (p0, p1) = (Id×π)|−1

Hor (p0, x1). Moreover, as d1(P ) ⊂ Hor, associated to (x0, x0),
one obtains H(x0,x1) = Idx0 ∈ EndP . Conversely, any mapping H : (x0, x1) 7→ H(x0,x1) ∈ (EndP )(x0,x1),
transforming the diagonal into the identity elements, determines a subset Hor in the conditions above, formed
by all pairs (p, q) where q = H(x,x1)(p), for x = π(p) and all possible choices x1 ∈ X .

Definition 6.5
We call parallelism on P → X , any smooth mapping H : (x0, x1) ∈ Ud ⊂ X ×X 7→ ψ(x0,x1) ∈ EndP , defined on
an open neighborhood Ud of the diagonal d1(X) ⊂ Ud ⊂ X ×X , such that:

(s, t)(H(x0, x1)) = (x0, x1), H(x0, x0) = Idx0

for any elements x0, x1 ∈ X on the corresponding domains.

Remark 6.1
Even though a simple splitting of the discrete Atiyah bundle recovers all the essential properties desired for a
discrete connection notion in the case of mechanics, it does not fulfil all our needs for the case of variational field
theories. Therefore, we shall denote sections of the Atiyah sequence satisfying (11) as horizontal lifts or parallelism
notions, not as discrete connections.

The object that we call parallelism was called a discrete connection in [32], or groupoid connection by [30], if
we assume the additional condition H(x0, x1) = (H(x1, x0))

−1. However, in discrete theories where P is restricted
to a discrete set of nodes V = {xi}i∈I chosen on X , each fiber CPxi ⊂ (TGP ⊗ T ∗X)xi is an affine space
modelled on (V P )xi ⊗ T ∗

xiX , with dimension (dimX) · (dimG), while each fiber (EndP )xixj ≃ (Pxi × Pxj )/G
has dimension 2 dimG− dimG = dimG. If we pretend to consider one as the discretization of the other one, it is
easily justified when dimX = 1, but, considering the dimensions of the bundles and the reduction procedure of FJ
operator that we explain later, it becomes not so clear for theories where dimX > 1.

Calling H a groupoid connection as in [30] is, on the other hand, incompatible with another generally accepted
notion of groupoid connection, seen in the literature on groupoids (see [4] and references therein) as a sub-bundle
of T EndP with specific particular conditions.

To avoid confusion we choose to denote H as a parallelism.

A parallelism determines a corresponding notion of parallel sections:

Definition 6.6
We say a local section p : X → P is H-parallel if p(x0)H(x0, x1) = p(x1), for each pair (x0, x1) ∈ X ×X in the
corresponding domains.

Using a parallelism we may also determine, in the same sense as in [32], decompositions into horizontal and
vertical components.

Definition 6.7
For a given parallelism H : Ud ⊂ X ×X → EndP , we call associated source vertical projector Vs : EndP →
GauP the morphism defined on (s, t)−1(Ud) by ψ = Vs(ψ) · H(s(ψ), t(ψ)).

The source vertical projector is an X-bundle morphism from s : EndP → X to s : GauP → X . Moreover,
ψ−1Vs(ψ) only depends on (s(ψ), t(ψ)), and ψ = Vs(ψ) for the case ψ ∈ GauP ⊂ EndP . In a similar way,
there exists an associated target vertical projector Vt defined by ψ = H(s(ψ), t(ψ)) · Vt(ψ), which is an X-bundle
morphism from t : EndP → X to t : GauP → X .
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Proposition 6.3
For any fixed parallelism H : Ud → EndP , the differential dH restricted to s-vertical tangent vectors, at points
(x, x) of the diagonal, determines a connection χH

x ∈ CPx.

Proof
For any smooth trajectory {xϵ} ⊂ X , the identification V s(x0,x0)

(X ×X) ≃ Tx0X identifies the tangent vector
(d/dϵ)ϵ=0xϵ ∈ Tx0

X with the tangent vector (d/dϵ)0(x0, xϵ) ∈ V s(x0,x0)
(X ×X).

For any smooth trajectory {ψϵ} ⊂ (EndP )x and for any choice p ∈ Px, the identification V sψ0
EndP ≃ (TGP )x

identifies the tangent vector (d/dϵ)0ψϵ with the tangent vector πG((d/dϵ)0pψϵ) ∈ (TP )x/G = (TGP )x.
Consider the restriction ds(x,x)H : V s(x,x)(X ×X) ≃ TxX → V sIdx EndP ≃ (TGP )x. For any choice p ∈ Px0 , the

tangent vector (d/dϵ)0xϵ ∈ Tx0X is transformed by d(x0,x0)H into the tangent vector πG((d/dϵ)0pH(x0, xϵ)) ∈
(TGP )x0 . If we apply dπ : (TGP )x0 → Tx0X , induced in the quotient by dπ : TP → TX , the image
of this tangent vector is dπ ◦ πG((d/dϵ)0pH(x0, xϵ)) = dπ((d/dϵ)0pH(x0, xϵ)) = (d/dϵ)0π(pH(x0, xϵ)) =
(d/dϵ)0t(H(x0, xϵ)) = (d/dϵ)0xϵ.

As all tangent vectors δx ∈ TxX can be written in the form (d/dϵ)0xϵ for some trajectory, we conclude
then that d(x,x)H ∈ (TGP ⊗ T ∗X)x satisfies dπ ◦ d(x,x)H = Id. Hence it is contained in the affine subspace
CPx ⊂ (TGP ⊗ T ∗X)x.

Definition 6.8
We call principal connection χH ∈ Γ(CP) determined by a parallelism H the following section of the connection
bundle πCP : CP → X:

χH
x = ds(x,x)H ∈ CPx ⊂ (TGP ⊗ T ∗X)x

That is, in the same manner as a local section y(x) : X → Y of a bundle π : Y → X determines an extension to
the jet bundle jy : X → JY , also a locally defined parallelism H : Ud → EndP of a principalG-bundle π : P → X
determines a locally defined principal connection χH : X → CP.

Example 6.1
Any local section p : x ∈ X 7→ p(x) ∈ P of a principalG-bundle induces a smooth mapping p× p : X ×X → P ×
P , which composed with πG determines a locally defined parallelism Hp : (x0, x1) ∈ X ×X 7→ p(x0)

−1p(x1) ∈
EndP . Moreover, as (p(x0)−1p(x1))(p(x1)

−1p(x2)) = p(x0)
−1p(x2), this specific parallelism choice turns out to

be a groupoid morphism from EndP with the composition mapping to the pair groupoid X ×X .
The local section p itself is Hp-parallel. The induced locally defined connection χHp is easy to compute for any

tangent vector δ0 = (d/dϵ)0xϵ ∈ Tx0X of a curve xϵ ⊂ X:

⟨χHp , δ0⟩ = (d(x0,x0)Hp)(0, (d/dϵ)0xϵ) =

(
d

dϵ

)
0

(Hp(x0, xϵ)) =

(
d

dϵ

)
0

p(x0)
−1p(xϵ) ∈ V sIdx0 EndP

Using now the projector πG : (TGP )s(ψ) ⊕ (TGP )t(ψ) → Tψ EndP induced by (p, q) ∈ P × P 7→ p−1q ∈ EndP
and the identification V sψ EndP = (TGP )t(ψ), we get:

⟨χHp , δ0⟩ = πG((dx0p)(δ0)) = πG(⟨jx0p, δ0⟩) ∈ Tp(x0)P/G = (TGP )x0

The expression above holds for all tangent vectors δ0 ∈ TP . Hence, the parallelism Hp induced by a local
section p leads to a flat principal connection χHp ∈ Γ(CP), that coincides with the G-covariant connection
x ∈ X 7→ πG(jxp) ∈ (JP )/G = CP generated by p.

We observe that, if a local parallelism H(x, x̄) is induced by some local section p(x), then the corresponding
connection χH ∈ Γ(CP) is the projection of the jet section jp ∈ Γ(X, JP ) in the quotient space JP/G = CP.
Anyway, there exist several locally defined smooth principal connections and discrete parallelisms that are groupoid
morphisms and are not generated by any local section p(x).
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Example 6.2
If we consider the two-dimensional sphere X with its standard Riemannnian metric and the bundle π : P → X
of Riemannian referentials (a principal SO(2)-bundle, isomorph as a manifold to SO(3)), we may construct
a parallelism on P by choosing, for any pair of non-antipodal points, x0 ̸= x1 ∈ X , the mapping H(x0, x1) =
ψ(x0x1) : Px0 → Px1 that transforms any referential on x0 into the referential on x1, obtained by parallel transport
along the unique great-circle joining both points (and taking H(x, x) = IdPx for the pair x0 = x1 = x). We observe
that this parallelism H : X ×X → EndP is not globally defined, nor is induced by any local section. In fact it is
not a groupoid morphism: On spherical triangles parallel transport along two edges is not compatible with parallel
transport along the remaining edge. The connection associated to this parallelism is Levi-Civitta’s connection for
the sphere.

Theorem 6.4 (Generation of Parallelisms through principal connections and faithful FD operators)
Consider a principal connection χ on a principal G-bundle π : P → X , and any faithful FD operator ∆X : Ud →
TX where ∆X(Ud) = Uz is a star-shaped domain. There exists a parallelism H, whose associated connection is
χ and whose values H(x0, x1) are precisely the parallel transport morphisms Tx0x1 : Px0 → Px1 , associated to the
connection χ, along the curve segment αx0x1(ϵ) generated by ∆X , following Theorem 2.2.

Proof
Consider the principal connection χ ∈ Γ(CP) as a G-covariant section χ ∈ Γ(TP ⊗ π∗T ∗X). Consider for each
(x0, x1) the trajectory {αx0x1(ϵ)}0≤ϵ≤1 ⊂ X .

Using the trajectory αx0x1 (joining x0 at ϵ = 0 to x1 at ϵ = 1 and characterized by (1)) and the principal
connection, we may determine a trajectory ψx0x1(ϵ) on EndP starting at Idx0 at ϵ = 0 and solving, for some
choice of p0 ∈ Px0 , the following ordinary differential equation on EndP :

ψx0x1(0) = Idx0 ,

(
d

dϵ

)
c

p0ψx0x1(ϵ) =

⟨
χp0ψx0x1 (c),

(
d

dϵ

)
c

αx0x1(ϵ)

⟩
∈ Tp0ψx0x1 (c)P (12)

As χ is G-covariant, the equation for another choice of gp0 ∈ Px0 is simply the image by dλg of this equation,
leading to an equivalent equation. The equation and its unique local solution do not depend on the particular
choice of p0 ∈ Px0 (it does depend on x0, x1). As χ is a connection and π(pψ) = t(ψ), the projection with dπ of
the differential equation shows that t(ψx0x1(ϵ)) = xϵ satisfies a differential equation (d/dϵ)c(xϵ) =

(
d
dϵ

)
c
αx0x1(ϵ)

with xϵ = x0 at ϵ = 0. Hence xϵ = αx0x1(ϵ).
Then, ψx0x1(ϵ) is a family of fiber-to-fiber endomorphisms with a common source x0 and a variable target

xϵ = αx0x1
(ϵ). We may define H(x0, x1) to be the extremal value ψx0x1(1) of this trajectory, for points (x0, x1)

such that the solution is defined at ϵ = 1.
To prove that ψx0x1(ϵ) is defined at ϵ = 1, for choices (x0, x1) close enough to the diagonal, we just observe from

the local existence theorem of solutions of any ODE, that ψx0x1(ϵ) is indeed defined for some interval ϵ ∈ [0, r],
with r small enough. In the case r < 1, recall that αx0x̄1(ϵ) = αx0x1(ϵr), for any x0, x1 ∈ X , x̄1 = αx0x1(r)
and 0 ≤ ϵ ≤ 1. Any point x̄1 on the trajectory αx0x1 generates then a new trajectory αx0x̄1 , that is, (up to
reparameterization) a segment of the original one.

Differential equation (12) defining ψx0x̄1(ϵ) uses αx0x̄1(ϵ), which we may substitute with αx0x1(ϵr) to conclude
that ψx0x1(ϵr) solves indeed the differential equation defining ψx0x̄1(ϵ). This proves that ψx0x̄1(ϵ) is defined for
ϵ ∈ [0, 1], and hence H(x0, x̄1) is defined when (x0, x̄1) are close enough to the diagonal.

Moreover, this also proves that, whenever H(x0, x1) is defined, for any point xc = αx0x1(c) with c ∈ [0, 1] (a
point that belongs to the curve segment αx0x1 joining x0 and x1), there holds

H(x0, xc) = ψx0xc(1) = ψx0x1(c) (13)

To prove that H smoothly depends on x0, x1, we just indicate it as a direct consequence of the existence of
smooth solutions of smooth ODEs with initial conditions (in our case (12)), and the unicity and smooth dependence
of the solution on parameters, in the case that the equation depends smoothly on certain parameters (in our case the
parameters are x0, x1).
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The parallel transport determined by χ along any trajectory {xϵ}0≤ϵ≤1 ⊂ X is a family of morphisms Tc : Px0 →
Pxc characterized as:

T0(p) = p,

(
d

dϵ

)
c

Tϵ(p) = ⟨χTc(p), (d/dϵ)cxϵ⟩ (14)

In our particular case, for the trajectory xϵ under consideration we know that H(x0, xϵ) = ψx0xϵ(1) = ψx0x1(ϵ),
where ψx0x1

(ϵ) solves differential equation (12). As a consequence, the family of morphisms Tc = H(x0, xc) solve
(14) and H(x0, x1) is the parallel transport indicated by our statement.

Let us finally determine the connection associated to H. We may take the derivative with respect to ϵ at ϵ = 0
in equation (1) defining αx0x1(ϵ). Here, as ∆X is faithful we may apply Theorem 2.2 to obtain (d/dϵ)0αx0x1(ϵ) =
∆X(x0, x1).

Moreover, we know from (13) that the trajectory ψx0x1(ϵ) defined on EndP can be written as ψx0x1(ϵ) =
H(x0, xϵ), for the value xϵ = αx0x1(ϵ). We get then from (12):

H(x0, x0) = Idx0 ,

(
d

dϵ

)
c

p0H(x0, xϵ) =

⟨
χp0H(x0,xc),

(
d

dϵ

)
c

αx0x1(ϵ)

⟩
∈ Tp0ψx0x1 (c)P

which taking into account that (d/dϵ)0xϵ = ∆X(x0, x1) and going to the quotient by G leads at c = 0 to:⟨
d(x0,x0)H,∆

X(x0, x1)
⟩
=

⟨
χx0 ,∆

X(x0, x1)
⟩
∈ (TGP )x0

Taking this for all possible values x1 such that (x0, x1) is in the open domain of H and knowing that x1 ∈ X 7→
∆X(x0, x1) ∈ Tx0X is a local diffeomorphism, from a neighborhood of x0 ∈ X to a neighborhood of 0 ∈ Tx0X ,
shows that d(x0,x0)H = χx0 . The parallelism H induced by a faithful FD operator ∆X and a connection χ
determines a connection χH that coincides with χ.

7. Reduction of forward difference operators

Let π : P → X be a G-principal bundle. We shall focus now on FD operators ∆: Ud ⊂ P × P → TP that are
covariant for the λg × λg and dλg actions on P × P and TP , respectively. The mapping ∆ factors then through
the quotient spaces (P × P )/G and TP/G. The first one has a geometrical interpretation as the Gauge groupoid
of fiber-to-fiber endomorphisms EndP , and the second one as Atiyah’s bundle TGP of invariant vector fields.

Definition 7.1
We call reduced forward difference (RFD) operator, any injective local diffeomorphism ∆G : Uē → TGP , defined
on an open neighbourhood Uē of the unitary section ē : x ∈ X 7→ Idx ∈ EndP , transforming this unitary section
into the zero section z̄ : x ∈ X 7→ 0x ∈ TGP and covering IdX for the bundle structures s : EndP → X and
πAt : TGP → X .

The RFD operator ∆G is called projectable if it factors by the projectors (s, t) : EndP → X ×X and
dπ : TGP → TX , as a locally mapping ∆X : Ud → TX , leading to a commutative diagram of locally defined
morphisms:

Uē
(s,t)

//

∆G

��

Ud

∆X

��

TGP
dπ // TX

(15)

Observe that the injective local diffeomorphism condition implies that ∆G is a diffeomorphism of an open
neighbourhood Uē ⊂ EndP , of the unitary section, with an open neighbourhood Uz̄ ⊂ TGP , of the null section.

When ∆G is an X-bundle morphism for the projectors s, πAt, the injectivity is equivalent to injectivity
on each fiber, and the local diffeomorphism condition means that the vertical differential (for the source
fibration), (d∆G)ψ : V

s
ψ (EndP ) → V πAt∆G(ψ)(TGP ), should be a vector bundle isomorphism. We may use the natural
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identifications V sψ (EndP ) ≃ (TGP )t(ψ) and V πAtax (TGP ) ≃ (TGP )x to express this vertical component as a linear
morphism (V∆G)ψ : (TGP )t(ψ) → (TGP )s(ψ):

V sψ (EndP )

dψ∆G

��

∼
// (TGP )t(ψ)

(V∆G)ψ

��

V πAt∆G(ψ)(TGP )
∼ // (TGP )s(ψ)

Definition 7.2
We say the RFD operator ∆G is faithful if at each of the unitary elements Idx ∈ EndP , its differential on s-vertical
vectors (V∆G)Idx : (TGP )x → (TGP )x is the identity map.

Example 7.1
If we consider any local X-bundle diffeomorphism D : Uē → TGP (such that πAt ◦D = s), defined on a
neighborhood Uē ⊂ EndP of the unitary section, we may obtain an X-bundle diffeomorphism that takes Idx ∈
EndP into 0x ∈ TGP just by considering ∆G(ψ) = D(ψ)−D(Ids(ψ)). As the term D(Ids(ψ)) only depends on
the source associated to ψ, the s-vertical component of the differential of this mapping, at any ψ ∈ EndP is
just (V D)ψ : (TGP )t(ψ) → (TGP )s(ψ), invertible because D is a local diffeomorphism. Therefore ∆G is a local
diffeomorphism and establishes a RFD operator on some open neighborhood of the identity section.

This RFD operator can be transformed into a faithful one just taking ∆G(ψ) = (V D)−1
Ids(ψ)

(D(ψ)−D(Ids(ψ))).

Recall that, for any principal G-bundle π : P → X and for its Atiyah bundle πAt : TGP → X , there holds
π∗TGP ≃ TP and that in this identification the action dλg on TP gets identified with (λg, Id) on P×(π,πAt)TGP ,
while the projector P×(π,πAt)TGP → TGP gets identified with dπ : TP → TGP . In a similar way we observe:

Proposition 7.1
There exists a natural identification of the pull-back π∗ EndP of the bundle s : EndP → X by π : P → X with
the pair bundle π0 : P × P → P .

The diagonal action λg × λg on P × P gets then identified with λg × Id on P×(π,s) EndP and the projector
P×(π,s) EndP → EndP gets identified with πG : P × P → EndP .

For any gauge transformation ϕ : P → P , the action ϕ× ϕ gets identified on the bundle π∗ EndP =
P×(π,s) EndP with the action ϕ× Conjϕ, where we define:

Conjϕ(ψ) = ϕt(ψ) ◦ ψ ◦ ϕ−1
s(ψ), ψ ∈ EndP

Proof
The identification is given by (p0, p1) ∈ P × P 7→ (p0, p

−1
0 p1) ∈ P×(π,s) EndP , and its inverse is defined by

(p0, ψ) ∈ P×(π,s) EndP 7→ (p0, p0ψ) ∈ P × P . The projector πG : (p0, p1) 7→ p−1
0 p1 is then clearly identified

with the projector to the EndP -component. The actions λg × λg and ϕ× ϕ on P × P are clearly transformed
into the actions given in our statement.

Proposition 7.2
Consider a RFD operator ∆G : Uē → TGP for the principal G-bundle π : P → X . Consider the morphism
∆: UPd → TP induced on π∗Uē ⊂ π∗ EndP ≃ P × P , π∗TGP ≃ TP . Then,

• ∆ is a G-covariant FD operator on the bundle P , and the bundle morphism induced on the quotient coincides
with ∆G.

• ∆ is ϕ-covariant for some gauge transformation ϕ : P → P if and only if ∆G is ϕ-covariant (that is,
∆G ◦ Conjϕ = dϕ ◦∆G).

• ∆G is projectable to ∆X if and only if ∆ is projectable to ∆X .
• ∆G is faithful if and only if ∆ is faithful.
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Proof
As ∆: UPd → TP is given from Id×∆G : P×(π,s)Uē → P×(π,πAt)TGP , using the identifications P × P ≃
P×(π,s) EndP and TP ≃ P×(π,πAt)TGP , and ∆G is an injective local diffeomorphism, also ∆ is an injective
local diffeomorphism. Moreover, as ∆G transforms Idx into 0x, then ∆ transforms (p, p) ∈ P × P into 0p ∈ TpP .

Clearly π∗Uē = P×(π,s)Uē is invariant by λg × Id, therefore the domain UPd ⊂ P × P is invariant by λg × λg.
Moreover, as Id×∆G is covariant when we consider the action λg × Id on P × EndP and λg × Id on P × TGP ,
we conclude that ∆ is covariant when we consider the associated actions λg × λg on P × P and dλG on TP .
Hence ∆ is G-covariant.

Moreover, in the quotient by λg × Id acting on P×(π,s) EndP and on P×(π,πAt)TGP , the morphism Id×∆G

clearly projects to ∆G. Consequently, ∆: UPd → TP projects as ∆G. Hence, ∆ is a covariant FD operator that, in
the quotient by the G-action coincides with ∆G.

Stating that ∆G ◦ ϕEnd = dϕ ◦∆G is equivalent to stating that (Id×∆G) ◦ (ϕ× ϕEnd) = (ϕ× dϕ) ◦ (Id×∆G).
Using the identifications Id×∆G with ∆, this is equivalent to stating that ∆ ◦ (ϕ× ϕ) = dϕ ◦∆. Therefore, ϕ-
covariance of ∆ is equivalent to ϕ-covariance of ∆G.

For fixed ∆G : EndP → TGP , ∆X : X ×X → X (the mappings are locally defined but we shall use a lighter
notation and will not keep track of the corresponding domains) consider the diagram:

P × P ∼
//

∆

��

P×(π,s) EndP
(s,t)

//

Id×∆G

��

X ×X

∆X

��

TP ∼
// P×(π,πAt)TGP

dπ // TX

where the square on the left is commutative (because of the definition of ∆). The square on the right, on the other
hand, is commutative if and only if dπ ◦∆G = (s, t) ◦∆X , which happens precisely if and only if the diagram in
(15) is commutative. Therefore ∆ is projectable to ∆X if and only if ∆G is projectable to ∆X .

Regarding the condition that ∆ is faithful, observe the diagram of morphisms of vector bundles on Px:

Px × (TGP )x ∼
//

Id×(V∆G)Idx

��

Px × V sIdx(EndP ) ∼
//

Id×dIdx∆G

��

V π0

dx
(P × P ) ∼

//

d∆

��

(TP )x

V∆

��

Px × (TGP )x ∼
// Px × V πAt0x

(EndP ) ∼
// V πTPzx (TP ) ∼

// (TP )x

where the bundle V π0

dx
(P × P ) → Px is the restriction of V π0(P × P ) → P × P to the diagonal dx : Px ↪→

Px × Px, the bundle V πTPzx (TP ) → Px is the restriction of V πTP (TP ) → TP to the zero section zx : Px ↪→ (TP )x
and (TP )x is seen as a vector bundle on the diagonal d(Px) ⊂ Px × Px. Consequently, d∆, V∆ stand for the
corresponding restrictions to these sub-bundles.

The left and right hand side cycles are commutative because of the definition of V∆G and V∆. The cycle at the
middle is commutative because ∆ is identified with Id×∆G by our isomorphisms.

Observing now that both on the upper row or on the lower row the composition of isomorphisms is simply the
natural identification Px × (TGP )x ≃ (TP )x, this commutative diagram proves that (V∆G)Idx is the identity if
and only if V∆(p,p) is the identity, for any p ∈ Px. Therefore ∆ is faithful precisely when ∆G is faithful.

Remark 7.1
We know that a covariant faithful projectable FD operator ∆: UPd → TP on a principalG-bundle induces a faithful
projectable RFD operator ∆G : Uē → TGP . Its projection ∆X : Ud → TX is another faithful FD operator on the
base manifoldX , and its restriction to UGau

ē = Uē ∩GauP ⊂ EndP determines a mapping ∆Gau : U
Gau
ē → TGP .

Moreover, considering that dπ ◦∆G = ∆X ◦ (s, t), we may conclude that dπ(∆G(ϕx)) = ∆X(x, x) = 0x, for any
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ϕx ∈ GauPx. Hence, ∆Gau takes values on AdP ⊂ TGP , leading to the following commutative diagram:

UGau
ē

� � //

∆Gau

��

Uē

∆G

��

(s,t)
// Ud

∆X

��

AdP � � // TGP
dπ // TX

(16)

As ∆G was an injective local diffeomorphism, its restriction is still an injective local immersion of GauP into
AdP . Taking into account the dimension, it is an injective local diffeomorphism transforming Idx into 0x, and has
a locally defined inverse that, in the case that ∆G is faithful, represents a retraction map of the gauge bundle, as
given in definition 7.3.

Definition 7.3
We call retraction map of the gauge bundle any smooth X-bundle morphism τ : U → GauP , defined on an open
subset U ⊂ AdP , such that its restriction to each fiber τx : U0x = U ∩AdPx → GauPx is a reduced retraction
map on the Lie group GauPx (according to Definition 2.1), using the natural identification AdPx ≃ LieGauPx in
(7), for each Lie group GauPx.

Being an X-bundle morphism and demanding that on each fiber it is a retraction map, implies that τ is an
injective local diffeomorphism, identifying an open neighbourhood U0 of the null section 0: X → AdP with an
open neighbourhood Uē of the unitary section ē : X → GauP .

The exponential map exp: AdP → GauP is a simple example of faithful retraction map of the gauge bundle.
A local inverse of ∆Gau : U

Gau
ē → AdP defined from a faithful projectable RFD operator will also be an example

of faithful retraction map of the gauge bundle.
The situation shown in (16) can be reversed to generate a faithful RFD operator:

Theorem 7.3 (Generation of faithful RFD operators)
For any faithful FD operator ∆X : Ud → TX (Ud ⊂ X ×X), any reduced retraction map τ : U → GauP of the
Gauge bundle (U ⊂ AdP ), and any parallelism H : U ′

d → EndP (U ′
d ⊂ X ×X), the following expression is a

(locally defined) faithful RFD operator, projectable to ∆X , whose restriction to GauP is the inverse τ−1 of the
retraction map.

∆G(ψ) = τ−1(Vs(ψ)) +
⟨
χH
s(ψ),∆

X(s(ψ), t(ψ))
⟩

where we use the connection χH
x = (d(x,x)H) and the source vertical projector Vs(ψ) = ψ · (H(s(ψ), t(ψ)))

−1

associated to H .

As a particular case, we may simply fix a faithful FD operator ∆X and a fixed principal connection χ. Then,
a faithful RFD operator on P can be obtained using the exponential AdP → GauP as retraction map and the
parallelism H induced by ∆X , χ as described in Theorem 6.4. The simplest case, for a trivial principal G-bundle,
arises from the consideration of the flat principal connection given by the trivialization, and of the retraction map
of the gauge bundle, generated from a retraction map on the Lie group G using the trivializations P = X ×G,
AdP = X × LieG.

Proof
Consider the locally defined inverse τ−1 : Uē ⊂ GauP → U0 ⊂ AdP of the given retraction map τ . As we
know, the parallelism allows, in a neighbourhood of the identity section, to decompose elements ψ ∈ EndP into
horizontal and vertical components, so we may write:

ψ = τ(Aψ) · H(s(ψ), t(ψ)), Aψ = τ−1(Vs(ψ)) ∈ AdPs(ψ), Vs(ψ) = ψ · (H(s(ψ), t(ψ)))
−1

Consider, for each ψ ∈ EndP the trajectory {xϵ}0≤ϵ≤1 onX that joins x0 = s(ψ) to x1 = t(ψ), following Theorem
2.2. Consider A : ψ ∈ EndP → Aψ ∈ AdP defined as Aψ = τ−1(Vs(ψ)). We shall define ∆G(ψ) to be the
tangent vector at ϵ = 0 of the trajectory σψ(ϵ) = τ(ϵAψ) · H(x0, xϵ), a trajectory that joins Idx0 at ϵ = 0 to ψ
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at ϵ = 1. This tangent vector is:

∆G(ψ) =

(
d

dϵ

)
0

σψ(ϵ) = (d0xτ)(Aψ) + (d(x0,x0)H)(∆X(x0, x1)) = τ−1(Vs(ψ)) +
⟨
χH
s(ψ),∆

X(s(ψ), t(ψ))
⟩

where we use that τ(0x) = Idx = H(x, x), (d0xτ)(Aψ) = Aψ for the retraction map τ , (d/dϵ)0xϵ = ∆X(x0, x1),
and the definition of the connection χH associated to a parallelism H.

First of all, to prove that ∆G factors by ∆X : Ud → TX it suffices to observe that τ−1(Vs(ψ)) ∈ AdP ⊂ TGP

projects as 0 by dπ : TGP → TX and that
⟨
χH
s(ψ),∆

X(s(ψ), t(ψ))
⟩
∈ TGP projects as ∆X(s(ψ), t(ψ)) ∈ TX

(because χ is a connection). Our mapping ∆G is projectable as ∆X .
As ∆X(x, x) = 0 and Vs is the identity on GauP , we observe that ∆G on GauPx ⊂ EndP is just the mapping

τ−1. As τ was a retraction map, whose differential at the identity was the identity on the adjoint bundle, we
conclude that the differential of ∆G on V (s,t) EndP ⊂ V s EndP is the identity map. We still have to study this
differential on V s EndP .

For any choice x0, x1 ∈ X , consider xϵ = αx0x1(ϵ) (as in Theorem 2.2). Consider the curve ψϵ = H(x0, xϵ)
on EndP , that for ϵ = 0 has a tangent vector

(
d(x0,x0)H

)
(∆X(x0, x1)) = ⟨χH

x0
,∆X(x0, x1)⟩. Its image by ∆G

is a curve on (TGP )x0 defined as ∆G(ψϵ) = ⟨χH
x0
,∆X(x0, xϵ)⟩ (because ψϵ has a trivial vertical component).

Taking into account that ∆X(x0, xϵ) = ϵ∆X(x0, x1), the tangent vector of this curve ∆G(ψϵ) ⊂ (TGP )x0
at ϵ = 0

is identified with ⟨χH
x0
,∆X(x0, x1)⟩.

We conclude that dId∆G is the identity map on all elements with the form ⟨χH
x0
,∆X(x0, x1)⟩, where x1 is

arbitrary on an open neighbourhood of x0. As ∆X(x, ·) is a local diffeomorphism from a neighborhood of x ∈ X
to a neighbourhood of 0x ∈ TxX , we conclude that dId∆G is the identity on all elements of ImχH

x ⊂ (TGP )x ≃
V sIdx EndP .

As we know, for any principal connection χ the image Imχx ⊂ (TGP )x is a complementary subspace to AdPx,
and therefore we conclude that dIdx∆G is the identity map on the whole space V sIdx EndP . As ∆G is a local
diffeomorphism on some neighborhood of the identity section, it will be a diffeomorphism when restricted to some
smaller neighborhood. On this neighborhood, the RFD operator ∆G is then a faithful RFD operator, projectable to
∆X , and whose restriction to GauP is an inverse of the retraction map τ .

8. Discretization and reduction of Lagrangian densities

Consider a volume form volX on a manifoldX and a smooth Lagrangian function L ∈ C∞(JP ), for some principal
G-bundle π : P → X .

In the case that the Lagrangian isH-invariant for some closed subgroupH ⊆ G, we know that the corresponding
trivialized Lagrangian function ℓ(p, χ) : P×XCP → R (Definition 4.12) is invariant for H acting on the first
component, and can be expressed as a reduced Lagrangian function ℓ(q, χ) : HStr×XCP → R, where HStr =
P/H is the bundle of H-structures and CP the bundle of principal connections. Moreover, following Corollary
4.2, if L is ϕ-invariant for some gauge transformation ϕ : P → P , the associated H-reduced Lagrangian is also
ϕ-invariant.

On the other hand, in the case that we consider a faithful projectable FD operator on P , the corresponding
discrete volume function ṽol : X̃ → R+ and FJ operator JPX : J̃P → π∗

0JP allow to use LvolX to generate the
corresponding discretized Lagrangian Ld : J̃P → R (Definition 5.12), determined on the regular domain J̃P ⊂
P×n. This function only depends on the Lagrangian density LvolX and not on the particular decomposition as a
volume form, on the base manifold multiplied with a function on the jet bundle. Moreover, following Proposition
5.3, if L is H-invariant then the associated discrete Lagrangian Ld is also H-invariant.

Is there a coherent way to H-reduce discrete Lagrangian functions Ld, that are H-invariant and to discretize H-
reduced Lagrangian densities ℓvolX? In this section, we shall introduce the space where reduced discrete theories
have a sense and will explore the interplay of the reduction and discretization procedures for Lagrangian densities
LvolX that are H-invariant, when we employ covariant faithful FD operators (that is, faithful projectable RFD
operators).
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Proposition 8.1
Consider any principalG-bundle π : P → X . There exists a natural identification of the pull-back π∗(EndP )×sn−1

of the bundle s : (EndP )×sn−1 → X by π : P → X with the bundle π0 : P×n → P . Using this identification,
the projector π×n : P×n → X×n gets identified with (s, t×n−1) : P×(π,s)(EndP )

×sn−1 → X×n. Moreover, the
action λ×ng on P×n gets identified with λg × Id on P×(π,s)(EndP )

×sn−1, and for any gauge transformation
ϕ : P → P the action ϕ×n gets identified with ϕ× ϕ×n−1

End .

Proof
It suffices to apply Proposition 7.1. The identification is then given by (p0, . . . , pn) ∈ P×n 7→
(p0, p

−1
0 p1, . . . , p

−1
0 pn) ∈ P×(π,s)(EndP )

×sn−1 and its inverse (p0, ψ1, . . . , ψn) ∈ P×(π,s)(EndP )
×sn−1 7→

(p0, p0ψ1, . . . , p0ψn) ∈ P×n.

Corollary 8.1
There exists a natural identification of the pull-back π∗

HStr(EndP )
×sn−1 of the bundle s : (EndP )×sn−1 → X

by πHStr : HStr = P/H → X with the bundle π0 : P
×n/H → P/H = HStr. For any gauge transformation

ϕ : P → P , the action ϕ×n factors in the quotient P×n/H ≃ HStr×X(EndP )×sn−1 as acϕ × ϕ×n−1
End , where

acϕ : Hp ∈ P/H 7→ H(pϕ) ∈ P/H .

Recall that the FJ operator JPX associated to a faithfull covariant projectable FD operator (equivalently, a
faithful projectable RFD operator) is a covariant injective local diffeomorphism J̃P → π∗

0(JP ) and determines
a mapping J̃P/G→ π∗

0(JP/G) on the quotient manifolds. Using the identifications JP ≃ P×XCP and P×n ≃
P×X(EndP )×sn−1, where the group G acts only on the leading P -component, we get a more convenient
expression for the FJ operator JPX , that we might express in terms of the RFD operator.

Definition 8.1
For a fixed projectable RFD operator ∆G : Uē → TGP , we denote by π̃CP = C̃P → X̃ and call discrete
connection bundle associated to the principal G-bundle π : P → X , the open sub-bundle of the bundle
(s, t×n−1) : (EndP )×sn−1 → X×n given by elements (ψ1, . . . , ψn) such that, ∆G(ψi) is defined and whose
projection by (s, t×n−1) is a point (x0, x1, . . . , xn) in the set X̃ ⊂ X×n of regular points. That is, C̃P =

(Uē)
×sn−1 ∩ (s, t×n−1)−1X̃ .

One element in C̃P is a regular point (x0, . . . , xn) ∈ X̃ ⊂ X×n together with a sequence of fiber-to-fiber
endomorphisms ψi ∈ EndP (i = 1 . . . n) in the domain of ∆G, with s(ψi) = x0, t(ψi) = xi ∀i = 1, . . . , n.
Considering now the restriction of the previous identification to the open sub-bundle J̃P ⊂ P×n (see Definition
5.5), we have:

Corollary 8.2
There exists a natural diffeomorphism of the bundle π∗C̃P = P×XC̃P → π∗X̃ with the bundle J̃P → π∗

0P (where
π0 : X̃ → X , π : P → X). This identification transforms the action λg × Id on π∗C̃P = P×XC̃P into the action
λ×ng on J̃P ⊂ P×n. It also identifies the action ϕ× Conj×n−1

ϕ with ϕ×n, for any gauge transformation ϕ.
In the quotient, by the action of any closed subgroupH ⊆ G, this induces a natural diffeomorphism of the bundle

π∗
HStrC̃P = HStr×XC̃P → X̃ with the bundle J̃P/H → X̃ . The action ϕ×n of any gauge transformation ϕ on J̃P

factors in the quotient by H as acϕ × Conj×n−1
ϕ , using the identification J̃P/H ≃ HStr×XC̃P.

In the same manner as projectable FD operators induce corresponding FJ operators, also projectable RFD
operators induce reduced Forward Jacobi operators.

Proposition 8.2
Consider the projectable covariant FD operator ∆ on P , determined by some projectable RFD operator ∆G : Uē →
TGP on a principal G-bundle π : P → X . The n-Jacobian immersion JP : P×n → π∗

0(TP ⊗Rn) and FJ operator
JPX : J̃P → π∗

0(JP ) associated to ∆ (given by Lemma 5.3 and Definition 5.9) factor by the diagonal action ofG on
P×n, the tangent action on TP ⊗Rn and the 1-jet action on JP . The corresponding projected morphisms (reduced
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n-Jacobian map and reduced FJ operator) are:

RJP : (ψ1, . . . , ψn) ∈ (EndP )×sn−1 7→
∑

∆G(ψi)⊗ ei ∈ π∗
0(TGP ⊗Rn)

JCP = cRn(RJ
P ⊗ J−1

X ) : C̃P → π∗
0(CP) ⊂ π∗

0(TGP ⊗ T ∗X)
(17)

Proof
To prove that these operators factor by the G-action, it suffices to apply the covariance properties stated in Lemma
5.2 and Theorem 5.1, for each of the bundle automorphisms λg : P → P . The particular expressions for the
induced morphism RJP on the quotient manifolds is a direct consequence of the definition for ∆G. The particular
expression for JCP is a consequence of the definition of JPX , using cRn(JP ⊗ J−1

X ) and the factorization of JP as
RJP .

Definition 8.2
For a projectable, faithful RFD operator ∆G : Uē → TGP , we call Reduced n-Jacobian immersion
RJP : (EndP )×sn−1 → π∗

0(TGP ⊗Rn) and Reduced Forward Jacobi (RFJ) operator JCP : C̃P → π∗
0(CP),

respectively, the mappings given in (17).

Our previous results (Theorem 5.1, Corollary 8.2 and Proposition 8.2) lead to the first relevant property of the
RFJ operator:

Theorem 8.3
The RFJ operator JCP : C̃P → π∗

0(CP) is an injective local diffeomorphism of X̃-bundles. Moreover, if ∆G is
covariant for some gauge transformation ϕ : P → P , there holds:

JCP ◦ Conj×n−1
ϕ = (cϕ) ◦ JCP

where for any gauge transformation ϕ, we denote Conjϕ ψ = ϕt(ψ) ◦ ψ ◦ ϕ−1
s(ψ) : Ps(ψ) → Pt(ψ), for each ψ ∈

EndP , and cϕ : CP → CP is the morphism induced by jϕ : JP → JP on the quotient CP = JP/G.

If P → X is a principal G-bundle, H ⊆ G a closed subgroup, and ∆G a faithful projectable RFD operator, all
definitions involved lead to the following commutative diagram, where all morpisms are covariant for the natural
action of any gauge transformation ϕ : P → P , on the corresponding spaces:

Figure 2. Commutative diagram.

In this diagram the upper side refers to discrete theory, lower side to smooth theory, left hand side to non
trivialized (jet bundle) formulation, right hand side to trivialized (principal connection bundle) formulation, front
side to unreduced formalism, back side toH-reduced formalism. Morphisms going downwards are Forward-Jacobi
operators relating smooth and discrete formulations. Morphisms going rightwards are trivialization isomorphisms
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relating jets with principal connections. Finally, morphisms going backwards are quotient morphisms by the H-
action, relating any formalism with its H-reduced version.

Moreover, in a similar way as in Theorem 5.2, in the case of faithful projectable RFD operators, the reduced
forward Jacobi operator has the expected behaviour when one considers points that coalesce to a certain diagonal
point (x0, . . . , x0). To be precise:

Theorem 8.4
Let ∆G : Uē → TGP be a faithful projectable RFD operator for the principalG-bundle π : P → X and JCP : C̃P →
π∗
0(CP) the associated RFJ operator.
Consider any smooth trajectory x̃(ϵ) = (x0, x1(ϵ), . . . , xn(ϵ))0<ϵ<ϵmax ⊂ X̃ coalescing to a diagonal point (see

Definition 5.10) and contained in the regular domain X̃ ⊂ X×n. For each parallelism H : Ud → EndP , there exists
ϵmax > 0 so that, the induced smooth trajectory ψ̃(ϵ) = (ψi(ϵ))i=1...n ∈ C̃Px0 defined by ψi(ϵ) = H(x0, xi(ϵ))

belongs to the regular domain C̃P, for 0 < ϵ < ϵmax and is transformed by the RFJ operator into a trajectory
JCP(ϵ) ∈ CPx0 , whose limit value for ϵ→ 0+ (if it exists) coincides with the value at x0 of the connection χH

associated to the parallelism H.

Proof
As limxi(ϵ) = x0, and Ud is an open neighbourhood of the diagonal, we get ϵmax > 0 such that (x0, xi(ϵ)) ∈ Ud
for ϵ < ϵmax. Moreover, there holds limH(x0, xi(ϵ)) = Idx0 and therefore as Uē is an open neighbourhood of the
unitary section, for a possibly smaller ϵmax we can assure that ψi(ϵ) = H(x0, xi(ϵ)) ∈ Uē for 0 < ϵ < ϵmax. As the
trajectory x̃(ϵ) = (x0, x1(ϵ), . . . , xn(ϵ)) was contained in X̃ for ϵ ̸= 0, we conclude that ψ̃(ϵ) is contained in the
regular domain C̃P for 0 < ϵ < ϵmax.

Both JX and RJP are smooth mappings and transform smooth curves x̃(ϵ) and ψ̃(ϵ) into smooth curves JX(ϵ),
RJP (ϵ).

By definition, we have:

RJP (ψ̃) =
∑

∆G(ψi)⊗ ei ⇒ ⟨RJP (ψ̃), ei⟩ = ∆G(ψi) (ψ̃ = (ψi)i=1...n)

ψi(0) = Idx0 , s(ψi(ϵ)) = x0 ⇒ ψ̇i(0) ∈ V sIdx0 EndP

Taking now into account that ∆G is faithful and projectable to ∆X we get:

ψ̇i(0) = (d∆G)Idx0 (ψ̇i(0)) = lim
ϵ→0+

∆G(ψi(ϵ))−∆G(Idx0)

ϵ
= lim
ϵ→0+

⟨RJP (ϵ), ei⟩ − 0

ϵ

ẋi(0) = (d∆X)(x0,x0)(ẋi(0)) = lim
ϵ→0+

∆X(x0, xi(ϵ))−∆X(x0, x0)

ϵ
= lim
ϵ→0+

⟨JX(ϵ), ei⟩ − 0

ϵ

where ẋi(0) ∈ Tx0X , ψ̇i(0) ∈ V sIdx0
EndP stand for the tangent vectors at ϵ = 0 of the given curve xi(ϵ) and its

image ψi(ϵ).
Hence, if there exists a limit J0 for JCP(ϵ) ∈ CPx0 ⊂ AdPx0 ⊗ T ∗

x0
X as ϵ tends to zero, we have:

⟨J0, ẋi(0)⟩ =
⟨

lim
ϵ→0+

JCP(ϵ), lim
ϵ→0+

⟨JX(ϵ), ei⟩
ϵ

⟩
= lim
ϵ→0+

⟨JCP(ϵ), ⟨JX(ϵ), ei⟩⟩
ϵ

= lim
ϵ→0+

⟨RJP (ϵ), ei⟩
ϵ

= ψ̇i(0)

On the other hand, by definition:

χH
x = d(x,x)H ∈ CPx, H(x0, xi(ϵ)) = ψi(ϵ) ⇒ ⟨χH

x0
, ẋi(0)⟩ = ⟨d(x0,x0)H, ẋi(0)⟩ = ψ̇i(0)

Therefore both J0 and χH
x0

coincide on a certain basis of Tx0X , which proves that they coincide as linear mappings
from Tx0X to AdPx0 .
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This result parallels the result obtained in Theorem 5.2 for non-reduced FD operators. In the same manner
as a section y ∈ Γ(Y ) generates (fixing x̃ ∈ X̃) two objects ỹ ∈ Y ×n and jx0y, being the first one a discrete
approximation (through JYX ) of the second one, also a parallelism H ∈ Γ(EndP ) generates two objects ψ̃ ∈ C̃P and
χH
x0

∈ CPx0 , where the first one is a discrete approximation (through JCP) of the second one. These approximations
are the identity in the limit case, when regular points x̃ coalesce to a diagonal point. Moreover, it justifies our choice
of C̃P ⊂ (EndP )

×sn−1 as discrete connection bundle, rather than simply (P × P )/G = EndP . However, for the
case of mechanics X = R, n = 1, and for principal G-bundles on R, both notions coincide.

Finally, we are in situation to create H-reduced discrete Lagrangians. There are two possibilities, namely
reducing a given discrete Lagrangian function Ld : J̃P → R that is H-invariant, or discretizing a given H-reduced
Lagrangian density ℓ · volX , where ℓ ∈ C∞(HStr×XC̃P).

Definition 8.3
We call trivialized discrete Lagrangian associated to a discrete Lagrangian Ld(p0, . . . , pn) : J̃P → R, the function
ℓd(p, ψ1, . . . , ψn) : P×XC̃P → R determined by Ld, using the identification J̃P ≃ P×XC̃P given in Corollary
8.2.

We say that a given discrete Lagrangian function Ld : J̃P → R is H-invariant if there holds Ld ◦ λ×nh = Ld, for
each h ∈ H . In this case, the associated trivialized discrete Lagrangian ℓd satisfies ℓd ◦ (λh × Id) = ℓd and factors
by a function ℓd(q, ψ1, . . . , ψn) : HStr×XC̃P → R that we call H-reduced discrete Lagrangian associated to Ld.

As in the case of smooth Lagrangian densities, for the case H = {e}, the H-reduced discrete Lagrangian is the
trivialized discrete Lagrangian associated to Ld. Also for the caseH = G, the H-reduced discrete Lagrangian shall
be called simply the reduced discrete Lagrangian, a function ℓd : C̃P → R.

Definition 8.4
For any H-reduced Lagrangian density ℓvolX determined by a volume function volX and a smooth function
ℓ : HStr×XCP → R, we call discretized H-reduced Lagrangian, ℓd : HStr×XC̃P → R, the function

ℓd = (ℓ ◦ (Id×JCP)) · (ṽol ◦ (s, t×n−1)) : HStr×XC̃P → R

where Id×JCP : HStr×XC̃P → π∗
0(HStr×XCP) is associated to ∆G, ṽol is defined in (9) and (s, t×n−1) : C̃P →

X̃ is the restriction of (s, t×n−1) : (EndP )×sn−1 → X×n to the set of regular points.

Remark 8.1
In the same way as for the non-reduced formulation, from the definition of JCP we observe that for any smooth
function on the base manifold, f ∈ C∞(X), any H-reduced Lagrangian function ℓ ∈ C∞(HStr×XCP), and any
volume form volX ∈ Ωn(X) there holds

(f · ℓ) ◦ (Id×JCP) = (f ◦ π0) · (ℓ ◦ (Id×JCP)), f̃ · vol = (f ◦ π0) · ṽol

As a consequence, the discrete H-reduced Lagrangian ℓd associated to a density ℓvolX only depends on the
particular RFD operator ∆G and on the reduced Lagrangian density ℓvolX , but not on the particular decomposition
as a volume form volX ∈ Ωn(X) and a smooth function ℓ ∈ C∞(CP).

Remark 8.2
If H ∈ Γ(EndP ) is a locally defined parallelism, q ∈ Γ(HStr) and if K ⊂ X is a simplicial domain with vertices
x0, x1, . . . , xn ∈ X , ordered so that ∆X(x0, xi) are a positively oriented basis on Tx0X , taking into account
Theorem 8.4 and considering a quadrature rule for

∫
K
ℓvolX with a single node x0 (resembling the arguments

that led to Definition 5.4), we shall consider ℓd(qx0 ,H(x0, x1), . . . ,H(x0, xn)) ∈ R to be a good approximation of
the action functional associated to ℓvolX , on the domain K:∫

x∈K
ℓ(qx, χ

H
x )volX ≃ ℓd(qx0 ,H(x0, x1), . . . ,H(x0, xn))

Our discretization mechanisms are, furthermore, covariant, and commute with the reduction mechanisms:
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Theorem 8.5
Let π : P → X be a principal bundle and ∆G a faithful projectable RFD operator. Consider the bundles J̃P and
C̃P of discrete jets and connections, and the associated FJ and RFJ operators. Consider any gauge transformation
ϕ : P → P . If ∆G is covariant for ϕ there holds that,

1. Any given H-invariant discrete Lagrangian function Ld : J̃P → R that is ϕ-invariant, induces a ϕ-invariant
H-reduced discrete Lagrangian function ℓd : HStr×XC̃P → R.

2. Any given H-reduced Lagrangian density ℓvolX determined by some ϕ-invariant function ℓ ∈
C∞(HStr×XCP) and volume form volX ∈ Ωn(X), induces an H-reduced discrete Lagrangian function
ℓd : HStr×XC̃P → R that is ϕ-invariant.

3. If L : JP → R is an H-invariant function and volX ∈ Ωn(X) a volume form, then the associated H-reduced
Lagrangian denstity ℓvolX and the associated discrete Lagrangian function Ld generate, by discretization
in the first case, and by H-reduction in the second case, the same H-reduced discrete Lagrangian function
ℓd : HStr×XC̃P → R.

Proof
It is a direct consequence of the fact that the Figure 2 is commutative, and all its morphisms covariate for the natural
action of a gauge transformation ϕ : P → P on the corresponding bundles.

Concluding remarks and future work

In the same manner as numerical algorithms have been extended to manifolds using FD operators (or retraction
maps) [1, 17, 20, 38], in the category of fibred manifolds numerical algorithms dealing at the same time with
objects and its projections to a quotient space may benefit from the idea of projectable FD operators. A particular
situation would be that of numerical algorithms dealing with mappings between two manifolds or more generally,
with tangent fields, moving frames on a manifold or similar geometrical objects.

In this category of fibred manifolds, leaving aside the simplest case of trivial bundles, our work focuses in the
study of general bundles where one has a Lie group and a free, proper action, transitive on each fiber. With this
we don’t pretend to restrict our tools to the specific situation of principal bundles, but also to include the next
interesting situation: that of a general group acting freely by X-bundle automorphisms on a bundle π : Y → X .
This bundle is obtained as the composition of a G-principal bundle πG : Y → Y/G and the bundle π̄ : Y/G→ X .
Covariant projectable difference operators and a covariant discretization of Lagrangian densities in this case could
be achieved using the general theory in section 5 using any π̄-projectable faithful FD operator ∆ on the bundle
π̄, and its extension by a choice of faithful RFD operator ∆G for the principal G-bundle πG, projecting to ∆. In
this sense the applications of the work presented here do not restrict to principal bundles, but to general bundles
with a free, proper Lie group action. In this area our tools seem natural for the development and study of new
numerical algorithms, extending ideas arising from Lie group retraction mappings, already in application when
one discretizes objects in the category of Lie groups.

However the aim of this paper was not to open new questions in the area mentioned above, the present work
naturally arose as a first step in a larger study of the discretization of variational formulations of field theories that
admit symmetries and of its reduction. The focus here was on forward difference operators as main tool used for
the discretization of a Lagrangian density that admits symmetries, or the discretization of a reduced lagrangian
density, defined on the bundle of connections, preserving at the same time all additional symmetries that could lead
to Noether currents. Our larger study has several natural steps ahead. The first one, developing variational principles
for discrete (reduced or un-reduced) Lagrangians has already been performed in the companion work [12]. This
companion paper represents a first application of the theory we present here, and achieves a construction of
variational integrators for Euler-Poincaré equations on field theories, with Noether current conservation properties.
Further work based on these papers is already in progress.
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Again, as indicated above, our work, though centred on principal bundles, may be extended to other bundles
with a free proper action of a Lie group. The restriction to principal bundles (gauge fields) and reduced (Euler-
Poincaré) equations must not be seen as a limitation of the tools to a particular case, but a benchmark to evaluate
the capacities of our tools in the presence of a large (transitive) symmetry group acting freely. The same tools can
be easily applied for free, non-transitive actions.

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Apliçõs)
and UID/MAT/04561/2013 (Centro de Matemática, Aplicao̧ões Fundamentais e Investigação Operacional of
Universidade de Lisboa CMAF-CIO).

References

1. P.A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton Univ. Press, Princeton, NJ, 2008
2. R.L. Adler, J.P. Dedieu, J.Y. Margulies, M. Martens, M. Shub. Newton’s method on Riemannian manifolds and a geometric model for

the human spine. IMA Journal of Numerical Analysis, 22(3), (2002) 359–390.
3. M. F. Atiyah, Complex analytic connections in fibre bundles. Transactions of the American Mathematical Society 85.1 (1957): 181–

207.
4. I. Biswas, F. Neumann. Atiyah sequences, connections and characteristic forms for principal bundles over groupoids and stacks.

Comptes Rendus Mathematique 352.1 (2014): 59–64.
5. A.I. Bobenko, Yu.B. Suris. Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products. Letters in

Mathematical Physics 49.1 (1999): 79–93.
6. R.D. Bos. Continuous representations of groupoids. Houston J. Math 37.3 (2011): 807-844.
7. R.D. Bos. Groupoids in geometric quantization. PhD Thesis Radboud University of Nijmegen, 2007.
8. N. Bou-Rabee, J.E. Marsden. Hamilton–Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties

Foundations of Computational Mathematics 9.2 (2009): 197–219.
9. A. Cannas da Silva, A. Weinstein. Geometric models for noncommutative algebras. Vol. 10. American Mathematical Soc., 1999.

10. A.C. Casimiro, C. Rodrigo, First variation formula and conservation laws in several independent discrete variables.
J. Geom. Phys. 62.1 (2012), 61–86.

11. A.C. Casimiro, C. Rodrigo, First variation formula for discrete variational problems in two independent variables.
RACSAM Rev. R. Acad. A 106.1 (2012), 111–135.

12. A.C. Casimiro, C. Rodrigo, Variational Integrators for reduced field equations, Statistics Opt. Inform. Comput., Vol. 6, (2018),86-115.
13. M. Castrillón López, Field theories: reduction, constraints and variational integrators. Revista de la Real Academia de Ciencias

Exactas, Físicas y Naturales. Serie A. Matematicas 106(1) (2012): 67–74
14. M. Castrillón López, P.L. García, T.S. Ratiu, Euler-Poincaré reduction on principal bundles, Lett. Math. Phys. 58 (2001) 167–180
15. M. Castrillón López, P.L. García, C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group,

Journal of Geometry and Physics, Volume 74, December 2013, Pages 352–369
16. K. Crane, Discrete connections for geometry processing. Diss. California Institute of Technology, 2010.
17. P.E. Crouch, R. Grossman. Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science 3.1

(1993): 1–33.
18. F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Bl?baum, T.S. Ratiu, T. S., Y. Weinand. Discrete variational Lie group

formulation of geometrically exact beam dynamics. Numerische Mathematik, 130(1), (2015) 73–123.
19. F. Demoures, F. Gay-Balmaz, T.S. Ratiu. Multisymplectic variational integrators and space/time symplecticity. Analysis and

Applications, 14(03), (2016) 341–391.
20. A. Edelman, T.A. Arias, S.T. Smith. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis

and Applications 20.2 (1998): 303–353.
21. C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Coll. de Topologie, Bruxelles, CBRM (1950),

29—55.
22. D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, V. Putkaradze, T.S. Ratiu, Symmetry reduced dynamics of charged molecular strands, Arch.

Rat. Mech. and Anal., 197(2), 811–902 (2010)
23. D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, T.S. Ratiu, Lagrange-Poincaré field equations, J. Geom. Phys. 61 (11) (2011) 2120-2146.
24. J. Fernandez, M. Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics .

Dec2013, Vol. 5 Issue 4, p433-444. 12p.
25. E.S. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden, M. Desbrun. Geometric, variational discretization of continuum theories. Physica

D: Nonlinear Phenomena, 240(21), (2011) 1724–1760.
26. A. Iserles, H.Z. Munthe-Kaas, S. P. N?rsett, A. Zanna. Lie-group methods. Acta Numerica, (2005) 1-148.
27. F. Jiménez, M. Kobilarov, D. Martín de Diego. Discrete variational optimal control. J. of Nonlinear Sci. 23.3 (2013): 393-426.

Stat., Optim. Inf. Comput. Vol. 6, March 2018



A. CASIMIRO AND C. RODRIGO 85

28. M. B. Kobilarov, J. E. Marsden. Discrete geometric optimal control on Lie groups IEEE Transactions on Robotics 27.4 (2011):
641-655.

29. M. Kobilarov. Solvability of Geometric Integrators for Multi-body Systems. Multibody Dynamics. Springer International Publishing,
2014. 145–174.

30. A. Kock. Synthetic geometry of manifolds. Vol. 180. Cambridge University Press, 2010.
31. R. McLachlan, M. Perlmutter. Integrators for nonholonomic mechanical systems Journal of nonlinear science 16.4 (2006): 283–328.
32. M. Leok, J.E. Marsden, and A.D. Weinstein. A discrete theory of connections on principal bundles. arXiv preprint math/0508338

(2005).
33. J.E. Marsden, S. Pekarsky, S. Shkoller. Symmetry reduction of discrete Lagrangian mechanics on Lie groups. Journal of geometry

and physics 36.1 (2000): 140–151.
34. J.E. Marsden, J. Scheurle. The reduced Euler-Lagrange equations. Fields Institute Comm 1 (1993): 139–164.
35. A. Saccon. Midpoint rule for variational integrators on Lie groups. International journal for numerical methods in engineering 78.11

(2009): 1345.
36. D.J. Saunders. The geometry of jet bundles. Vol. 142. Cambridge University Press, 1989.
37. J.P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, 1964, Benjamin, New York, 1965.
38. M. Shub. Some Remarks on Dynamical Systems and Numerical Analysis, in: Dynamical Systems and Partial Differential Equations,

Proceedings of VII ELAM (L. Lara-Carrero and J. Lewowicz eds.), Equinoccio, Universidad Simon Bolivar, Caracas, (1986), 69–92
39. J. Vankerschaver. Euler-Poincaré reduction for discrete field theories. Journal of mathematical physics, 48(3), (2007) 032902.
40. J. Vankerschaver, F. Cantrijn. Discrete Lagrangian field theories on Lie groupoids. Journal of Geometry and Physics 57(2) (2007):

665–689.

Stat., Optim. Inf. Comput. Vol. 6, March 2018


