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Abstract In the reduction of field theories in principal G-bundles, when a subgroup H ⊂ G acts by symmetries of the
Lagrangian, each of the H-reduced unknown fields decomposes as a flat principal connection and a parallel H-structure.
A suitable variational principle with differential constraints on such fields leads to necessary criticality conditions known
as Euler-Poincaré equations. We model constrained discrete variational theories on a simplicial complex and generate from
the smooth theory, in a covariant way, a discrete variational formulation of H-reduced field theories. Critical fields in this
formulation are characterized by a corresponding discrete version of Euler-Poincaré equations. We present a numerical
integration algorithm for discrete Euler-Poincaré equations, that extends integration algorithms for Euler-Poincaré equations
in mechanics to the case of field theories and, also, extends integration algorithms for Euler-Lagrange equations in discrete
field theories to the case of variational principles with constraints. For regular reduced discrete Lagrangians, this algorithm
allows to univocally propagate initial condition data, on an initial condition band, into a solution of the corresponding
equations for the discrete variational principle.
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1. Introduction

In the community working on numerical methods for ordinary and partial differential equations arising in physics, it
has become clear in the last years that discretising the variational principles, that originally generated the equations,
is a very fruitful method, when we are looking for some discrete version of the equations and integrators for this
discrete version. In such a way that, the usual geometrical considerations in the smooth theory also make sense for
the discretized versions of the equations and for its solutions. Following this guideline one usually is rewarded with
integrators with simplecticity and discrete conservation laws.

In this line of ideas a large variety of situations have been studied, with a relevant focus in all variants of
mechanics (with or without constraints, control theory, reduced theories) [11, 12, 19, 24, 27, 28, 30, 35, 42]. Fewer
papers explore the challenging case of field theories [14, 20, 21, 22, 31, 32, 33, 40].

It is in the area of field theory that many aspects on the discretization of variational principles remain unsolved.
A common approach is to treat the discrete field theory with large-dimensional functional spaces, like in the theory
of finite elements [1]. In many other situations the corresponding field theory has a natural time variable and
its discretization allows for a treatment similar to that of discrete mechanical systems [14, 15]. These examples
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illustrate that, from a geometrical point of view, and except for some few cases, the discretization of field theory is
performed with very little concern about the nature of the underlying discrete manifold of independent variables.
In fact, most examples take as discrete independent variables some bidimensional cartesian grid.

The reduction of mechanical systems on Lie groups, where critical trajectories are characterized by Euler-
Poincaré equations, has also been treated in the literature in [2, 25, 26, 34] and its extension to field theories has
been explored [7, 40], but with several simplifying restrictions, as is the consideration of trivial principal bundles,
and of a cartesian bidimensional grid as base space.

Going one step further, in the smooth theory of gauge fields the reduction process leads to the consideration
of bundles of connections. The discrete analogue of a connection has been described by several authors
[13, 17, 29, 36, 38, 41], mostly due to concerns of its applications to mechanical systems, and consequently,
for the case of a Lie group. Much more remains to be said about discrete connections on a principal bundle.

In a recent work by the authors [6], we have described a procedure to discretize the key element of a variational
principle: its Lagrangian density. This work shows how the discretization mechanism can be performed in such
a way that it commutes with a possible reduction, by the action of some group of symmetries H . This leads to
get a covariant way to define discrete H-reduced Lagrangian densities, it remains to explore how such an object
generates a variational principle that represents the discrete analogue of Euler-Poincaré reduction, developed in the
smooth case in [6].

In the present work we show how, starting from a discrete H-reduced Lagrangian density, one gets a discrete
variational principle forH-reduced fields. This principle retains the structure of the smooth one [8, 9, 10, 16]. Fields
are discrete H-structure together with a discrete connection. There is a constraint on the curvature and another
to ensure the H-structure is parallel. Admissible variations are restricted to a subset given by infinitesimal gauge
transformations. Finally critical fields for the variational principle are characterized by a set discrete Euler-Poincaré
equations. We study the structure of these equations and identify the relevant momentum mapping for this situation.
As happened in non-reduced discrete field theories [5], the existence of an inverse of the momentum mapping (what
we call an integrator) is the central element in an iterative algorithm, that allows to extend admissible H-reduced
fields on some initial band to globally defined fields, that are critical for the discrete Euler-Poincaré variational
principle.

The work begins in section 2 with the presentation of the main tools of Euler-Poincaré reduction, including an
introduction to the variational principles that lead to smooth Euler-Poincaré equations, with the relevant Theorem
2.2 that relates the original and reduced variational principles. This section also includes fundamental results
obtained in [6], related to our problem. Next section 3 presents our discretization choice for the space, an abstract
simplicial complex arising from the Coxeter-Freudenthal-Kuhn simplicial partition of a cartesian lattice. Section
4 introduces variational principles on discrete bundles of H-structures and principal connections. In Proposition
4.4 the differential of the action functional is represented in a trivialized version, expressing it in terms of linear
functions on the adjoint bundle. Section 5 introduces then the discrete version of the Euler-Poincaré constrained
variational principle. Critical points for this principle are then characterized in Theorem 5.1, using a discrete
version of the Euler-Poincaré equations. The particular structure of these equations is explored in section 6. The
Legendre and momentum mappings are identified as the relevant components in the equations, and we show that the
possibility to integrate the equations lies in the existence of an inverse of the Legendre mapping. If we assume that
the Lagrangian density has an inverse operator for the Legendre mapping, such an operator is called an integrator
and we describe the algorithm that generates solutions from any admissible initial condition band.

Certain technical aspects related to quotient manifolds and polytopes are included in the Appendix section.

2. Reduction to Euler-Poincaré equations

2.1. Euler-Lagrange equations for fields on a fibered manifold

We recall here the fundamentals of the calculus of variations on fibred manifolds. Let π : Y → X be a smooth
bundle. Using local coordinates (x1, . . . , xn) on the base manifold X , we get corresponding functions xi ◦ π on
the bundle Y , that we denote by (x1, . . . , xn) and can be locally completed to a system of coordinate functions
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(x1, . . . , xn, y1, . . . , ym) on Y . Mappings y : U → Y defined on open subsets U ⊆ X and such that π ◦ y = IdU
(local sections of the bundle) are called local fields and can be expressed in such a system of local coordinates as a
family of smooth functions yi(x1, . . . , xn). We denote by Γ(Y ) the set of local sections and by Γ(K,Y ) the subset
of local sections whose domain contains K ⊆ X .

Consider the first jet bundle JY of sections, associated to the bundle Y , a bundle with local coordinates
(xν , yi, yiν). Local sections y ∈ Γ(Y ) of π : Y → X determined by equations yi = yi(x1, . . . , xn) induce a
corresponding jet extension j1y ∈ Γ(JY ), a local section of jπ : JY → X determined by equations yi =
yi(x1, . . . , xn), yiν = (∂yi/∂xν)(x1, . . . , xn).

Consider the vertical bundle πV Y : V πY → Y determined by all tangent vectors δy ∈ TY that are vertical for
the projection dπ : TY → TX (when the projector under consideration is clear, we shall simply write V Y instead
of V πY ). This is a vector bundle on Y and any system of fibred coordinates (x1, . . . , xn, y1, . . . , ym) induces linear
coordinates αi, so that each element δy ∈ V Y can be written as δy = αi(∂/∂yi)y (we use Einstein’s convention
for summation on repeated indices). In a similar way as local sections have a natural extension to the jet bundle,
also local sections of π ◦ πV Y : V Y → X have a natural extension to V (JY ). For any given vertical vector field
δy ∈ Γ(V Y ) defined on a local section y = πV Y ◦ δy ∈ Γ(Y ), with local expression αi = αi(x1, . . . , xn) and
yi = yi(x1, . . . , xn), there is a naturally induced local section Dj1y = j1δy ∈ Γ(V (JY )), projecting to δy when
we use dπJ : V (JY ) → V Y , projecting to j1y ∈ Γ(JY ) when we use πV (JY ) : V (JY ) → JY , and locally given
as Dj1y = αi(∂/∂yi)j1y + βiν(∂/∂y

i
ν)j1y with:

βiν = (∂αi/∂xν)(x1, . . . , xn)

this section Dj1y = j1δy is called the vertical infinitesimal contact transformation associated to δy ∈ Γ(V Y ).
We should recall that π ◦ πV Y : V Y → X is not a vector bundle. However for any fixed section y ∈ Γ(Y ),

we have a vector bundle y∗V Y → X defined as the pull-back (or restriction) of the bundle V Y → Y along
the local section y : U → Y . Observe that a smooth variation of y0 ∈ Γ(Y ), that is, a smooth mapping
yϵ(x

1, . . . , xn) : [0, ϵmax]× U → Y where yϵ ∈ Γ(Y ) have a common domain U ⊂ X , allows to determine
the associated infinitesimal variation δy0 = (d/dϵ)0(yϵ(x

1, . . . , xn)) ∈ Γ(y∗0V Y ), and its associated vertical
infinitesimal contact transformation fulfills:

j1δy0 = (d/dϵ)0
(
(j1yϵ)(x

1, . . . , xn)
)
∈ Γ((j1y0)

∗V (JY )) (1)

Variational problems on a bundle π : Y → X arise when we fix a smooth function L on JY (the Lagrangian) and a
smooth volume form volX ∈ Ωn(X) on X . The product LvolX is a horizontal n-form on JY , and determines
an action functional L, a real-valued mapping that associates to any compact domain K ⊂ X and local field
y ∈ Γ(K,Y ), defined on an open neighbourhood of the domain, a value called the action associated to the field on
the domain K:

LK(y) =

∫
K

(L ◦ j1y)volX (2)

Variational problems try to characterize critical points for the action functional, with respect to certain admissible
variations. Indeed, if (yϵ)0≤ϵ≤ϵmax ⊂ Γ(K,Y ) is a smooth variation of a section y0 ∈ Γ(K,Y ) for some compact
domain K ⊂ X , derivating inside of the integral symbol and using the chain rule together with (1) we have the
expression for the first derivative of LK(yϵ):(

d

dϵ

)
0

LK(yϵ) =

∫
K

⟨dvy0L, j
1δy0⟩volX , δy0 =

(
d

dϵ

)
0

yϵ ∈ Γ(y∗0V Y )

where dL ∈ Γ(T ∗(JY )) determines dvy0L ∈ Γ((j1y0)
∗V ∗(JY )) using the restriction to the section j1y0 and the

restriction to V (JY ) ⊂ T (JY ), and where ⟨·, ·⟩ represents the duality product with elements in Γ((j1y0)
∗V (JY )).

The integration
∫
K
(j1y)∗LvolX in the action functional is a real value if we assume that we are working with

a compact domain K ⊆ X (for example we may assume K = X in the case that X is compact). If we do not
fix a compact domain K ⊂ X , we do not have a well defined value L(y) for every y ∈ Γ(Y ). However, the
linear functional dyL : δy ∈ Γ(y∗V Y ) 7→

∫
X
⟨dvy0L, j

1δy⟩volX ∈ R makes sense with the simple condition that
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δy ∈ Γ(y∗V Y ) is chosen with a support that is compact in the domain of y ∈ Γ(Y ), no matter that this domain
might be a non-compact subset U ⊂ X .

Definition 2.1
For any local section y : U → Y of the bundle π : Y → X , we call differential at y of the action functional L,
associated to a Lagrangian density LvolX , the linear functional:

dyL : δy ∈ Γc(y∗V Y ) 7→
∫
U

⟨dvy0L, j
1δy⟩volX ∈ R (3)

where the subspace Γc(y∗V Y ) is given by all sections of the bundle y∗V Y → U whose support is a compact subset
K ⊂ U .

A general formulation of a variational problem with differential constraints on a fibred manifold π : Y → X (see
[18]) tries to determine which local sections y ∈ Γ(y) are critical, in the following sense:

Definition 2.2
Let π : Y → X be a bundle on an n-dimensional manifold, oriented by a volume element volX ∈ Ωn(X). A
constrained variational problem is determined by:

• A smooth submanifold S ⊆ JY (the constraint submanifold).
(A local field y ∈ Γ(Y ) is called admissible for the variational problem if j1y takes values on S. The set of
admissible local fields shall be denoted by ΓS(Y ).)

• Linear subspaces AVy ⊂ Γc(y∗V Y ), for each admissible local field y ∈ ΓS(Y ), compatible with S, that is,
so that each δy ∈ AVy determines a vertical contact transformation j1δy ∈ Γ((j1y)∗V (JY )) tangential to
S ⊆ JY .
(Elements δy ∈ AVy ⊂ Γc(y∗V Y ) shall be called admissible infinitesimal variations at the admissible local
field y ∈ ΓS(Y ).)

• A smooth function L : S → R.
(Determining a horizontal n-form LvolX called Lagrangian density, the corresponding action functional
LK : ΓS(Y ) → R associated to any compact subset K ⊆ X , defined by (2) on the subset of admissible local
fields, and the differential dyL : AVy → R of the action functional, well defined by (3) on the subspace AVy
of admissible infinitesimal variations AVy at any admissible local field y ∈ ΓS(Y ).)

An admissible local field y ∈ ΓS(Y ) is called critical for the variational problem if dyL vanishes on the space of
admissible infinitesimal variations AVy.

For the particular case of S = JY and AVy = Γc(y∗V Y ) (a situation that we denote as fixed boundary
variations) criticality is equivalent to the annihilation of the Euler-Lagrange tensor EL(y) ∈ Γ(y∗V ∗Y ), that for
the case volX = dx1 ∧ . . . ∧ dxn takes the classical form:

EL(y) =
(
∂L
∂yi

(j1xy)−
d

dxν

(
∂L
∂yiν

(j1xy)

))
dyi ∈ Γ(y∗V ∗Y ) (4)

the appearance of (d/dxν) in an object depending on j1y shows that equations EL(y) = 0 represents a system of
second order partial differential equations on the unknown y ∈ Γ(Y ).

For a different choice of admissible infinitesimal variations, however, critical sections can be characterized by
a different system of partial differential equations. This is, for example, the case of Euler-Poincaré equations in
the case of gauge field theories invariant by the action of a certain group H . These equations arise as necessary
criticality conditions for a variational problem with constraints that we introduce next.

2.2. H-structures on a principal G-bundle

An action (also called action on the left) of a group G on a set M is a group morphism λ : g ∈ G→ λg ∈ Aut(M)
(λgh = λg ◦ λh, λe = IdM ). We reserve the expression “left action” for the case M = G, to represent the specific
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mapping l : h ∈ G 7→ lh ∈ Aut(G) where lh(g) = hg, and the expression “right action” for the specific mapping
r−1 : h ∈ G 7→ r−1

h ∈ Aut(G) where r−1
h = gh−1. Both of them determine actions (on the left) of the group G on

the set G. In the case that G,M are smooth manifolds, the group morphism λ determines a mapping

(ac, πM ) : (g,m) ∈ G×M 7→ (λg(m),m) ∈M ×M

We say the action is smooth if (ac, πM ) is smooth, say the action is free if (ac, πM ) is injective and say the action
is proper if (ac, πM ) is proper (inverse image of compact sets are compact sets).

We will be concerned with Lie groups: groups with a smoth manifold structure, such that both the left and right
actions l, r−1 of G on itself are smooth actions. For any Lie group (G, ·) there exists a corresponding reverse
Lie group Gr = (G, ◦) using G itself as manifold and the reverse product g ◦ h = h · g. We shall avoid talking of
actions of G on the right on M , that can be defined as actions of the reverse group Gr on M . Smooth free proper
actions of Lie groups on smooth manifolds will appear in this work and the existence of the quotient manifold for
such actions is a classical result, with main properties expressed in the appendix. In particular, we shall introduce
principal G-bundles with the action on the left convention:

Definition 2.3
Let G be a Lie group. A principal G-bundle is a smooth manifold P , together with a free proper smooth action of
a Lie group G on P .

The fact that the smooth free action is proper warrants that there exists a unique quotient manifold structure
P/G, such that the quotient mapping πG : P → P/G is a surjective submersion. This submersion is usually called
the fiber bundle structure, and the quotient manifold X = P/G is called the base manifold of the principal bundle.

We should observe that for any given closed subgroup H ⊆ G, the same manifold P has also a principal H-
bundle structure considering the restriction of the action to H ⊆ G (the mapping (λ, Id) is still proper because
H is a closed subset). The quotient morphism πH : P → P/H represents the fiber bundle structure of P seen as
a principal H-bundle. Fixing a principal G-bundle πG : P → P/G = X and a closed subgroup H ⊆ G, we get a
principal H-bundle πH : P → HStr on the quotient manifold HStr = P/H , the manifold of H-structures.

We observe that elements on the same H-orbit project to a unique point by πG : P → X , therefore πG factors
by a morphism πHStr : HStr = P/H → X . This is called the bundle of H-structures of the principal G-bundle
P → X . The principal H-bundle structure determined by P as manifold, H a group acting by λ, and HStr as base
manifold shall be called the principal H-bundle PHStr induced by the principal G-bundle P → X , on the manifold
of H-structures HStr.

Elements in a particular fiber π−1
HStr(x) = HStrx are H-orbits q = Hp ∈ P/H contained in an specific G-orbit

Px ⊂ P . A section q : x ∈ X 7→ qx ∈ HStr of the bundle πHStr : HStr → X can be seen as a smoothly varying
choice of H-orbits qx ⊂ Px for all possible x ∈ X , therefore as a choice of a smooth sub-bundle Q→ X of the
fiber bundle P → X , where each fiber is a single H-orbit. Therefore, sections q ∈ Γ(HStr) of the bundle of H-
structures are simply sub-bundles of P → X whose fibers are orbits by the restricted action of the subgroup H .
These are called reductions of the principal bundle P to the subgroup H , or H-structures contained in P .

Consider V π
G

P ⊂ TP , the space of tangent vectors in P that project as zero by dπG : TP → TX . The action
λg on P induces an action dλg on V π

G

P . The quotient manifold (V π
G

P )/G is then a vector bundle on P/G = X ,
called adjoint bundle πAd : AdP → X . Giving an element ax ∈ AdPx of this quotient over a point x ∈ X is the
same as giving a vertical vector at some point p ∈ Px together with all the vectors obtained by application of dλg.
This is the same as giving a vector field on the fiber Px, that is invariant for all the automorphisms λg : Px → Px
of this fiber. Any such a G-invariant vector field ax on a single fiber Px generates a 1-parameter flow, a family of
automorphisms (exp ϵax) : Px → Px on the G-orbit Px. All of them commute with all actions λg. Moreover, by
definition of the flow, all tangent vectors: (

d

dϵ

)
0

(exp ϵax)(px) ∈ VpxP

are a representative of the vector field ax on Px. That is, all these tangent vectors project in V P/G as the element
ax ∈ V P/G = AdP .
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In a similar way if we consider V π
H

P the space of tangent vectors that project as zero by dπH , and the action
λh on P , we have an induced action by dλh on V π

H

P . The quotient manifold (V π
H

P )/H is then a vector bundle
on P/H = HStr, which by definition represents the adjoint bundle AdPHStr → HStr of the principal H-bundle
πH : P → P/H (a bundle that we denote as PHStr → HStr). Any element aq ∈ PHStr

q on the fiber associated
to q ∈ HStr also induces a 1-parameter family of automorphisms exp ϵaq : Qx → Qx on the H-orbit Qx ⊂ Px
determined by q ∈ HStrx. These automorphisms commute with each λh for h ∈ H .

Proposition 2.1
Consider a principal G-bundle P and for any closed subgroup H ⊆ G the induced principal H-bundle PHStr on
the manifold of H-structures. There exists an exact sequence of vector bundles on HStr

0 ↪→ AdPHStr → HStr×X AdP → V HStr → 0

Proof
Observe that πH : P → P/H determines a natural projector pr : HStr×X(V π

G

P )/G→ V (P/H), that associates
to each H-orbit qx ∈ HStrx and each G-covariant vertical vector field A on the fiber Px the tangent vector at
qx ∈ P/H obtained by πH-projection dπH(Apx) ∈ TqxHStr, for any representative px of the H-orbit qx. The
condition that A is G-covariant, and in particular H-covariant, shows that this mapping does not depend on the
particular choice of px in the H-orbit qx. The fact that dπH is linear and surjective shows that this morphism is
also linear and surjective.

As πG = πH ◦ πHStr, there exists a natural inclusion V π
H

P ⊆ V π
G

P . There also exists a natural projection
V π

H

P → P → HStr = P/H . The combination of both leads to a morphism:

f : V π
H

P → HStr×X(V π
G

P )/G = HStr×X AdP

We observe that two elements in V π
H

P mapping to the same element in HStr×X AdP are necessarily one the
image of the other by dλg for some g ∈ G (because they determine the same element in (V π

G

P )/G), and that this
g ∈ G belongs in fact to the subgroupH (because they determine the same element inHStr = P/H). We conclude
that fibers of f are empty or a whole orbit in V π

H

P by the action dλh for h ∈ H .
Therefore f determines a natural immersion:

i : AdPHStr =
(
V π

H

P
)
/H ↪→ HStr×X AdP

We still have to prove that the exactness in the central term in the sequence:

0 ↪→ AdPHStr → HStr×X AdP → V HStr → 0

As elements in V π
H

P project as zero into HStr = P/H , in this sequence the image of i is contained in the
kernel of pr. Taking into account that we have vector bundles on HStr with ranks dimH , dimG, dimHStr =
dimG− dimH , and linear morphisms, we conclude that the image of i must coincide with the kernel of pr and
this is an exact sequence.

Corollary 2.1
Consider the adjoint bundles AdP → X and AdPHStr → HStr associated to the principal G-bundle P → X
andH-bundle PHStr → HStr. There exists a natural identification V HStr ≃ (HStr×X AdP )/AdPHStr and, for
each H-structure q : X → HStr a natural identification q∗V HStr ≃ AdP/q∗ AdPHStr. The corresponding dual
bundle can be identified as a sub-bundle q∗V ∗HStr ⊂ Ad∗ P of linear forms on AdP that vanish when applied to
q∗ AdPHStr ⊂ AdP .

2.3. Euler-Poincaré equations for H-reduced fields on principal G-bundles

Let π : P → X be a principal G-bundle and denote λg the left-translation by any element g ∈ G. If we denote by
πJ : JP → P the associated first jet bundle, the group G acts on JP by the induced mappings jλg : JP → JP .
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An Ehresmann connection on the bundle π : P → X is any linear immersion χ : π∗TX ↪→ TP , section of the
natural linear projector dπ : TP → π∗TX . Giving a connection is then equivalent to giving a section χ : P → JP
of the associated first jet bundle (consult the theory of Ehresmann’s connections in [23]).

The connection χ is called principal connection if it is invariant by the linear morphisms induced by λg on the
bundle TP ⊗ π∗T ∗X . Principal connections are equivalent to sections χ : P/G→ JP/G of the so-called bundle
of principal connections πCP : CP = JP/G→ P/G = X .

For any fixed Ehresmann connection on a bundle π : P → X there exists a natural (horizontal) lift of vector
fields on X to vector fields on P . To be precise, given a vector field A : X → TX , it induces Id×A : P×XX →
P×XTX = π∗TX , which composed with χ determines Aχ : P = P×XX → TP , a vector field on P called the
horizontal lift of A ∈ Γ(X,TX). For any pair of vector fields A,B ∈ Γ(X,TX) the commutator [Aχ, Bχ] ∈
Γ(P, TP ) of the corresponding horizontal lifts Aχ, Bχ can be compared to the horizontal lift [A,B]χ of the
commutator [A,B] ∈ Γ(X,TX). Both of these fields on P project to the manifold X as [A,B] ∈ Γ(X,TX) and
the difference is then a vertical vector field:

Curvχ : (A,B) ∈ Γ(X,TX)× Γ(X,TX) 7→ [Aχ, Bχ]− [A,B]χ ∈ Γ(P, V P )

In fact, one can prove that Curvχ is a bilinear alternating form, leading then to Curvχ ∈ Γ(π∗(Λ2T ∗X)⊗ V P ),
called the curvature tensor associated to the Ehresmann connection χ.

In the case that the connection on P is a principal connection (invariant by translations λg), its associated
curvature tensor will also be invariant by translations and can be described as

Curvχ ∈ Γ(Λ2T ∗X ⊗AdP )

a 2-form on the base manifold, with values on the adjoint bundle πAd : AdP = V P/G→ X . A connection is
called flat when its curvature vanishes.

As a remark, observe that πH ◦ πJ : JP → P/H and πG : JP → (JP )/G determine a smooth surjective
mapping JP → (P/H)×X(JP/G). Moreover, two elements in the same fiber by this mapping must differ by
some transformation jλg (because they determine the same element in (JP )/G) and necessarily for some g ∈ H
(because they determine the same element in P/H). Fibers of the morphism are precisely orbits on JP by the
action jλh for h ∈ H . There exists a naturally induced isomorphism defined on the quotient manifold JP/H:

(JP )/H ≃ (P/H)×X(JP )/G = HStr×XCP

Definition 2.4
For any principalG-bundle π : P → X and closed subgroupH ⊆ G, we call localH-reduced field any local section
of the bundle Y = JP/H ≃ HStr×XCP. We call H-reduced Lagrangian function any function ℓ on some open
sub-bundle of JP/H = Y → X , or equivalently, an H-invariant function on some open sub-bundle of JP → X .

We recall now how a principal connection determines parallelism notions on associated bundles. Consider any
manifold E → X and smooth action ac : (e, g) ∈ E ×G 7→ eg ∈ E of the Lie group G on the right on E. Using
the left action g · (e, p) = (eg−1, gp) on the manifold E × P , there exists a quotient manifold QE = (E × P )/G,
called the associated bundle for the principal bundle P and the G-space E. For a given principal connection χ on
P , and any associated bundle, there exists an induced Ehresmann connection χQ on the bundle πQ : QE → X .

We recall that a connection χQ on a bundle πQ : Q→ X is a linear immersion χQ : π∗
QTX = Q×XTX ↪→ TQ,

section of the natural linear projector dπQ : TQ→ Q×XTX . For any section q ∈ Γ(Q) we may compute the
difference of χQq = χQ ◦ q ∈ Γ(q∗TQ⊗ T ∗X) with dq ∈ Γ(q∗TQ⊗ T ∗X). As both linear morphisms are sections
of dπQ : TX → q∗TQ, the difference is a linear mapping TX → q∗V Q and determines a notion of covariant
derivative of q ∈ Γ(Q) with respect to the connection χQ:

dχ
Q

x q = dxq − χQq(x) ∈ Vq(x)Q⊗ T ∗
xX

We say q ∈ Γ(Q) is χ-parallel if dχq = 0.
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Using E = G/H (with left cosets G/H = {Hg}g∈G) and the natural action on the right of the group G on this
space, from χ ∈ Γ(CP) we obtain a connection on the bundle of H-structures πHStr : HStr = E × P = P/H →
X . A principal connection χ determines a connection χHStr on this bundle and we have a notion of covariant
derivative of any local H-structure q ∈ Γ(HStr), with respect to the principal connection χ.

dχxq = dxq − χHStr
q(x) ∈ Vq(x)HStr⊗ T ∗

xX

Remark 2.1
One should observe that any local field p ∈ Γ(P ) naturally induces, by projection πH : JP → JP/H , a local H-
reduced field. However, there may exist local H-reduced fields (q, χ) ∈ Γ(HStr×XCP) that are not projection
of any local field on P . There are differential and topological obstructions in this regard [10]. Whenever the H-
reduced field (q, χ) is obtained projecting a jet extension jp ∈ Γ(JP ), the principal connection component χ is
flat (has vanishing curvature), and the H-structure component q ∈ Γ(HStr) is χ-parallel, that is, dχq = 0. In fact,
this condition can be stated saying that the principal connection χ on the principal G-bundle P is reducible to the
principal sub-H-bundle Q→ X determined by q ∈ Γ(HStr). That is, horizontal lifts at points px ∈ Qx ⊂ Px give
tangent vectors belonging to TqxQx ⊂ TqxPx.

In particular, using E = LieG with the right adjoint action, the associated bundle is the adjoint bundle and any
principal connection χ on P induces an Ehresmann connection χAd on the adjoint bundle πAd : AdP → X . We
get a notion of covariant derivative of any local section of the adjoint bundle a ∈ Γ(AdP ) with respect to the
principal connection χ:

dχxa = dxa− χAd
a(x) ∈ Va(x) AdP ⊗ T ∗

xX ≃ AdPx ⊗ T ∗
xX

where the identification Va(x) AdP ≃ AdPx is using the natural identification of tangent vectors at any point a(x)
of a linear space AdPx with elements of the linear space itself.

Definition 2.5
A local H-reduced field (q, χ) ∈ Γ(HStr×XCP) is called admissible if χ has vanishing curvature and q is χ-
parallel (equivalently, the connection χ is flat and reducible to the specific H-structure q). This determines the
following constraint submanifold on J(HStr×XCP):

S = {(j1xq, j1xχ) : (Curvχ)x = 0, dχxq = 0} ⊂ J(HStr×XCP)

This submanifold S determines a space of admissible jet configurations, the first element needed in definition
2.2 to characterize a constrained variational principle.

Finally for any admissible local H-reduced field (q, χ) ∈ Γ(Y ) we may consider two linear operators:

Pq : a ∈ Γ(AdP ) 7→ Pq(a) = [a] ∈ Γ(AdP/(q∗ AdPHStr)) ≃ Γ(q∗V HStr)

Pχ : a ∈ Γ(AdP ) 7→ Pχ(a) = dχa ∈ Γ(AdP ⊗ T ∗X) ≃ Γ(χ∗V CP)

here we are using that CP is an affine bundle modelled on AdP ⊗ T ∗X , and we are considering the principal
H-bundle πH : P → P/H = HStr, that we denote as PHStr, its associated adjoint bundle AdPHStr → HStr and
the projection a 7→ [a] in the natural exact sequence:

0 → q∗ AdPHStr → AdP → q∗V HStr → 0

Using these operators Pq, Pχ (the first one a linear projection and the second one a first order differential
operator) we have corresponding spaces of admissible variations:

Definition 2.6
For any admissible local H-reduced field (q, χ) ∈ Γ(HStr×XCP) we call space of admissible infinitesimal
variations at (q, χ) the linear space:

AV(q,χ) = {(Pq(a),Pχ(a)) : a ∈ Γc(AdP )} ⊂ Γc(q∗V HStr)⊕ Γc(χ∗V CP) = Γc((q, χ)∗V (HStr×XCP))
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As indicated in [10] any element (δq, δχ) ∈ AV(q,χ) has an associated infinitesimal contact transformation
j1(δq, δχ) ∈ Γ(J(HStr×XCP)) that is tangential to the constraint submanifold S ⊂ J(HStr×XCP). The
constraint submanifold S and the family of spaces of admissible infinitesimal variations AV(q,χ) serve as
compatible data to define a constrained variational problem on HStr×XCP, as described in definition 2.2.

The constrained variational problem on H-reduced fields is finally fixed when we consider some H-reduced
Lagrangian density, a function on S that we will consider as determined by the values of the field and not of its
jet extension j1x(q, χ) ∈ S ⊂ J(HStr×XCP). We shall restrict our variational problems to the following type of
Lagrangian functions:

Definition 2.7
We call zero-order H-reduced Lagrangian function any function ℓ : HStr×XCP → R. Giving a zero-order H-
reduced Lagrangian function is the same as giving a first order Lagrangian function L : JP → R that is invariant
by j1λh, for each h ∈ H (Recall that JP/H ≃ HStr×XCP).

Zero-orderH-reduced Lagrangian functions determine a Lagrangian function S → R, as demanded in definition
2.2 of constrained variational problems. In this situation we have the following fundamental result:

Theorem 2.2 ([10])
Let π : P → X be a principal G-bundle on a manifold X with volume element volX . Let H ⊆ G be a closed
subgroup, and denote by πH : JP → HStr×XCP the natural quotient morphism. Let ℓ : HStr×XCP → R be
a zero-order H-reduced Lagrangian function and L = ℓ ◦ πH : JP → R the associated first order Lagrangian
function.
For any local field p ∈ Γ(P ), and for the induced local H-reduced field πH ◦ j1p = (q, χ) ∈ Γ(HStr×XCP), the
following are equivalent:

1. The local field p is critical for the variational problem with fixed boundary variations and Lagrangian function
L.

2. The local field p ∈ Γ(P ) satisfies the system of Euler-Lagrange equations 0 = EL(p) for L : JP → R, where
EL(p) is described by (4).

3. The local H-reduced field is critical for the constrained variational problem described on HStr×XCP
by the constraint submanifold S, admissible infinitesimal variations AV(q,χ), and Lagrangian function
ℓ ◦ πJ : J(HStr×XCP) → R.

4. The H-reduced field (q, χ) ∈ Γ(HStr×XCP) satisfies the system of Euler-Poincaré equations 0 = EP(q, χ)
for ℓ : HStr×XCP → R, where EP(q, χ) is described by:

EP(q, χ) = divχ

(
∂ℓ

∂χ
(q, χ)

)
− P∗

q

(
∂ℓ

∂q
(q, χ)

)
∈ Γ(Ad∗ P )

In this result ∂ℓ/∂χ ∈ Γ(χ∗V ∗CP) ≃ Γ(Ad∗ P ⊗ TX) (recall that CP is an affine bundle on AdP ⊗ T ∗X),
∂ℓ/∂q ∈ Γ((AdP/q∗ AdPHStr)∗) (recall that q∗V HStr ≃ AdP/q∗ AdPHStr), P∗

q is the natural immersion
Γ((AdP/q∗ AdPHStr)∗) ⊂ Γ(Ad∗ P ) as the subspace of linear forms that vanish on q∗ AdPHStr ⊂ AdP , and
finally the divergence operator divχ : Γ(Ad

∗ P ⊗ TX) → Γ(Ad∗ P ) associated to χ represents the differential
operator adjoint to dχ, in the sense:

divχ(θ)⊗ volX = dχ (iθvolX)

here iθvolX stands for the AdP -valued n− 1-alternating form obtained by contraction of θ with the volume
element X and dχ stands for the covariant differential on alternating forms with values on AdP and on Ad∗ P
obtained as extension of dχ : Γ(AdP ) → Γ(AdP ⊗ T ∗X).

This theorem relates the variational problem with fixed boundary variations determined by the Lagrangian
function L = ℓ ◦ πH on JP , with the constrained variational problem onHStr×XCP with admissible infinitesimal
variations AV(q,χ), determined by the Lagrangian function ℓ ◦ πJ : S → R on the constraint submanifold in
J(HStr×XCP). We stress, however, that this does not imply that both variational problems are equivalent. There
may exist admissible reduced fields that are not obtained as projection of a jet extension for any section of the
principal bundle.
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2.4. Discretization through Forward difference operators

We aim to obtain an appropriate discretization of the variational problems with constraints on local H-
reduced fields. That is, if we have a principal G-bundle π : P → X and an H-reduced Lagrangian function
ℓ : HStr×XCP → R, we want to substitute the infinite-dimensional space of smooth H-reduced fields by some
finite-dimensional (at least locally) space of discrete H-reduced fields. We also need to relate H-reduced fields
with a discrete counterpart, and to derive a variational principle on these discrete fields from the given smooth
H-reduced Lagrangian function ℓ.

Discretization mechanisms substitute partial derivatives of a smooth field with some kind of difference between
the configurations of the field at two given points. In this process it is desirable that the main symmetries and
geometrical properties of the smooth theory are retained in the discretized formulation. This was achieved in [6],
where the corresponding discrete notions and discretization mechanism were introduced using forward difference
operators in a covariant way. In the reduction and discretization of elements of the variational theory on a principal
G-bundle P , a relevant object was Ehresmann’s groupoid of fiber-to-fiber endomorphisms.

On a principal bundle π : P → X the natural mapping (p, g) ∈ P ×G 7→ (p, gp) ∈ P×XP establishes a
diffeomorphism, whose inverse mapping takes the form (p, p̄) ∈ P×XP 7→ (p, p̄p−1) ∈ P ×G determining the
group difference map (p, p̄) ∈ P×XP 7→ p̄p−1 ∈ G, characterized by (p̄p−1)p = p̄. This way of computing
differences, however, can be performed only on pairs belonging to the same G-orbit and the difference is not
preserved when we apply left translations λg : P → P on the pair.

For any pair of elements p0 ∈ Px0 , p1 ∈ Px1 , if we want to fix some G-covariant morphism ψ : P → P such
that ψ(p0) = p1, there might be several choices, but on the x0-fiber the choice is totally determined, indeed for any
p̄ ∈ Px0

we may write p̄ = (p̄p−1
0 )p0 and consequently ψ(p̄) = (p̄p−1

0 )ψ(p0) = (p̄p−1
0 )p1 must be the image of any

p̄ ∈ Px0 .

Definition 2.8
For any pair of elements p0 ∈ Px0 , p1 ∈ Px1 we call fiber-to-fiber endomorphism induced by (p0, p1), denoting it as
p−1
0 p1, the unique G-covariant mapping ψ : Px0

→ P whose domain is the G-orbit of p0 and such that ψ(p0) = p1.
This mapping takes the form p̄ ∈ Px0 7→ (p̄p−1

0 )p1 ∈ Px1 , for the element p̄p−1
0 ∈ G defined as the group difference

of p0, p̄ ∈ Px0 , and has the following properties:

pxq
−1
x = e⇔ px = qx, (qxp

−1
x )px = qx, (gqx)p

−1
x = g(qxp

−1
x ), pxq

−1
x = (qxp

−1
x )−1

Definition 2.9
We call fiber-to-fiber endomorphism on the principal G-bundle π : P → X any G-covariant morphism ψ : Px → P
(we mean ψ ◦ λg = λg ◦ ψ for each g ∈ G) whose domain is a single fiber Px ⊆ P .
The mapping s : EndP → X taking a fiber-to-fiber endomorphism into its domain Dom(ψ) = Px ∈ P/G ≃ X is
called the source mapping on EndP . By G-covariance, the image of the G-orbit Px must be another G-orbit. The
mapping t : EndP → X taking a fiber-to-fiber endomorphism into its image Img(ψ) = Px1 ∈ P/G ≃ X is called
the target mapping on EndP .

For any fiber-to-fiber endomorphism ψ and for any element in its source fiber p0 ∈ Ps(ψ), the image of p0 by ψ
shall be denoted as p0ψ. This element lies in Pt(ψ) ⊂ P .

Remark 2.2
As proved in [6], the mapping (p0, p1) ∈ P × P 7→ p−1

0 p1 ∈ EndP that transforms any pair into its associated
fiber-to-fiber endomorphism is surjective and its fibers are the orbits in P × P by the diagonal action λg × λg.
Therefore there exists an identification (P × P )/G ≃ EndP and the set EndP has a natural smooth structure.
The projectors s : EndP → X and t : EndP → X are smooth and (s, t) : EndP → X ×X is called Ehresmann’s
gauge groupoid.

There is a natural product (composition) of any fiber-to-fiber endomorphism with target x1 with any fiber-to-
fiber endomorphism with source x1, determining a smooth groupoid product (ψ0, ψ1) ∈ EndP×(t,s) EndP 7→
ψ1 ◦ ψ0 ∈ EndP . The manifold EndP has a groupoid structure using (s, t) : EndP → X ×X as anchor mapping
and ◦ as product.
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For notational convention the image of p ∈ Px by ψ ∈ (EndP )x will be denoted pψ ∈ Pt(ψ) and the composition
ψ1 ◦ ψ0 as ψ0 · ψ1. In this notation · represents the reverse product structure on the set EndP . We have, moreover:

p0(p
−1
0 p1) = p1, π(p0ψ01) = t(ψ01), p0ψ01 = p0 ⇔ ψ01 = Idπ(p0)

q0(p
−1
0 p1) = (q0p

−1
0 )p1, (s, t)(p−1

0 p1) = (π(p0), π(p1)), (p−1
0 p1)

−1 = p−1
1 p0

(gp0)
−1(gp1) = p−1

0 p1, (gp0)ψ01 = g(p0ψ01), p−1
0 (p1ψ12) = (p−1

0 p1)ψ12

(p0ψ01)ψ12 = p0(ψ01ψ12), (q0ψ01)(p0ψ01)
−1 = q0p

−1
0 , (ψ01ψ12)

−1 = ψ−1
12 ψ

−1
01

(s, t)(ψ01ψ12) = (s(ψ01), t(ψ12)), p−1
0 p1 = IdPπ(p0)

⇔ p0 = p1, p0ψ01 = p0 ⇔ ψ = Ids(ψ)

(g ∈ G, p0, q0, p1 ∈ P , ψ01, ψ12 ∈ EndP , s(ψ01) = π(p0) = π(q0), t(ψ01) = s(ψ12) = π(p1)).

The isotropy group bundle associated to a groupoid bundle (s, t) : EndP → X ×X is defined as the subset of
elements that have a coincident source and target. This determines a bundle GauP → X called the gauge group
bundle, whose elements areG-covariant automorphisms defined on a single fiber Px. Recall that the flow associated
to G-invariant vector fields on a fiber is always given by G-covariant automorphisms of this fiber. Therefore the
flow ϵ ∈ R 7→ ϕϵ ∈ Aut(Px) of ax ∈ AdPx takes values in the gauge group bundle, and determines an exponential
mapping (ϵ, ax) ∈ R×AdPx 7→ exp ϵax ∈ GauPx that allows to interpret AdPx as the Lie algebra of the Lie
group GauPx.

Discretization will replace partial derivatives at a single point, with a sample of configurations at several points.
This leads to a pair of relevant definitions:

Definition 2.10
For any set X and each k ∈ N we denote X×k = X × . . .×X the direct product of k + 1 copies of the set X .
Hence X×0 = X , X×1 = X ×X and so on. Elements in X×k can be seen as finite ordered sequences in X
consisting of k + 1 terms. An ordered sequence (x0, x1, . . . , xk) ∈ X×k without repeated terms shall be called an
ordered abstract simplex (being an abstract simplex any finite subset of X with exactly k + 1 elements).

In a similar way, for any bundle s : E → X we denote by E×sk = E×s . . .×sE the fibered product of k + 1
copies of the bundle s : E → X . Elements in E×sk can be seen as a point x ∈ X together with a finite ordered
sequence (e0, e1, . . . , ek) consisting of k + 1 terms on the fiber Ex associated to the given point, that is, for the
projection s : E×sk → X the fiber (E×sk)x is simply (Ex)

×k.

One of the most relevant results in [6] is that fixing a locally defined mapping ∆G : EndP → TP/G with
specific particular properties (projectable faithful reduced forward difference operator), delivers all the mechanisms
that we shall use to describe a discrete H-reduced variational problem. Specifically from ∆G one may derive:

• An open domain X̃ ⊂ X×n (domain of regular facet configurations) and a smooth function ṽol : X̃ → R (the
discrete volume function) associated to any volume form volX ∈ Ωn(X).

• An open domain J̃P ⊂ P×n (discrete jet space) projecting to X̃ by π×n and an injective local
diffeomorphism JPX : J̃P → JP×(jπ,π0)X

×n (forward Jacobi operator) relating this domain with a
corresponding open domain on the pull-back of the jet bundle jπ : JP → X by the projector
π0 : (x0, . . . , xn) ∈ X×n 7→ x0 ∈ X . This determines a smooth function Ld : J̃P → R (the discrete
Lagrangian function) associated to any Lagrangian density LvolX , for L ∈ C∞(JP ).

• An open domain C̃P ⊂ (EndP )×sn−1 (discrete connection space) projecting to X̃ by (s, t×n−1) and an
injective local diffeomorphism JCP : C̃P → CP×(πCP,π0)X

×n (reduced forward jacobi operator) relating
this domain with a corresponding open domain on the pull-back of the bundle of principal connections
πCP : CP → X by the projector π0 : X×n → X . This determines a smooth function ℓd : HStr×XC̃P → R
(the discrete H-reduced Lagrangian function) associated to any H-reduced Lagrangian density ℓvolX for
ℓ ∈ C∞(HStr×XCP).

Moreover, both the forward jacobi and reduced forward jacobi operators are covariant with respect to the naturally
induced actions of any gauge transformation ϕ : P → P on the bundles P , JP , HStr, CP and EndP (see [6]).
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3. Discretization of space

The foundations of differential calculus on abstract manifolds lie on choices of local charts, that is, locally
defined topological immersions x : Rn ↪→ X , which may be restricted to open hypercubic domains R ⊆ Rn.
Stating that a point x ∈ X has coordinates r = (r1, . . . , rn) ∈ R ⊂ Rn in this local chart is the same as stating
that x = x(r1, . . . , rn). Any function f : X → R can be expressed in a local chart as a real function in n real
variables f̄(r1, . . . , rn) = f ◦ x : Rn → R, defined on an open subset and differential calculus is then performed on
these real functions with several real variables. A geometrical treatment of differential calculus warrants that even
though computations depend on local coordinates, we may define notions with an intrinsic meaning, independent of
a possible change of one local coordinate chart to another using as coordinate transformations any diffeomorphism
between any two arbitrary open subsets on Rn.

To obtain a difference calculus on an abstract n-dimensional manifold a classical choice is to substitute the
smooth local chart and fix a cartesian grid on the manifold, a particular (possibly locally defined) immersion
x : Zn ↪→ X that associates to each vertex v ∈ Zn a node x(v) ∈ X . In this way, for any function f ∈ C∞(X)
we have a discrete counterpart fd = f ◦ x and the corresponding difference notions at any node (∆ifd)(v) =
fd(ti(v))− fd(v) where for each i = 1 . . . n, ti : Zn → Zn stands for the unit translation in the i-th direction of
Zn.

For the purposes of variational calculus, where we will deal with Lagrangian densities and connections, we must
extend our interest to include also edges and facets and not just vertices. That is, we will not work with a simple set
of vertices but with a richer structure, that of an abstract cellular complex [4, 5]. More specifically, in order to take
advantage of (reduced) forward jacobi operators we shall work on a simple structure: abstract simplicial complexes
V modelled on Zn.

Definition 3.1
Consider the integer interval [N ] = {1, . . . , N} ⊂ Z. We call V = [N ]× [N ]× . . .× [N ] ⊂ Zn the n-dimensional
array with diameterN . We call array with diameterN on an n-dimensional manifoldX any immersion x : V ↪→ X .

Elements in the n-dimensional array of diameter N are points (k1, . . . , kn), where ki ∈ {1, . . . , N}, ∀i = 1 . . . n.
An array with diameter N on X is therefore a choice of Nn points on X , indexed as (xv)v∈V for array values
v = (k1, . . . , kn) ∈ V . To make a distinction, we shall talk of vertices when using elements of the n-dimensional
array V and nodes when we use points xv ∈ X , in the image of some array on X .

Remark 3.1
For simplicity we shall assume that a given total order is fixed on the set V , for example the lexicographical order.
In this way, subsets of V can be identified with monotone sequences (v0, v1, . . . , vm) on V , and subsets of a set can
be given as subsequences (vj0 , vj1 , . . . , vjk), where 0 ≤ j0 < j1 < . . . < jk ≤ m.

To introduce a variational formalism for sections of a discrete bundle Yd → V we need additional structure on
V , which will allow to talk of discrete analogues of differential forms and its integration on compact domains. This
is achieved using a cellular complex that uses V as set of vertices (see [4]). In the present work we shall construct
a cellular complex using abstract polytopes. For a geometrical description of polytopes, see the appendix.

Definition 3.2
A nonempty finite subset of points β = {v0, v1, . . . , vk} ⊂ Rn is called an abstract polytope if none of its points
is a convex combination of the remaining ones. An abstract polytope is called an abstract simplex if none of the
points is an affine combination of the remaining ones. For abstract simplices with k + 1 elements, the affine space
generated by them has dimension k.

For an abstract simplex β we call dimβ = ♯β − 1. For arbitrary polytopes we call dimension of the abstract
polytope the dimension of the affine space generated by those points, dimβ = dim⟨β⟩. Abstract polytopes with
dimension 0 are precisely subsets with a single point and are called vertices, abstract polytopes with dimension 1
are precisely subsets with two points and are called edges. For abstract polytopes with dimension higher than 1, the
abstract polytope might not be an abstract simplex. Abstract polytopes in Rn with dimension n are called facets.

For two abstract polytopes α, β ⊂ Rn we say that α is a face of β and write α ≺ β if the convex hull [α] is a face
of the convex hull [β]. For abstract simplices, all its nonempty subsets are faces.
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It is known that the relation of being a face is a symmetric, transitive, and anti-reflexive relation on the abstract
polytopes. Moreover, it defines a T0 topology:

Definition 3.3
We say a subset of abstract polytopes U is closed if for each of its abstract polytopes β ∈ U , the associated faces
also belong to U :

U closed ⇔ (α ≺ β ∈ U ⇒ α ∈ U).
Definition 3.4
We call n-dimensional polytopal complex any finite family V of polytopes on Rn that is closed and whose maximal
elements (with respect to ≺) are n-dimensional abstract polytopes.

α ≺ β ∈ V ⇒ α ∈ V

α ∈ V, dimα ̸= n⇒ ∃β ∈ V, α ≺ β, α ̸= β

We say the abstract polytopal complex is modelled on a family of points V ⊂ Rn if all vertices of the family belong
to V . The subset of k-dimensional abstract polytopes of the complex is denoted by V k ⊂ V .

As V is closed, we may always assume that it is modelled on V 0. In the following, we shall write V instead of
V 0 to represent the set of vertices of a polytopal complex V .

It is clear from the definition that, in order to give an n-dimensional polytopal complex it suffices to give an
arbitrary finite family V n (that we call facets of the complex) representing its n-dimensional abstract polytopes.
The complex V is then given as the closure of V n, the family of all faces of the facets β ∈ V n.

Definition 3.5
For a given abstract polytope of an abstract polytopal complex α ∈ V , we call star associated to α the family of
abstract polytopes of the complex that have α as face:

Starα = {β ∈ V : α ≺ β}

The star can be decomposed using the dimension, as the disjoint union of the k-dimensional stars

Starkα = Starα ∩ V k.

Definition 3.6
Let V be an abstract polytopal complex on a set V . We call domain on V any subset of facets K ⊂ V n. Any such
domain generates a corresponding sub-complex K ⊂ V .

An abstract polytpe α ∈ V is said to be adherent to the domain K if it is a face of some facet in K. The set of
adherent polytopes of a domain K shall be denoted by K.

α ∈ K ⇔ ∃β ∈ K, α ≺ β ⇔ K ∩ Starnα ̸= ∅

An abstract polytope α ∈ V is said to be non-interior to the domainK if it is adherent to V n \K. The set of interior
polytopes of a domain K shall be denoted by intK

α ∈ intK ⇔ α ⊀ β, ∀β /∈ K ⇔ Starnα ⊆ K

An abstract polytope α ∈ V is said to be a frontier polytope of the domain K if it is adherent and non-interior to
K. The set of frontier polytopes of a domain K shall be denoted by frK

α ∈ frK ⇔ α ∈ K, α ∈ V n \K ⇔ K ∩ Starnα ̸= ∅, (V n \K) ∩ Starnα ̸= ∅

Observe that for any domain K ⊂ V n there holds K = intK ⊔ frK.
Starting from the n-dimensional array V with diameter N we shall construct two abstract polytopal complexes:

the Cartesian complex, and the Coxeter-Freudenthal-Kuhn simplicial complex. These two abstract complexes
represent a discrete model for the space [1, N ]n ⊆ Rn, described identifying abstract cells with simplices or
hypercubes obtained when we split Rn using a particular family of hyperplanes. Fix r1, . . . , rn as canonical
coordinates in Rn.

Stat., Optim. Inf. Comput. Vol. 6, March 2018



A. CASIMIRO AND C. RODRIGO 99

Proposition 3.1
Consider the hyperplanes ri = k on Rn, one hyperplane for each i = 1 . . . n and each k ∈ Z. Consider the set
H ⊂ Rn formed as the union of all these hyperplanes.

The connected components of Rn \ H are the open hypercubes:

Cv = {v + (ϵ1, ϵ2, . . . , ϵn) : 1 > ϵk > 0, ∀k = 1 . . . n} ⊂ Rn, v ∈ Zn

For any point r ∈ Rn \ H, its connected component is determined by v = (k1, . . . , kn) ∈ Zn where ki = ⌊ri⌋ (here
⌊·⌋ stands for the floor function).

The closure of these hypercubes, C̄v = {v + (ϵ1, ϵ2, . . . , ϵn) : 1 ≥ ϵk ≥ 0, ∀k = 1 . . . n}, are compact convex
sets whose extremal points are:

Ext(C̄v) = {v + (ϵ1, . . . , ϵn), ϵi ∈ {0, 1}} (v ∈ Zn)

Definition 3.7
We call abstract cartesian hypercube determined by an element v ∈ Zn the set

β(v) = {v + (ϵ1, . . . , ϵn), ϵi ∈ {0, 1}} ⊂ Zn

Consider V the n-dimensional array with diameter N . We call cartesian complex Vcart on V the abstract polytopal
complex generated by all abstract cartesian hypercubes contained in V .

Enlarging our family of hyperplanes we may do a partition of these hypercubes into simplices, a partition that
appears in different applications (see [37] for example) and had independent origins by Coxeter, Freudenthal and
Kuhn:

Proposition 3.2
Consider the hyperplanes ri = k and the hyperplanes ri1 − ri2 = k on Rn, one hyperplane for each k ∈ Z and each
integer i = 1 . . . n or pair of integers 1 ≤ i1 < i2 ≤ n. Consider the set H ⊂ Rn formed as the union of all these
hyperplanes.

The connected components of Rn \ H are the open affine simplices:

Kv,σ = {v + ϵ1eσ(1) + . . .+ ϵneσ(n), 1 > ϵ1 > ϵ2 > . . . > ϵn > 0} v ∈ Zn, σ ∈ Symn

For any point r ∈ Rn \ H, its connected component is determined by v = (k1, . . . , kn) ∈ Zn, σ =
(σ(1), . . . , σ(n)) ∈ Symn where ki = ⌊ri⌋ and σ is the permutation that determines the decreasing order of the
fractional components 1 > rσ(1) − kσ(1) > rσ(2) − kσ(2) > . . . > rσ(n) − kσ(n) > 0.

The closure of these affine simplices, K̄v,σ = {v + ϵ1eσ(1) + . . .+ ϵneσ(n), 1 ≥ ϵ1 ≥ ϵ2 ≥ . . . ≥ ϵn > 0}, are
compact convex sets whose extreme points are:

Ext(K̄v,σ) = {v0, v1, . . . , vn}, v0 = v, vk = vk−1 + eσ(k)

That is, all extremal points of the affine simplex K̄v,σ are obtained following a path starting at v and sequentially
adding all vectors of the canonical basis, following the order determined by σ.

Proof
Recall that when we remove any hyperplane from Rn this space is disconnected into two convex subsets (open
half-spaces). Moreover, intersection of convex subsets is again convex.

Points in Rn \ H are those elements r ∈ Rn that have noninteger (condition ri /∈ Z) coordinates (r1, . . . , rn),
and whose fractional components fi = ri − ⌊ri⌋ are all distinct (condition ri1 − ri2 /∈ Z).

Consider the following sets

Kv,σ = {v + (f1, . . . , fn), 1 > fσ(1) > fσ(2) > . . . > fσ(n) > 0} v ∈ Zn, σ = (σ(1), . . . , σ(n)) ∈ Symn

Each of these sets is contained in Rn \ H, as none of its points have integer coordinates or coincident fractional
component on any pair of coordinates. Conversely, any point r /∈ H belongs to some Kv,σ for some v =
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(k1, . . . , kn) and σ ∈ Symn, it suffices to take ki = ⌊ri⌋ and σ the permutation that re-arranges the fractional
values 0 < fi = ri − ki < 1 in decreasing order.

Moreover, if we call ϵi = fσ(i) we have:

Kv,σ = {v + ϵ1eσ(1) + . . .+ ϵneσ(n), 1 > ϵ1 > ϵ2 > . . . > ϵn > 0} v ∈ Zn, σ = (σ(1), . . . , σ(n)) ∈ Symn

hence the set Kv,σ is the image of the canonical open simplex {(ϵ1, . . . , ϵn) : 1 > ϵ1 > ϵ2 > . . . > ϵn > 0} ⊂ Rn
using the affine isomorphism (ϵ1, . . . , ϵn) 7→ v + ϵ1eσ(1) + . . .+ ϵneσ(n). Therefore Kv,σ are open convex sets, the
closure is the image of {(ϵ1, . . . , ϵn) : 1 > ϵ1 > ϵ2 > . . . > ϵn > 0} by this isomorphism, and the extreme points
are the image of (0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0 . . . , 0) . . . by this isomorphism. The closure and extreme points are
then the ones given in our statement.

As we have a decomposition of Rn \ H as the disjoint union of several open convex (and therefore connected)
sets, we conclude that these sets are the connected components in Rn \ H.

Definition 3.8
We call abstract CFK simplex determined by an element v ∈ Zn and a permutation σ, the set

β(v, σ) = {v0, . . . , vn}

whose initial element is v0 = v and determined by vk+1 = vk + eσ(k).
Consider V the n-dimensional array with diameterN . We call CFK complex on V the abstract polytopal complex

VCFK generated by all abstract CFK simplices contained in V .

In figure 1 we represent the CFK simplicial partition of a single hypercube, in R3 and in R2:

1

Figure 1. Coxeter-Freudenthal-Kuhn partition in 3D and 2D.

4. Discrete H-reduced variational principles on the CFK simplicial complex

On the discrete manifold V , seen as a totally disconnected 0-dimensional smooth manifold, all usual objects of
bundle theory are available, with the particularity that we are dealing with non-connected manifolds and that
certain tangent spaces are the trivial null space. In particular we may consider bundles and principal G-bundles on
V .

Definition 4.1
We call discrete bundle on a set V any surjective mapping π : Yd → V whose fibers π−1(v) = Yv are smooth
manifolds.

We say the discrete bundle π : Pd → V is a discrete principal G-bundle if its fibers are the G-orbits for some
proper, free, smooth action λ : G→ Aut(Pd) of the Lie group G on Pd.
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Observe that a discrete bundle is, in particular, a non-connected smooth manifold. As the base manifold is
discrete, any tangent vector in the manifold Yd is always vertical with respect to the projector π : Yd → V . We shall
call vertical bundle πV : V Yd → Yd associated to the discrete bundle Yd, the vector bundle whose fiber at yv ∈ Yd
is the tangent space at yv of the fiber Yv ⊂ Yd. That is, (V Yd)yv = TyvYv. This is a smooth vector bundle with a
smooth base manifold Yd.

Moreover, the restriction of a smooth bundle on an n-dimensional manifold X to any particular array with
diameter N on this manifold generates a discrete bundle:

Definition 4.2
Consider x : V ↪→ X an array with diameter N on an n-dimensional manifold X . For any bundle π : Y → X , we
call discrete bundle induced by Y on the array x, the bundle πx : Yx = x∗Y → V . As a manifold, Yx is the disjoint
union of the fibers Yxv and the projector onto V is the determination of the vertex v ∈ V associated to π(y) ∈ X .

Any section y ∈ Γ(Y ) of the bundle π : Y → X naturally induces a section yx = y ◦ x ∈ Γ(Yx), of the discrete
bundle induced by the array x : V ↪→ X .

Considering that discrete bundles are ordinary bundles where the base manifold is a discrete 0-dimensional
manifold, for a discrete principal G-bundle we may use most of the main objects in principal bundle theories:

Definition 4.3
For any discrete principal G-bundle Pd → V and any closed subgroup H of G, there exists an induced discrete
bundle, the bundle of discrete H-structures πHStr : Pd/H = HStrd → V . This is a smooth manifold with several
connected components, and Pd itself is a (non-discrete) principal H-bundle using HStrd as (non-discrete) base
manifold. We denote πH : PHStr → HStrd this smooth principal H-bundle.

Definition 4.4
The vertical bundles V π

G

Pd → Pd and V π
H

PHStr → PHStr determine the corresponding quotient bundles, a
discrete one AdPd = (V Pd)/G→ V and a smooth one AdPHStr = (V PHStr)/H → HStrd, adjoint bundles of
the principal bundles Pd → V and PHStr → HStr.

There is a natural inclusion AdPHStr ⊆ HStr×V AdPd.

Definition 4.5
A discrete principal bundle π : Pd → V determines a corresponding discrete Ehresmann bundle EndPd → V × V ,
and for a fixed closed subgroup H ⊆ G, also a corresponding smooth Ehresmann bundle EndPHStr → HStr×
HStr.

Remark 4.1
From [6] we recall that:

• The differential of the gauge difference mapping πG : Pd × Pd → EndPd in the first component determines
an isomorphism (source trivialisation of V EndPd):

s∗ AdPd ≃ V (s,t) EndPd

where the pull-back of AdPd → V is performed using s : EndPd → V . In this identification, (ψα, as(α)) ∈
EndPd×(s,π) AdPd is identified with the tangent vector at ϵ = 0 of the trajectory exp(−ϵa) · ψα = ψα ◦
exp(−ϵa) ∈ EndPα.

• The differential of the quotient mapping πH : Pd → HStrd determines a projector:

π∗
HStr AdPd → V HStrd

with a pull-back performed using πHStr : HStrd → V . The kernel of this projector is the sub-bundle
AdPHStr ⊆ π∗

HStr AdPd. In this identification, (qv, av) ∈ HStrd×V AdPd is identified with the tangent
vector at ϵ = 0 of the trajectory qv exp ϵa ∈ HStrv.
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We introduce now the specific facets and edges of our simplicial complex V , which includes additional
information not available in the discrete bundle Pd → V . In the following, V ⊂ Zn will be the n-dimensional array
with diameter N , where we consider the Coxeter-Freudenthal-Kuhn simplicial complex. For simplicity we shall
assume that the lexicographical order is fixed on V ⊂ Zn and all subsets of V will be given as (lexicographically)
monotone sequences of vertices. Edges will then be given as ordered pairs (v0, v1), where the vertex v0 precedes in
the lexicographical order the vertex v1. The ordering choice leads to an identification of V 1 as a particular subset
of V × V , and in general an identification of V k as a subset of V ×k. Moreover, the projectors πi : V ×n → V ,
πi0i1 = (πi0 , πi1) : V

×n → V × V induce corresponding projectors πi : V n → V and πi0i1 : V
n → V × V . For

simplicial facets and the case i0 < i1, we know that πi0i1 takes values on V 1 ⊂ V × V . In a similar way we may
define projectors πi0...ik : V j → V k for the case 0 ≤ i0 < . . . < ik ≤ j.

Definition 4.6
For any discrete bundle Yd → V , we call extension to k-simplices, Y kd → V k, the restriction of (Yd)×k → V ×k to
the set of k-simplices V k ⊂ V ×k.

For any sequence of indices 0 ≤ i0 < i1 < . . . < ik ≤ j, there exists a projector πYi0i1...ik : Y
j
d → Y kd

transforming the sequence (y0, y1, . . . , yj) on the simplex (v0, . . . , vj) ∈ V j ⊂ V ×j into the sequence (yi0 , . . . , yik)
on the simplex πi0...ik(v0, . . . , vj) = (vi0 , . . . , vik) ∈ V k ⊂ V ×k. This is a bundle morphism from the bundle
Y jd → V j to the bundle Y kd → V k, covering the morphism πi0...ik : V

j → V k.

Definition 4.7
Let π : Pd → V be a discrete bundle and let (s, t) : EndPd → V × V be the associated Ehresmann bundle. The
fibered product (EndPd)×sk−1 = EndPd×s EndPd×s . . .×s EndPd of k copies of s : EndPd → V has a bundle
structure on V ×k using (s, t1, t2, . . . , tk) as projector.

For any k ≥ 1, we call Ehresmann bundle on k-simplices, Endk Pd → V k, associated to the discrete principal
G-bundle Pd → V , the restriction of (EndPd)×sk to the subset V k ⊂ V ×k.

For any sequence of indices 0 < i1 < . . . < ik ≤ j there exists a projector πEnd
0i1...ik

: Endj Pd → Endk Pd
transforming the sequence (ψ01, ψ02, . . . , ψ0j) on the simplex (v0, v1, . . . , vj) ∈ V j ⊂ V ×j into the sequence
(ψ0i1 , ψ0i2 , . . . , ψ0ik) on the simplex (v0, vi1 , . . . , vik) ∈ V k ⊂ V ×k. This is a bundle morphism from Endj Pd →
V j to the bundle Endk Pk → V k covering the morphism π0i1...ik : V

j → V k.
For any sequence of indices 0 < i0 < i1 . . . < ik ≤ j, there also exists a projector πEnd

i0i1...ik
: Endj Pd →

Endk Pd transforming the sequence (ψ01, ψ02, . . . , ψ0j) on the simplex (v0, v1, . . . , vj) ∈ V j ⊂ V ×j into the
sequence (ψ−1

0i0
ψ0i1 , ψ

−1
0i0
ψ0i2 , . . . , ψ

−1
0i0
ψ0ik) on the simplex (vi0 , vi1 , . . . , vik) ∈ V k ⊂ V ×k. This is a bundle

morphism from Endj Pd → V j to the bundle Endk Pk → V k covering the morphism πi0i1...ik : V
j → V k.

Particularly relevant will be Ehresmann bundle on edges End1 Pd → V 1, which represents the restriction of
(s, t) : EndPd → V × V to V 1 ⊂ V × V . To maintain a uniform notation, the natural projectors π0 : V × V →
V and π1 : V × V → V , when restricted to V 1 ⊂ V × V , shall be denoted by s : V 1 → V and t : V 1 → V ,
respectively.

We have just introduced all the relevant elements for the formulation of variational principles on discrete H-
reduced fields.

Definition 4.8
For a given discrete principal G-bundle Pd → V and closed subgroup H ⊆ G, we call discrete H-reduced
field, any pair (q, ψ) determined by a section q ∈ Γ(HStrd) of the associated bundle of discrete H-structures
HStrd = Pd/H → V on vertices, and another section ψ ∈ Γ(End1 Pd) of the associated Ehresmann bundle
(s, t) : End1 Pd → V 1 on edges of the CFK complex.

Observe that being all fibers ofHStrd and End1 Pd finite-dimensional manifolds, and being both V and V 1 finite
sets, the space Γ(HStrd)× Γ(End1 Pd) of H-reduced fields is a manifold with finite (but large) dimension

Γ(HStrd)× Γ(End1 Pd) =
∏
v∈V 0

HStrv ×
∏
α∈V 1

End1 Pα
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Using that the tangent space of a product is the direct sum of tangent spaces of its components, the tangent space
at a given point (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) has a canonical identification:

T(q,ψ)
(
Γ(HStrd)× Γ(End1 Pd)

)
=
⊕
v∈V 0

TqvHStrv ⊕
⊕
α∈V 1

Tψα
End1 Pα = Γ(q∗V HStrd)⊕ Γ(ψ∗V End1 Pd)

Definition 4.9
We call space of infinitesimal variations of an H-reduced discrete field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) the
vector space Γ(q∗V HStrd)⊕ Γ(ψ∗V End1 Pd). Its elements shall be denoted by (δq, δψ), with components
δqv ∈ TqvHStrv, δψα ∈ Tψα End1 Pα for each v ∈ V , α ∈ V 1.

Moreover, using for each ψα ∈ EndPd the natural source trivialisation Vψα EndPd ≃ AdPs(ψα) and for each
qv ∈ HStrd the natural identification VqvHStrd ≃ AdPπHStrqv/AdPHStr

qv we have an identification:

T(q,ψ)
(
Γ(HStrd)× Γ(End1 Pd)

)
≃ Γ(AdPd/q

∗ AdPHStr)⊕ Γ(s∗ AdPd) (5)

The first component is a section of a vector bundle AdPd → V on vertices. The second component is a section of
a vector bundle s∗ AdPd → V 1 on edges.

For the dual space:

T ∗
(q,ψ)

(
Γ(HStrd)× Γ(End1 Pd)

)
⊂ Γ(Ad∗ Pd)⊕ Γ(s∗ Ad∗ Pd) (6)

where the inclusion is as elements whose first component (related to vertices) are linear forms on AdPv that vanish
on the corresponding subspaces AdPHStr

qv ⊆ AdPv.

Definition 4.10
We call functional on the space of discrete H-reduced fields, any smooth function L defined on an open subset
of the manifold Γ(HStrd)× Γ(End1 Pd). A discrete H-reduced field (q, ψ) is said to be strongly critical for the
functional L, if the differential of this function at this point vanishes.

Using the representation of the tangent space as Γ(q∗V HStrd)⊕ Γ(ψ∗V End1 Pd), the differential of L at any
point is characterized by its components dv(q,ψ)L ∈ T ∗

qvHStrv (one component for each v ∈ V ) and dα(q,ψ)L ∈
T ∗
ψα

End1 Pα (one component for each α ∈ V 1). It seems, however, more convenient to express them as linear
forms on AdPd (we get an object not depending on the particular point (q, ψ)).

Using the identification (6), for any point (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) there exist unique sections ∂0(q,ψ)L ∈
Γ(Ad∗ Pd) and ∂1(q,ψ)L ∈ Γ(s∗ Ad∗ Pd) such that ∂0(q,ψ)L vanishes on Γ(q∗ AdPd), and for which holds:

⟨d(q,ψ)L, ([a0v]v∈V , (a1s(α))α∈V 1)⟩ = ⟨∂0(q,ψ)L, a
0⟩+ ⟨∂1(q,ψ)L, a

1⟩

at any tangent vector ([a0v]v∈V , (a
1
s(α))α∈V 1) ∈ Γ(AdPd/q

∗ AdPHStr)⊕ Γ(s∗ AdPd) ≃ T(q,ψ)(Γ(HStrd)×
Γ(End1 Pd)), and where a0 ∈ Γ(AdPv) stands for any representative in the class [a0] ∈ Γ(AdPd/q

∗ AdPHStr).
The duality product of sections of a bundle and sections of the dual bundle is performed as the summation of
duality applied at all of the fibers.

Theorem 4.1
Strongly critical H-reduced configurations will be then characterized by:

0 = ∂0(q,ψ)L ∈ Γ(Ad∗ Pd), 0 = ∂1(q,ψ)L ∈ Γ(s∗ Ad∗ Pd)

where ∂0(q,ψ)L ∈ Γ(Ad∗ Pd) and ∂1(q,ψ)L ∈ Γ(s∗ Ad∗ Pd) have components ∂v(q,ψ)L (with v ∈ V ) and ∂α(q,ψ)L, (with
α ∈ V 1) respectively, defined by:

(∂v(q,ψ)L)(av) = dv(q,ψ)L ∈ T ∗
qvHStrv ⊆ Ad∗ Pv, (∂α(q,ψ)L) = dα(q,ψ)L ∈ T ∗

ψα
End1 Pα ≃ Ad∗ Ps(α)

using the corresponding natural identification and inclusion of dual spaces.
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Proof
Criticality is by definition the annihilation of d(q,ψ)L, which means the annihilation of all its components. The
result is obtained by the natural identifications or immersions of these components in fibers of the dual adjoint
bundle.

However we shall not consider arbitrary functionals on the space of discrete H-reduced fields, but just action
functionals derived from a discrete Lagrangian function. Moreover, we shall not be concerned with strongly critical
points of this functional, but only with critical points, with respect to a certain constrained variational principle. We
begin with the introduction of action functionals. Recall that given a smooth bundle Y → X , a Lagrangian density
LvolX and a compact domain K ⊂ X , we can define a functional LK : y ∈ Γ(Y ) → LK(y) ∈ R on the space of
fields y ∈ Γ(Y ) using the following steps:

y ∈ Γ(Y ) ⇒ jy ∈ Γ(JY ) ⇒ (L ◦ jy)volX ∈ Γ(ΛnT ∗X) ⇒
∫
K

(L ◦ jy)volX ∈ R

We want to parallel this process for the case of discrete H-reduced fields following a scheme:

(q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) ⇒ ex(q, ψ) ∈ Γ(RJPd) ⇒ ℓd ◦ ex(q, ψ) ∈ Γ(V n ×R)

⇒
∑
β∈K

ℓd ◦ ex(q, ψ)(β) ∈ R

where ex : Γ(HStrd)× Γ(End1 Pd) → Γ(RJPd) should be the discrete operator that extends a given section to a
new section, representing the corresponding discrete analogue of a H-reduced jet rj ∈ Γ(JP/H).

Definition 4.11
For any discrete principal G-bundle Pd → V and closed subgroup H ⊆ G, we call RJPd =
π∗
0HStr×V n Endn Pd → V n discrete bundle of H-reduced jet configurations associated to Pd. The bundle
RJPd is a discrete bundle on V n whose fiber on any facet β = (v0, v1, . . . , vn) ∈ V n ⊂ V ×n is:

RJPβ = HStrv0 × (Endn P )β = HStrv0 × (End1 P )v0v1 × . . .× (End1 P )v0vn

In the smooth theory JP/H = HStr×XCP, hence an H-reduced jet is composed of a point x ∈ X , a single H-
structure qx ∈ HStrx, and a principal connection element χx ∈ CPx at this point, which represents a determination
of horizontal lifts δ ∈ TxX 7→ χx(δ) ∈ (TP/G)x for n independent directions δ ∈ TxX . For our notion of discrete
H-reduced jet configuration, the information needed at any fixed facet β is a single H-structure at the vertex
π0(β) ∈ V , and n fiber-to-fiber endomorphisms for n edges π0i(β) ∈ V 1.

There are natural projectors defined in RJPd. We denote πRJP0 : RJPd → HStrd, πRJP0i : RJPd → End1 Pd
(i = 1 . . . n) these projectors. They are fibered over π0 : V n → V and π0i : V n → V 1, respectively.

Proposition 4.2
Consider s : RJPd → V the source mapping and s∗ AdPd → RJPd the pull-back of the adjoint bundle AdPd →
V to RJPd. Consider the sub-bundle (s∗ AdPd)

HStr ⊂ s∗ AdPd characterized by:

(s∗ AdPd)
HStr
rj = AdPHStr

q ⊆ AdPv = (s∗ AdPd)rj , rj ∈ RJPd, q = πRJP0 (rj) ∈ HStrd, v = s(rj) ∈ V

There exists a natural identification of the vertical bundle V RJPd → RJPd as:

V RJPd ≃ (s∗ AdPd)/(s
∗ AdPd)

HStr ⊕ (s∗ AdPd)
⊕n−1

There exists an induced natural immersion of the dual vertical bundle V ∗RJPd → RJPd as sub-bundle of
(s∗ Ad∗ Pd)

⊕n → RJPd (direct sum of n+ 1 copies of the dual adjoint bundle).
The fiber of this sub-bundle at any H-reduced jet configuration rj = (q, ψ01, . . . , ψ0n) ∈ RJPd with source

s(rj) = v is:

V ∗
rjRJPd =

{
(∂0, ∂01, . . . , ∂0n) : ⟨∂0, a⟩ = 0, ∀a ∈ AdPHStr

q ⊂ AdPv
}
⊆ (Ad∗ Pv)

⊕n
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Proof
Using the definition of RJPd as a fibered product, the projectors to each of its components determine an
isomorphism:

VrjRJPd = Vq0HStrd ⊕
⊕
i=1...n

Vψ0i End
1 Pd, q0 = πRJP0 (rj), ψ0i = πRJP0i (rj)

using now the natural identification VqHStrd ≃ AdPπ(q)/AdPHStr
q and the source trivialisation Vψ End1 Pd ≃

AdPs(ψ), one obtains the result for the vertical bundle.
In the dual vertical bundle, it suffices to observe that the quotient morphism E → E/F of any vector bundle E

by some sub-bundle F induces a corresponding immersion of dual bundles (E/F )∗ ↪→ E∗, identifying (E/F )∗ as
the sub-bundle of linear forms on E that vanish when applied to F ⊂ E.

Definition 4.12
For any smooth function ℓ : RJPd → R, the n+ 1 components in Ad∗ Ps(rj) determined by its differential at a
given point rj ∈ RJPd are denoted by ∂0rjℓ, ∂

01
rj ℓ, . . . , ∂

0n
rj ℓ.

Remark 4.2
Observe that every discrete H-reduced field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) determines a corresponding discrete
H-reduced jet ex(q, ψ) ∈ Γ(RJPd), namely a section β ∈ V n 7→ exβ(q, ψ) ∈ RJPd defined by:

β = (v0, . . . , vn) ∈ V n ⇒ exβ(q, ψ) = (qv0 , ψv0v1 , . . . , ψv0vn)

Observe that Γ(RJPd) is a direct product
∏
β∈V n

(
HStrπ0(β) ×

∏
i=1...n End

1 Pπ0i(β)

)
and has then a smooth

manifold structure. We may denote by rj0β ∈ HStrπ0(β) and by rj0iβ ∈ End1 Pπ0i(β) the corresponding components
of each section rj ∈ Γ(RJPd). Consequently, the tangent space of Γ(RJPd) at any rj ∈ Γ(RJPd) is a direct sum:

Trj(Γ(RJPd)) =
⊕
β∈V n

(
Trj0βHStrπ0(β) ⊕

⊕
i=1...n

Trj0iβ
End1 Pπ0i(β)

)
= Γ(rj∗V RJPd)

Proposition 4.3
The mapping ex : Γ(HStrd)× Γ(End1 Pd) → Γ(RJPd) is smooth. The differential at any given (q, ψ) is described
in components (δqv, δψα) 7→ (δrj0β , δrj

0i
β ) as:

δrj0β = δqπ0(β), δrj0iβ = δψπ0i(β), ∀β ∈ V n, i = 1 . . . n

Proof
The mapping ex is merely a re-ordering (with possible repetitions) of the several components qv, ψα in (q, ψ) to
give the different components of ex(q, ψ). It can be described as:

rj0β = qπ0(β), rj0iβ = ψπ0i(β), ∀β ∈ V n, i = 1 . . . n (7)

As a consequence, it is a smooth mapping, and the induced mapping on the tangent spaces is the one given in the
statement.

We may observe from (7) that sections rj ∈ Γ(RJPd) that are obtained in the form ex(q, ψ) must always satisfy
the relations:

rj0i1β1
= rj0i2β2

, ∀β1, β2 ∈ V n, i1, i2 = 1 . . . n such that π0i1(β1) = π0i2(β2) ∈ V 1

rj0β = rj0β̄ , ∀β, β̄ ∈ V n, such that π0(β) = π0(β̄) ∈ V

In the same manner as not all sections of a jet bundle are a jet extension of a field, also not all sections of the discrete
bundle of H-reduced jet configurations are a reduced jet extension of some discrete H-reduced field (q, ψ).
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Definition 4.13
We call discrete H-reduced Lagrangian function, any locally defined function ℓd : RJPd → R, whose domain is
an open sub-bundle R̃JP d ⊂ RJPd → V n with non-empty fibers. Elements in the domain shall be called regular
H-reduced jet configurations.

As RJPd is a discrete union of its fibers RJPβ , any discrete H-reduced Lagrangian function ℓd can be
seen as a family of smooth functions {ℓβ}β∈V n , each of them defined on a nonempty open subset of a fiber
R̃JP β ⊂ RJPβ . Following Definition 4.12, the components of the differential dℓβ at a certain point rj ∈ RJPβ
with s(rj) = π0(β) = v ∈ V , using the natural immersion V ∗

rjRJPd ⊆ (Ad∗ Pv)
⊕n, shall be denoted by ∂0rjℓβ ,

∂01rj ℓβ ,. . ., ∂0nrj ℓβ ∈ Ad∗ Pv.

Remark 4.3
In the case that the discrete principal bundle Pd → V is the restriction Pd = x∗P ⊂ P of some smooth bundle P →
X to some array x : V → X , we haveHStrd = Pd/H ⊂ P/H = HStr and End1 Pd ⊂ EndPd ⊂ EndP , therefore
Endn Pd ⊂ (EndP )×sn−1. Hence, RJPd ⊂ HStr×X(EndP )×sn−1 and an H-reduced Lagrangian function can
be obtained considering a single smooth function ℓ : HStr×X(EndP )×sn−1 → R and its corresponding restriction
to a finite family of fibers (x(v0), . . . , x(vn)) ∈ X×n, for all choices (v0, . . . , vn) ∈ V n ⊂ V ×n. In the case
of a trivial principal G-bundle this class of H-reduced Lagrangian functions can be written in the form
ℓ(x0, . . . , xn,Hg, g01, . . . , g0n) for some smooth function on X×n ×G/H ×G×n−1, or in the simplest case ℓ
has an expression ℓ(Hg, g01, . . . , g0n), smooth function defined on a manifold G/H ×G× . . .×G.

Definition 4.14
Consider a discrete H-reduced Lagrangian function ℓd : RJPd → R, defined on a certain open domain R̃JP d ⊂
RJPd (of regular H-reduced jet configurations). We say a discrete H-reduced field (q, ψ) belongs to the regular
domain if its H-reduced jet extension ex(q, ψ) ∈ Γ(RJPd) takes values in the regular domain R̃JP d. In this case,
we say that the discrete action functional Ld determined by ℓd takes at (q, ψ) the following value:

Ld(q, ψ) =
∑
β∈V n

ℓβ(exβ(q, ψ))

We say an H-reduced field (q, ψ) is strongly critical for the H-reduced Lagrangian function ℓd, if it is strongly
critical for the associated functional Ld.

Observe that, in the same way that there might not exist globally defined smooth sections of a bundle, in the
discrete case, where the existence of globally defined sections is guaranteed, the condition that the extension of the
section to facets should lie on a certain domain of regular configurations might be too strong. For certain choices,
the domain of regular configurations could be so small that the discrete action functional cannot be computed on
any global section.

To compute strongly critical points for someH-reduced Lagrangian function ℓd, one must compute the derivative
of the locally defined function Ld : Γ(HStrd)× Γ(End1 Pd) → R at points (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd).
Using the chain rule, this is performed computing the differential of each function ℓβ , for each facet β ∈ V n,
and the differential of ex, given in proposition (4.3), leading to:

Proposition 4.4
Consider an H-reduced field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) and the induced H-reduced jet field ex(q, ψ) =
rj ∈ Γ(RJPd). The differential d(q,ψ)L ∈ Γ(q∗V ∗HStrd)⊕ Γ(ψ∗V ∗ End1 Pd) at (q, ψ), of the discrete action
functional Ld, associated to some discrete H-reduced Lagrangian density ℓd = (ℓβ)β∈V n , has components
depending on ℓβ through:

∂v(q,ψ)L =
∑

π0(β)=v

∂0rjβ ℓβ ∈ Ad∗ Pv, ∂α(q,ψ)L =

n∑
i=1

∑
π0i(β)=α

∂0irjβ ℓβ ∈ Ad∗ Pv (8)

Corollary 4.1
When the action functional is defined by a discreteH-reduced Lagrangian function ℓ : RJPd → R, strongly critical
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discrete H-reduced fields will be characterized by:

0 =
∑

π0(β)=v

∂0rjβ ℓβ , 0 =

n∑
i=1

∑
π0i(β)=α

∂0irjβ ℓβ

However we shall not seek for H-reduced fields that ate strongly critical. The discrete variational principle will
consider only a certain subset of discreteH-reduced fields (admissible fields) and a certain subspace of (admissible)
infinitesimal variations for these fields.

5. Constrained variational principles on discrete H-reduced fields

In a similar way as was done in the smooth theory of Euler-Poincare reduction, we shall look for global H-reduced
fields, that are critical points for the discrete action functional, but only with respect to some restricted set of
variations.

Definition 5.1
We say that (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) is an admissible H-reduced field if for any edge (v0, v1) ∈ V 1 ⊂
V × V there holds qv0ψv0v1 = qv1 and for any 2-simplex (v0, v1, v2) ∈ V 2 ⊂ V ×2 there holds ψv0v1ψv1v2 = ψv0v2 .

This definition recovers the notion of parallel H-structure and flat connection assumed for admissible H-
reduced fields in the smooth theory. In order to determine a constrained variational principle on discrete H-
reduced fields, we still need to fix compatible subspaces of admissible infinitesimal variations, for each admissible
(q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd).

Remark 5.1
For any admissible discrete H-reduced field (q, ψ) and for any a ∈ Γ(AdPd), the family of discrete H-reduced
fields (q(ϵ), ψ(ϵ)) described by qv(ϵ) = qv exp ϵa, ψα(ϵ) = (exp−ϵas(α))ψα exp ϵat(α) are also admissible.

The tangent vector to the curve (q(ϵ), ψ(ϵ)) in the source-trivialisation (5) has components:

δqv = [av], δψα = as(α) −Adψ−1
α
at(α) (v ∈ V, α ∈ V 1)

Definition 5.2
For any admissible discreteH-reduced field (q, ψ) ∈ Γ(HStr)× Γ(End1 P ), we call space of admissible variations
AV(q,ψ), the image of the linear operator:

P(q,ψ) : a ∈ Γ(AdPd) 7→
(
([av])v∈V , (as(α) −Adψ−1

α
at(α))α∈V 1

)
∈ Γ(q∗V HStrd)⊕ Γ(ψ∗V End1 P )

We are in situation to define the constrained variational problem in discrete H-reduced fields. It is given as:

• An abstract (ordered) simplicial complex V modelled on a finite set of vertices V 0 = V .
• A discrete principal G-bundle Pd → V , its associated discrete Ehresmann groupoid on edges
πEnd : End1 Pd → V 1 and discrete adjoint bundle πAd : AdPd → V on vertices.

• A closed subgroup H ⊆ G determining the associated discrete H-structure bundle πHStr : HStrd → V ,
principal H-bundle πH : PHStr → HStrd and the bundle of H-reduced jet configurations RJPd → V n.

• A smooth, locally defined, function (discrete H-reduced Lagrangian) ℓd : RJPd → R.

In this situation we may define:

• The manifold of discrete H-reduced fields Γ(HStrd)× Γ(End1 Pd), and the subset of admissible fields,
characterized for having a flat discrete connection that can be reduced to the H-structure (we may also say
that the H-structure is parallel).

• For each admissible H-reduced field (q, ψ), a corresponding space of admissible infinitesimal variations
AV(q,ψ) ⊂ Γ(q∗V HStrd)⊕ Γ(ψ∗V End1 Pd).
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• An action functional Ld : Γ(HStrd)× Γ(End1 Pd) → R determined by the H-reduced Lagrangian function
ℓd.

Definition 5.3
Se say an admissible discrete H-reduced field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) is critical for the constrained
variational problem determined by the discrete H-reduced Lagrangian function ℓd, if the differential d(q,ψ)Ld
of the action functional vanishes on the subspace of admissible infinitesimal variations AV(q,ψ).

Obviously, in the case that there exists a strongly critical, admissibleH-reduced field (q, ψ) for ℓd, it will be critical
for the constrained variational problem determined by ℓd.

Theorem 5.1
An admissible discrete H-reduced field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd) is critical for the constrained variational
problem determined by ℓd if and only if the discrete Euler-Poincaré equations 0 = EP(q, ψ) hold, where
EP(q, ψ) ∈ Γ(Ad∗ Pd) is described by:

EPv(q, ψ) =
∑

π0(β)=v

∂0rjβ ℓβ +

n∑
i=1

∑
π0(β)=v

∂0irjβ ℓβ −
n∑
i=1

∑
πi(β)=v

Ad∗ψπ0i(β)
∂0irjβ ℓβ , rj = ex(q, ψ) ∈ Γ(RJPd)

(9)
where Ad∗ψ : Ad∗ Ps(ψ) → Ad∗ Pt(ψ) stands for the linear morphism induced in the dual adjoint spaces by the
morphism Adψ−1 : AdPt(ψ) → AdPs(ψ).

Proof
For a fixed u ∈ V , and considering the section a ∈ Γ(AdPd) that takes value au ∈ AdPu at the vertex u and
vanishes everywhere else we have:

⟨d(q,ψ)L,P(q,ψ)(a)⟩ = ⟨∂0(q,ψ)L, [av]v∈V ⟩+ ⟨∂1(q,ψ)L, (as(α) −Adψ−1
α
at(α))α∈V 1⟩ =

= ⟨∂u(q,ψ)L, au⟩+
∑

s(α)=u

⟨∂α(q,ψ)L, au⟩ −
∑
t(α)=u

⟨∂α(q,ψ)L,Adψ−1
α
au⟩ =

= ⟨∂u(q,ψ)L+
∑

s(α)=u

∂α(q,ψ)L−
∑
t(α)=u

Ad∗ψα
∂α(q,ψ)L, au⟩

here Ad∗ψ stands for the linear mapping Ad∗ Ps(ψ) → Ad∗ Pt(ψ) induced in the dual spaces by Adψ−1 : AdPt(ψ) →
AdPs(ψ).

As any section a ∈ Γ(AdPd) is a finite sum of sections of the given form, we conclude that criticality is
equivalent to the vanishing of EP(q, ψ) ∈ Γ(Ad∗ Pd) defined by:

EPu(q, ψ) = ∂u(q,ψ)L+
∑

s(α)=u

∂α(q,ψ)L−
∑
t(α)=u

Ad∗ψα
∂α(q,ψ)L

To express this element in terms of the discrete H-reduced Lagrangian function ℓd : RJPd → R, we may use (8)
to obtain:

EPu(q, ψ) =
∑

π0(β)=u

∂0rjβ ℓβ +

n∑
i=1

∑
π0(β)=u

∂0irjβ ℓβ −
n∑
i=1

∑
πi(β)=u

Ad∗ψπ0i(β)
∂0irjβ ℓβ

6. Integrators for discrete Euler-Poincaré equations

Observe the structure of discrete Euler-Poincaré equations (9). Suppose we have an admissible discrete H-reduced
field (q, ψ) ∈ Γ(HStrd)× Γ(End1 Pd), that is critical for a certain discrete Lagrangian function ℓd.
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Let us decompose the space Zn into slices Sc defined by equations k1 + k2 + . . .+ kn = c. Consider a
vertex u ∈ Zn in a given slice Sc+n. Assume that all values qw, ψv0w are known for vertices w in the region
k1 + . . .+ kn < c+ n. What can be said about the values qu and ψv0u?

Taking Euler-Poincaré equations at v = u− (1, . . . , 1) (hence v ∈ Sc), we observe that the equation 0 =
EPv(q, ψ) only depends on rjβ when πi(β) = v for some i. This implies π0(β) ∈ Sc−i, and rjβ only depends
in configurations qw, ψv0w with w in the region k1 + . . .+ kn < c+ n, plus the particular configuration ψvu (that
appears in components rjβ when π0(β) = v).

If we decompose Euler-Poincaré equations at v into components that depends on rjβ for π0(β) = v and another
one that depends on rjβ for πi(β) = v, i = 1 . . . n, (9) is equivalent to:

EP1︷ ︸︸ ︷∑
π0(β)=v

∂0rjβ ℓβ +

n∑
i=1

∑
π0(β)=v

∂0irjβ ℓβ =

EP2︷ ︸︸ ︷
n∑
i=1

∑
πi(β)=v

Ad∗ψπ0i(β)
∂0irjβ ℓβ

When qw, ψv0w are known in the region k1 + . . .+ kn < c+ n, the right hand side in the equations is known,
and most components on the left hand side are also known, except for the particular component ψvu with
u = v + (1, . . . , 1). If dimG = m (and consequently dimAd∗ Pv = m, dimEnd1 Puv = m) we have a system of
m equations with ψvu as unknown that taking into account the dimensions, in some regular cases, will determine a
unique solution.

For any subset of indices S ⊂ [n] = {1, 2, . . . , n}, denote eS the vector with component 1 for any index in S and
component 0 for any index not belonging to S.

eS = (c1, . . . , cn), ci = 1 if i ∈ S, ci = 0 if i /∈ S

For the CFK simplicial complex we easily observe for a fixed vertex:

Lemma 6.1
For all facets with π0(β) = v, the corresponding family of edges π0i(β) are all edges α(v, S) = (v, v + eS) with
∅ ̸= S ⊂ [n] = {1, . . . , n}.

Definition 6.1
We call bundle of discrete H-reduced forward configurations, ForwHd → V , the bundle whose fiber on a vertex
v ∈ V is the following

ForwHv = HStrv ×
∏

∅̸=S⊆[n]

End1 Pα(v,S)

We call bundle of discrete H-reduced backward configurations, BackHd → V , the product bundle of all H-reduced
jet configurations at facets containing v but not with source v:

BackHv =

n∏
i=1

∏
πi(β)=v

RJPβ

We observe that the decomposition of discrete Euler-Poincaré equations lead to a component EP1 defined on
ForwHd and a second one EP2 defined on BackHd .

Definition 6.2
We call Legendre transformation associated to a discrete H-reduced Lagrangian ℓd, the mapping Leg : ForwHd →
Ad∗ Pd defined on each fiber by:

Legv : (qv, (ψα(v,S))∅≠S⊆[n]) ∈ ForwHv 7→
∑

π0(β)=v

∂0rjβ ℓβ +

n∑
i=1

∑
π0(β)=v

∂0irjβ ℓβ ∈ Ad∗ Pv

where rjβ = (qv, (ψα)α≺β).
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We call momentum mapping associated to ℓd, the mapping Mom: BackH → Ad∗ P defined on each fiber by:

Momv : (rjβ)s(β) ̸=v≺β ∈ BackHv 7→
n∑
i=1

∑
πi(β)=v

Ad∗ψπ0i(β)
∂0irjβ ℓβ ∈ Ad∗ Pv

The central step in solving discrete Euler-Poincaré equations lies in the determination of a single component
ψ∆v, for some edge ∆v = (v, v + (1, . . . , 1)) ∈ V 1, using the remaining available configurations.

Lemma 6.2
Consider the mapping ∆: v ∈ V 7→ (v, v + (1, . . . , 1)) ∈ V 1. Consider the bundle ∆∗ End1 Pd → V (whose fiber
on a vertex v is precisely End1 P∆(v). The bundle of discrete H-reduced forward configurations is the bundle
product ForwHd = UForwHd ×∆∗ End1 Pd, where

UForwHv = HStrv ×
∏

∅≠S([n]

End1 Pα(v,S)

(in the underdetermined case, the component with S = [n] and consequently End1 Pα for the edge α = (v, v +
(1, . . . , 1)) are excluded).

The bundle UForwH → V shall be called bundle of underdetermined H-reduced forward configurations, and
∆∗ End1 Pd → V bundle of forward endomorphisms.

Coming back to our original question for any admissible H-reduced field (q, ψ):

• Assume we know qw, ψv0w for each w in the region k1 + . . .+ kn < c+ n
• We want to determine qu, ψv0u for each u in the region k1 + . . .+ kn = c+ n

Take v = u− (1, . . . , 1), so that ∆(v) = (v, u). First observe that our assumption implies the knowledge of
ufv ∈ UForwHv and also bkv ∈ BackHv associated to (q, ψ).

Observe now that discrete Euler-Poincaré equations at v can be written as:

Leg(ufv, ψ∆(v)) = Mom(bkv)

where uf ∈ Γ(UForwH), bk ∈ Γ(BackH), ψ∆ ∈ Γ(∆∗ End1 Pd) are the sections naturally associated to (q, ψ).

Definition 6.3
We call integrator for the Legendre transformation Leg : UForwHd ×∆∗ End1 Pd → Ad∗ Pd, any mapping

Φ: UForwHd ×Ad∗ Pd → ∆∗ End1 Pd

such that, for any ufv ∈ UForwHd , θv ∈ Ad∗ Pv there holds,

Leg(ufv,Φ(ufv, θv)) = θv (10)

We say the integrator is a strong integrator if, moreover, Leg(ufv, ·) : ∆∗ End1 Pd → Ad∗ Pd is injective (in this
case the integrator is unique).

We should observe, with the help of the implicit function theorem, that a necessary condition (and locally
sufficient) for the existence of such a mapping is that the following linear mapping is invertible:

∂Legv
∂ψ∆(v)

(ufv, ψ∆(v)) : Vψ∆(v)
End1 P∆(v) → Ad∗ Pv

We may also use the source trivialisation to give an identification Vψ∆(v)
End1 P∆(v) ≃ AdPv, so that

∂Legv

∂ψ∆(v)
(ufv, ψ∆(v)) represents a metric on AdPv.

With the existence of such an integrator, we recover our main theorem:
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Theorem 6.1
Let Φ be an integrator for the Legendre transformation. Consider a locally defined admissible H-reduced
field (q, ψ) ∈ Γ(Bc,HStrd)× Γ(B1

c ,End
1 Pd), defined on the initial condition band Bc = {v = (k1, . . . , kn) ∈

Zn : c− n ≤ k1 + . . .+ kn ≤ c+ n− 1}. Consider ufv ∈ UForwHv , bkv ∈ BackHv determined by this field at each
v ∈ Sc = {v = (k1, . . . , kn) ∈ Zn : k1 + . . .+ kn = c}.

For u ∈ Sc+n and v = u− (1, . . . , 1), the values

ψvu = Φv(ufv, µv), qu = qvψvu, qv0u = ψ−1
vv0ψvu, with µv = Momv(bkv) (11)

extend (q, ψ) to an admissibleH-reduced field (q̄, ψ̄) ∈ Γ(∆Bc,HStrd)× Γ(∆B1
c ,End

1 Pd) on the extended band
∆Bc = Bc ∪ Sc+n, in such a way that Euler-Poincaré equations (9) are satisfied at each vertex v ∈ Sc.

Moreover, if Φ is a strong integrator and (q, ψ) is a critical admissible H-reduced field, taking the indicated
values on the initial condition band Bc, then its values qu, ψv0u for u ∈ Sc+n are described by (11).

Proof
As the initial data is supposed to be admissible, at any 2-simplex contained in Bc we have the discrete flatness
condition and at each edge contained in Bc we have the discrete parallelism condition for the H-structure q with
respect to ψ, as described in Definition 5.1.

In order that qu, ψv0u, for u ∈ Sc+n, determine an extension where Euler-Poincaré equations are satisfied at
v = u− (1, . . . , 1), the elements ψvu should verify:

Leg(ufv, ψvu) = Mom(bkv)

By Definition (10) of an integrator, the element ψvu = Φv(ufv,Momv(bkv)) solves that equality. Moreover, if Φ is
a strong integrator, Leg(ufv, ·) is injective and the equation can not have another solution.

On the other hand, knowing ψvu, for u ∈ Sc+n and v = u− (1, . . . , 1), allows to univocally determine qu =
qvψvu and ψv0u = ψ−1

vv0ψvu, in order that the extended field remains admissible.
With these values there holds also qv0ψv0u = qv0ψ

−1
vv0ψvu, and using qv0ψ−1

vv0 = qv (because the initial data was
admissible, satisfying the parallelism condition), and then qvψvu = qu shows that (qv0 , qv) is parallel for our choice
ψv0u.

Finally for a 2-simplex (v0, v1, u) containing u (which was not contained in the initial band) there holds
ψv0v1ψv1u = ψv0v1ψ

−1
vv1ψvu and using flatness on the 2-simplex (v, v0, v1), (which holds because this simplex is

contained in the initial band) we may use ψv0v1ψ−1
vv1 = ψ−1

vv0 to conclude ψv0v1ψv1u = ψv0u, which is the flatness
on the given 2-simplex.

We may illustrate the process in the 2-dimensional CFK simplicial complex in figure 2. It is shown how the
initial condition band information is extended from the domain k1 + k2 ≤ c+ n− 1 to k1 + k2 ≤ c+ n.

Known bkv ⇒ µv
Known (ufv, µv) ⇒ ψ∆(v) Repetition+Parallelism

1

Figure 2. Algorithm of integration.
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This theorem indicates that, if there exists the integrator Φ, we may obtain admissible discrete H-reduced fields
(q, ψ) satisfying Euler-Poincaré equations at vertices in the domain k1 + . . .+ kn ≥ c, using as initial data an
admissible discrete H-reduced field defined only at vertices and edges included in the initial condition band Bc.
The algorithm is:

For each vertex in the c-slice v ∈ Sc:
1. Collect initial data to obtain backward configuration bkv ∈ BackHv .
2. Use momentum map to compute value µv = Momv(bkv) ∈ Ad∗ Pv.
3. Collect initial data to obtain underdetermined forward configuration ufv ∈ UForwHv .
4. Use integrator to compute forward endomorphism ψvu = Φ(ufv, µv) ∈ End1 P∆(v).
5. Use parallelism condition to compute qu = qvψvu for the vertex u = v + (1, . . . , 1).
6. Use flatness condition to compute ψv0u = ψ−1

vv0ψvu, for all edges with target u.
7. Collect all H-structures and fiber-to-fiber endomorphisms into new admissible discrete field (qx, ψx̄) defined

on Bc+1.
Iterate from the beginning for vertices in the (c+ 1)-slice.

All the fundamental computational cost lies in step 4, where the integrator may be given by some closed formula
or may be approximated using some numerical algorithm that solves (10).

7. Appendix

Appendix on quotient manifolds

In this appendix we mention some results on quotients of manifolds, used in our work:

Proposition 7.1
[39, see Ch.3, Sec.12] Let M be a smooth manifold and R ⊆M ×M an equivalence relation on M . The quotient
space M/R has a structure of smooth manifold for which π : M →M/R is a surjective submersion if, and only if,
R ⊆M ×M is a closed submanifold, and the projection on the first component π1 : R→M is a smooth mapping.
Moreover, the smooth structure on M/R with this property is unique .

A well known consequence is

Corollary 7.1
Let λ : G→ Aut(M) be an action of a Lie group on a smooth manifold M . If (g,m) ∈ G×M 7→ (λgm,m) ∈
M ×M is smooth, injective and proper (smooth free proper action), the quotient space has a unique structure of
smooth manifold for which π : M →M/G is a surjective submersion.

Finally, the quotient manifold structure has the property that we expect of a quotient, in the category of smooth
manifolds:

Proposition 7.2
Let π : M → M̄ be a surjective submersion of smooth manifolds, and let f̄ : M̄ → N be a mapping from M̄ to
another smooth manifold N . For the mapping f = f̄ ◦ π there holds f is smooth if, and only if, f̄ is smooth; f is
a submersion if, and only if, f̄ is a submersion, and f is a surjective submersion if, and only if, f̄ is a surjective
submersion.

Appendix on Polytopes

Recall that for arbitrary points (v0, . . . , vm) of an affine space and any choice of weights λ0, . . . , λn (whith the
condition λ0 + λ1 + . . .+ λm = 1) there exists a notion of affine combination v = λ0v0 + λ1v1 + . . .+ λmvm.
This affine combination is called a convex combination if all weights λi are non-negative, and an open convex
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combination is all weights λi are positive (observe that v0 is an open convex combination of the set {v0}, but it is
not an open convex combination of {v0, v1}). The affine hull ⟨v0, v1, . . . , vm⟩ of a set of points is the set of its affine
combinations. The convex hull [v0, . . . , vm] is the set of its convex combinations. The open convex hull ]v0 . . . vm[
is the set of its open convex combinations. In particular the convex hull [r, s] of two points r, s is called the segment
joining these points, and the open convex hull ]r, s[ is called the open segment joining both points (observe that
]r, s[⊆ [r, s] ⊆ ⟨r, s⟩, with equality only in the case r = s). A subset B ⊂ Rn is called convex if for any pair of
points r, s ∈ B, the associated open segment ]r, s[ is also contained in B.

Convex polytopes on Rn are subsetsB ⊆ Rn that can be described as the convex hull of a finite number of points
in Rn. We suggest [3, 43] as a reference for the needed theory on convex polytopes. In particular, we shall use the
notion of face of a polytope.

Definition 7.1
A face of a closed convex setB ⊆ Rn is any nonempty convex subset ∅ ≠ A ⊆ B such that, for any pair of elements
r, s ∈ B with r /∈ A, the open segment ]r, s[ determined by these points does not intersect A.

A convex, ∅ ̸= A ⊆ B, (r /∈ A⇒]r, s[∩A = ∅)∀r, s ∈ B

Observe that with this definition B is a face of itself, but ∅ is not a face.
A point v is said to be an extreme point of the closed convex set B, if A = {v} is a face of B (that is, v ∈ B but

it is not contained in any open segment determined by elements in B). Extreme points of a polytope B is a finite
set Ext(B), and the convex hull of these extreme points is again B itself.

We denote A ≺ B to indicate that A is a face of B. This establishes an order on the set of polytopes (for
transitivity, consult [3]).

We recall now the fact that any polytope can be characterized as the convex hull of its extreme points. Moreover,
none of the extreme points can be written as a convex combination of the remaining extreme points. Conversely,
given any finite set of points where none of them is a convex combination of the remaining ones, the polytope
generated by these points has as extreme points the given finite set.

Proposition 7.3
The computation of convex hull and the computation of extreme points establishes a one-to-one correspondence
between convex polytopes in Rn and subsets {v0, v1, . . . , vm} ⊆ Rn of points, where none of them is a convex
combination of the remaining ones.

Proof
There are certain characteristics that relate polytopes with its extremal points [43]:

• For each polytope B holds [Ext(B)] = B.
• B = [v0, v1, . . . , vn] ⇒ Ext(B) ⊆ {v0, v1, . . . , vn}.
• v0 ∈ [v1, . . . , vn] ⇒ [v0, v1, . . . , vn] = [v1, . . . , vn].

Therefore, when we have a polytope generated as a convex hull of v0, . . . , vn, we may firstly eliminate vertices
that are in the convex hull of the remaining ones and still get generators for the same polytope. Assume now
that v0, . . . , vn are such vertices, where none of them is a convex combination of the remaining ones and with
B = [v0, . . . , vn]. In this case, we get vi ∈ B = [Ext(B)], hence vi is a convex combination of the extreme points of
B. In the case that vi is not itself an extreme point, from ext(B) ⊂ {v0, . . . , vi−1, vi+1, . . . , vn} we would conclude
that vi would be a convex combination of the remaining elements, in contradiction with our assumption.

This leads to the following:

Definition 7.2
We call abstract convex polytope on Rn, any finite set of points β = {v0, v1, . . . , vm} ⊂ Rn, such that none of them
is a convex combination of the remaining ones. The convex hull, [β] ⊂ Rn, of this set of points is called the convex
polytope associated to β.
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If these points are affinely independent points (none of them is an affine combination of the remaining ones), the
abstract convex polytope is called an abstract simplex and the polytope is called a simplex.

We call dimension of an abstract polytope the dimension of the affine space generated by this set of points. For a
simplex with m+ 1 points, its dimension is m. Observe that all 1-dimensional polytopes are in fact segments [r, s]
determined by two extreme points and therefore are simplices.

We say an abstract polytope α is a face of another abstract polytope β, if the associated convex hull ᾱ is a face
of β̄. This determines an order relation α ≺ β in the set of abstract polytopes.

In the case of an m-dimensional simplex generated by {v0, . . . , vm}, the convex polytopes generated by any
subset are faces of the simplex. In the case of an arbitrary polytope generated by {v0, . . . , vm}, a given subset of
points generates a smaller polytope, but not necessarily a face.
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