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Proportional Odds under Conway-Maxwell-Poisson Cure Rate Model and
Associated Likelihood Inference
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Abstract Cure rate models are useful while modelling lifetime data involving long time survivors. In this work, we discuss
a flexible cure rate model by assuming the number of competing causes for the event of interest to follow the Conway-
Maxwell Poisson distribution and the lifetimes of the non-cured individuals to follow a proportional odds model. The baseline
distribution is considered to be either Weibull or log-logistic distribution. Under right censoring, we develop the maximum
likelihood estimators using EM algorithm. Model discrimination among some well-known special cases are discussed under
both likelihood- and information-based criteria. An extensive simulation study is carried out to examine the performance of
the proposed model and the inferential methods. Finally, a cutaneous melanoma dataset is analyzed for illustrative purpose.
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1. Introduction

Statistical models accommodating a surviving fraction are known as cure rate models. The cure rate model was
first introduced by [8] and [7], and have been subsequently studied by many authors. Applications of cure rate
models are not limited to biomedical studies, and can also be seen in industrial reliability, finance, manufacturing,
demography, and criminology. The basic cure rate model can be seen as a two-component mixture model. If Sp(t)
is the population survival function, it can be expressed as

Sp(t) = p0 + (1− p0)Ss(t), (1)

where p0 is the probability of cure and Ss(t) is the survival function of the non-cured or susceptible individuals
in the population. Primarily, cure data have been analyzed in the literature by the structure of the underling
survival model of the non-cured individuals Ss(t) as proportional hazards (PH) mixture cure model [20] [15]
[24], accelerated failure time (AFT) mixture cure rate model [25] [17] [14], accelerated hazards (AH) mixture
cure rate model [26], and proportional odds (PO) mixture cure rate model [10] [18]. More generally, a cure model
can be approached through a competing risks set up as follows. Suppose M is an unobservable random variable
denoting the number of competing causes related to the occurrence of an event of interest. Let Wj , j = 1, . . . ,m,
be the random variables denoting the time-to-event for the jth competing cause. Given M = m, W1, . . . ,Wm

are assumed to be independent and identically distributed (i.i.d.) with a common cumulative distribution function
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(c.d.f) F (w) = 1− S(w). Then, the population time-to-event or lifetime is given by

Y = min{W0,W1, . . . ,Wm}, (2)

where W0 is corresponding to the individual who are not susceptible to the event occurrence (namely, with infinite
lifetime). This leads to a proportion of the cured group, known as cure rate. The survival function for the entire
population is then [22]

Sp(y) =

∞∑
m=0

P (M = m)[S(y)]m = AM (S(y)), (3)

where AM (.) is the probability generating function (p.g.f.) of M .
In the present work, we assume a proportional odds model for the distribution of Wj , with a parametric

assumption on the baseline odds function. To be more specific, the odds function of Wj is taken as

O(w;x) = θO0(w), (4)

where O(w) = S(w)/F (w) is the odds of survival up to w, the term θ is linked to covariates as ex
′γγγ2 with x =

(x1, . . . , xp)
′ being a vector of p covariates, γγγ2 = (γ21, . . . , γ2p)

′ is the proportional odds regression coefficients,
and O0(w) is the baseline odds function. We can further obtain the survival function of Wj as

S(w) = [1 + e−x′γγγ2(S0(w)
−1 − 1)]−1, (5)

with the corresponding probability density function (p.d.f.)

f(w) = f0(w)e
−x′γγγ2 [(1− S0(w))e

−x′γγγ2 + S0(w)]
−2. (6)

The rest of this paper proceeds as follows. In Section 2, we present briefly the COM-Poisson cure model and
its three special cases. Section 3 describes the data and the likelihood, while the estimation of the cure rate and
associated inferential issues are discussed in Section 4. In Section 5, an extensive simulation study is carried out. In
Section 6, we discuss model discrimination using information- and likelihood-based methods. A data on cutaneous
melanoma is analyzed in Section 7 for illustrative purpose. Some concluding comments are finally made in Section
8.

2. The COM-Poisson cure rate model

Suppose the number of the competing causes M follows a COM-Poisson distribution [9]. The probability mass
function (p.m.f.) of M is given by

P (M = m; η, ϕ) =
1

Z(η, ϕ)

ηm

(m!)ϕ
, m = 0, 1, 2, . . . , (7)

where the normalization constant is given by

Z(η, ϕ) =

∞∑
j=0

ηj

(j!)ϕ
, (8)

with ϕ ≥ 0 and η > 0. Cure rate is the probability

p0 = P (M = 0; η, ϕ) = (Z(η, ϕ))−1. (9)

As a weighted Poisson random varaiable (r.v.), M leads to a Poisson r.v. with mean equal to η when ϕ = 1, and
M leads to a under- or over-dispersion if ϕ > 1 or ϕ < 1 (see [23] and [12].) For example, M approaches the
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Bernoulli r.v. with parameter 1
1+η when ϕ → ∞ and Z(η, ϕ) → 1 + η, and M reduces to a Geometric r.v. with

parameter 1− η if ϕ = 0, η < 1 and Z(η, ϕ) = 1
1−η . Note that M is undefined for η ≥ 1 and ϕ = 0. The population

survival function and density function of the time-to-event Y is then

Sp(y) =
Z(ηS(y), ϕ)

Z(η, ϕ)
, (10)

fp(y) =
1

Z(η, ϕ)

f(y)

S(y)

∞∑
j=1

j(ηS(y))j

(j!)ϕ
. (11)

Note that as y → ∞, Sp(y) → p0 > 0. Hence, Sp(y) is not a proper survival function. Suppose we have a indicator
variable of I such that I = 0 if the subject is immune (belongs to set I0) with probability p0 and I = 1 if the subject
is susceptible (belongs to set I1) with probability 1− p0. The cumulative distribution and survival function of the
overall population can be viewed as a mixture of two populations,

Fp(y) = P [Y ≤ y|I = 0]P (I = 0) + P [Y ≤ y|I = 1]P (I = 1) = Fs(y)(1− p0) (12)

For a detailed discussion, interested readers may refer to [2], [3], [4], [6], [1], and [21].

3. Data and the likelihood

Suppose the time-to-event is not completely observed and is subject to non-informative right censoring, which
means that the data above a certain value are not observed. Therefore, the observation time Ti, for the ith subject,
would be the minimum of the censoring time Ci and actual lifetime Yi, i.e.,

Ti = min{Yi, Ci}, i = 1, . . . , n. (13)

We define an indicator function δi = I(Yi ≤ Ci) for the i-th subject such that δi = 0 if the lifetime is observed
while δi = 1 if the lifetime is right censored, ∆0 and ∆1 are sets with all the i’s equal to 0 and 1, respectively, and
set ∆∗ contains all the i’s. It is to be noted that the cure rate p0 = Z(η, ϕ)−1 is purely a function of η for a fixed
value of ϕ. The range of 1/p0 is from 1 to infinity and it is monotone in η. Therefore, it is natural to use a logistic
regression model Hϕ(η) = 1 + exxx

′
iβββ to link the covariate x1, . . . , xp to the cured proportion p0i, i.e.,

p0i = p0(βββ,xxxi) = Z(η, ϕ)−1 = Hϕ(η)
−1 = (1 + exxx

′
iβββ)−1, (14)

where p0i is the cured proportion for the ith category, xxxi = (1,xxx′
ic)

′ = (1, xi1, . . . , xip)
′ is a vector of p+ 1

covariates, and βββ is the vector of regression coefficients. Under this link, η would equal H−1(1 + exxx
′
iβββ), i.e., η can

be calculated from the inverse function of Hϕ(.) analytically for the Geometric, Poisson and Bernoulli distributions
or by using numerical method for the general COM-Poisson distribution.

For n pairs of observations (ttt, δδδ)={(t1, δ1),. . . ,(tn, δn)}, the observed data likelihood function under the non-
informative censoring is then given by

L(θθθ; ttt, δδδ) ∝
n∏

i=1

{fp(ti;θθθ)}δi{Sp(ti;θθθ)}1−δi , (15)

where θθθ is the set of parameters (ϕ,βββ′, γγγ′), which is equivalent to

L(θθθ; ttt, δδδ) ∝
∏
i∈∆1

fp(ti;θθθ)
∏
i∈∆0

{p0 + (1− p0)Ss(ti;θθθ)}. (16)

Here, we consider two baseline distributions for the proportional odds survival model corresponding to the time-
to-event random variable, namely, Weibull and log-logistic distributions. It should also be noted that log-logistic
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distribution in fact processes the proportional odds property, while the Weibull distribution does not. The survival
function and p.d.f. of W under a Weibull baseline, for example, are

S(w,γγγ) = [1 + e−x′γγγ2(e(γ1w)1/γ0 − 1)]−1, w > 0, (17)

f(w,γγγ) = (γ1w)
1/γ0ex

′γγγ2−(γ1w)1/γ0 [e−(γ1w)1/γ0 (ex
′γγγ2 − 1) + 1]−2/(γ0w), w > 0, (18)

where γ0 > 0 and γ1 > 0 are the shape and scale parameters of the baseline Weibull distribution, respectively. If
we assume the baseline distribution to be a log-logistic distribution with γ0 > 0 and γ1 > 0 as the scale and shape
parameters, respectively, then the corresponding odds function of Wi is given by

O(w, ;xxx′
c, γγγ) =

γγ1

0

wγ1
exxx

′
cγγγ2 = O0(w, ; γ0, γ1)e

xxx′
cγγγ2 . (19)

We observe that Wi still follows a two-parameter log-logistic distribution (γ0, γ1 > 0) with shape parameter γ1 and
scale parameter γ0e−xxx′

c,γγγ2/γ1 , and with corresponding survival function

S(w,γγγ) =
γγ1

0 exxx
′
cγγγ2

γγ1

0 exxx
′
cγγγ2 + wγ1

, w > 0. (20)

Note that the mean does not exist if γ1 < 1 and the variance does not exist if γ1 < 2.

4. Estimation of parameters

We propose an Expectation-Maximization (EM) algorithm for obtaining the MLE of θθθ, and a profile likelihood
approach for the estimation of the dispersion patameter ϕ. It is well-known that EM is an effective technique for
finding the MLEs of unknown parameters of a model involving unobserved variables (for further discussion, refer
to [19]). In our model, the random variable Ii’s are observed for i in the set ∆1 and unobserved for i in the set ∆0,
where Ii = 1 if the individual is susceptible and Ii = 0 if the individual is cured. Let us denote the set of complete
data by (ttt, δδδ,xxx,III)={(t1, δ1,xxx1, I1), . . . , (tn, δn,xxxn, In)}. The complete data likelihood function is then

Lc(θθθ; ttt,xxx,δδδ, III) ∝
∏
i∈∆1

fp(ti,xxxi, θθθ)
∏
i∈∆0

p0(βββ,xxxi)
1−Ii [(1− p0(βββ,xxxi))Ss(ti,xxxic;θθθ)]

Ii , (21)

where I = (I1, . . . , In)
′, xic = (xi1, . . . , xip)

′ and xi = (1,x′
ic)

′. The corresponding complete log-likelihood
function

lc(θθθ; ttt,xxx,δδδ, III) = constant +
∑
i∈∆1

logfp(ti,xxxi, θθθ) +
∑
i∈∆0

(1− Ii)logp0(βββ,xxxi)

+
∑
i∈∆0

Iilog[1− p0(βββ,xxxi)] +
∑
i∈∆0

IilogSs(ti,xxxic;θθθ). (22)

4.1. E-step

The expectation step is achieved by calculating the expected value of the complete data log-likelihood function with
respect to the conditional distribution of the unobserved Ii’s (i ∈ ∆0), given the observed dataOOO = {(ti, δi,xxxi), i ∈
∆1} and the current estimates of the parameters θθθ(k) = (βββ′, γγγ′)′ for a fixed value of ϕ. Let us denote the function
as

Q(θθθ∗,πππ(k)) = E(lc(θθθ; ttt,xxx,δδδ, III)|OOO,θθθ(k)), (23)

at the k-th iteration step. In our model, Ii’s are Bernoulli random variables and we can easily find the conditional
expectation if the ith individual being susceptible is

πππ
(k)
i = E(Ii|OOO,θθθ(k)) = P (Ii = 1|T > t) =

(1− p0(βββ
(k),xxxi))Ss(ti,xxxic;θθθ

(k))

Sp(ti,xxxi;θθθ(k))
|θ=θ(k) . (24)
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Now, for a fixed value of ϕ, the Q function is given by

Q(θθθ∗,πππ(k)) =
∑
I∈∆1

logfp(ti,xxxi, θθθ) +
∑
i∈∆0

(1− πππ
(k)
i )logp0(βββ,xxxi)

+
∑
i∈∆0

πππ
(k)
i log[1− p0(βββ,xxxi)] +

∑
i∈∆0

πππ
(k)
i logSs(ti,xxxic;θθθ) (25)

which can be further simplified as

Q(θθθ∗,πππ(k)) = −
∑
i∈∆∗

log(1 + exxx
′
iβββ) +

∑
i∈∆1

logf(ti, γγγ)−
∑
i∈∆1

logS(ti, γγγ)

+
∑
i∈∆1

logz2,i +
∑
i∈∆0

πππ
(k)
i logz1,i, (26)

where

z1,i = z1(θθθ;xxxi, ti) =

∞∑
j=1

{ηiS(ti;γγγ)}j

(j!)ϕ
, (27)

z2,i = z2(θθθ;xxxi, ti) =

∞∑
j=1

j{ηiS(ti;γγγ)}j

(j!)ϕ
. (28)

4.2. M-step

The M-step is achieved by maximizing the Q(θθθ,πππ(k)) function in (26) in order to obtain the improved estimate of
θθθ, i.e.,

θθθ∗(k+1) = arg max Q(θθθ,πππ(k)). (29)

The MLEs of βββ and γγγ do not have explicit expressions. In this paper, the numerical maximization is carried out by
Newton-Raphson method.

For a fixed value of ϕ, the E-step and M-step are alternated until the parameter estimate converges to a desired
level of accuracy. The parameter ϕ is determined by using the profile likelihood technique. We consider a range of ϕ
with small increment, and then for each value of ϕ, the MLEs of other parameters are found, and the estimates with
the largest likelihood is chosen as the final estimate. The following subsections present explicit forms of the first-
and second-order derivatives of the Q function as well as update function for the case of COM-Poisson distribution.

4.3. Results for the COM-Poisson cure rate model

The required first- and second-order derivatives of Q(θθθ∗,πππ(k)) with respect to βββ and γγγ, for fixed values of ϕ, are as
follows:
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∂Q

∂βl
= −

∑
i∈∆∗

xil
exxx

′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆1

exxx
′
iβββ

z21,i
z2,iz01,i

xil +
∑
i∈∆0

πππ(k)exxx
′
iβββ

z2,i
z1,iz01,i

xil,

∂Q

∂γh
=

∑
i∈∆1

∂logf(ti, γγγ)

∂γh
+

∑
i∈∆1

(
z21,i
z2,i

− 1)
∂logS(ti, γγγ)

∂γh
+

∑
i∈∆0

πππ(k) z2,i
z1,i

∂logS(ti, γγγ)

∂γh
,

∂2Q

∂βl∂βl′
= −

∑
i∈∆∗

xilx
′
ile

xxx′
iβββ

(1 + exxx
′
iβββ)2

+
∑
i∈∆1

xilx
′
ile

xxx′
iβββ

(z2,iz01,i)2
[z2,i(z21,iz01,i + z31,ie

xxx′
iβββ)− z21,i[z21,i +

z2,iz02,i
z01,i

]exxx
′
iβββ ]

+
∑
i∈∆0

πππ(k) xilx
′
ile

xxx′
iβββ

(z1,iz01,i)2
[z1,i(z21,ie

xxx′
iβββ + z2,iz01,i)− z2,i[z2,i +

z1,iz02,i
z01,i

]exxx
′
iβββ ],

∂2Q

∂βl∂γh
=

∑
i∈∆1

xile
xxx′
iβββ
z31,iz2,i − z221,i

z22,iz01,i

∂logS(ti;γγγ)

∂γh
+

∑
i∈∆0

πππ(k)xile
xxx′
iβββ
z21,iz1,i − z22,i

z21,iz01,i

∂logS(ti;γγγ)

∂γh
,

∂2Q

∂γh∂γh′
=

∑
i∈∆1

∂logf2(ti, γγγ)

∂γh∂γh′
+

∑
i∈∆1

(
z21,i
z2,i

− 1)
∂logS2(ti, γγγ)

∂γh∂γh′
+

∑
i∈∆1

(
z31,iz2,i − z221,i

z22,i
)
∂logS(ti, γγγ)

∂γh

∂logS(ti, γγγ)

∂γh′

+
∑
i∈∆0

πππ(k) z2,i
z1,i

∂logS2(ti, γγγ)

∂γh∂γh′
+

∑
i∈∆0

πππ(k)
z21,iz1,i − z22,i

z21,i

∂logS(ti, γγγ)

∂γh

∂logS(ti, γγγ)

∂γh′
,

for l, l′ = 0, . . . , p, xi0 ≡ 1, h, h′ = 0, 1, j∗, j∗ = 21, 22, . . . , 2p, i = 1, . . . , n, where

z21,i = z2(θθθ;xxxi, ti) =

∞∑
j=1

j2{ηiS(ti;γγγ)}j

(j!)ϕ
, z31,i = z2(θθθ;xxxi, ti) =

∞∑
j=1

j3{ηiS(ti;γγγ)}j

(j!)ϕ
,

z01,i = z2(θθθ;xxxi, ti) =

∞∑
j=1

jηji
(j!)ϕ

, z02,i = z2(θθθ;xxxi, ti) =

∞∑
j=1

j2ηji
(j!)ϕ

,

See z1,i and z2,i in (27) and (28).

4.4. Standard errors and asymptotic confidence intervals

We may approximate the asymptotic variance-covariance matrix of the MLEs (β̂ββ
′
, γ̂γγ′)′ by inverting the observed

Fisher information matrix of βββ and γγγ, for a fixed value of ϕ. The components of the observed Fisher information
matrix can be calculated from the negative of the second-order derivatives of the complete data likelihood function
with respect to βββ and γγγ (for detailed information, refer to [16]). Thus, we can obtain the standard errors of the
estimates and then construct corresponding asymptotic confidence intervals for the parameters.

4.5. Estimation of the cure rate and its standard error

Suppose β̂ββ is the MLE of the regression coefficient βββ. The estimated cure rate for the corresponding group i is then
p̂0i = (1 + exxx

′
iβ̂ββ)−1, for i = 1, ..., τ . The standard error of p̂0i can be found through delta method as

sd(p̂0i) =

√
(

∂p̂0i

∂β̂0...∂β̂p

)v̂arβββ(
∂p̂0i

∂β̂0...∂β̂p

)′. (30)

4.6. Equivalent models

Proposition: The population survival function under Geometric and Bernoulli cure rate model are equivalent
through re-parametrization if baseline odds follow log-logistic distribution.
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Proof: Cure rates p0 under Geometric and Bernoulli cure rate models are 1− η1, and 1
1+η3

, respectively. If we
equate these cure rates, we obtain a relationship between η1 and η3 as

η3 =
η1

1− η1
. (31)

Suppose S1 =
γ
γ1
10 exxxγ12

γ
γ1
10 exxxγ12+tγ1

and S3 =
γ
γ1
30 exxxγ32

γ
γ1
30 exxxγ32+tγ1

are the survival functions of the susceptible group under
Geometric and Bernoulli cure rate models, respectively. Then, the population survival function for the under the
Bernoulli case is

Sp =
1 + η3S3

1 + η3
, (32)

If we fix the relationship between γ30, γ10, γ32 and γ12 as

γγ1

30e
xxxγ32 = γγ1

10e
xxxγ12p0 = γγ1

10e
xxxγ12(1− η1), (33)

then we obtain from (32) that

Sp = 1− η1 + η1S3 = 1− η1
tγ1

γγ1

30e
xxxγ32 + tγ1

= 1− tγ1η1
γγ1

10e
xxxγ12(1− η1) + tγ1

=
1− η1

1− η1S1
, (34)

which is the population survival function for the Geometric cure rate model under proportional odds assumption.
Thus, these two models in this case are re-parametrizations of each other.

5. Simulation study

An extensive Monte Carlo simulation study is carried out in this paper to evaluate the performance of the proposed
methodology by varying the sample size, cure rate, censoring proportion, lifetime parameter, and underling lifetime
distribution. We try to mimic the cutaneous melanoma data, and considered 4 possible categories for the individuals,
namely, x = 0, 1, 2, 3. Three different sample sizes are considered in the study: n = 200 (50, 42, 53, 55), n = 400
(95, 102, 97, 106), n = 800 (200, 168, 212, 220) to reflect small, medium and large sample sizes. Moreover, if we
assume that βββ = (β0, β1) has two parameters, fixing the cure rates for the first and fourth categories would be
enough to cover all cases as the cure rates for the second and third categories can then be obtained from βββ. Here,
we take (p00, p03) = (0.4, 0.2) and (p00, p03) = (0.6, 0.25) with respect to categories one and four for low and high
cure rates, respectively. Also, the cure rate would be in a decreasing order in this way. The βββ’s are

β0 = ln(1/p00 − 1) , β1 = (ln(1/p03 − 1)− β0)/3. (35)

We thus obtain the true value of βββ as (0.405,0.321) and (-0.405,0.501), respectively. In addition, we consider
light and heavy censored data in the simulation. The light and heavy censoring rates are (0.52, 0.45, 0.37, 0.3)
with (0.65, 0.49, 0.4, 0.35) as the corresponding cure rates, (0.7, 0.57, 0.45, 0.34) and (0.8, 0.64, 0.5, 0.38) for the
corresponding cure rates. It is natural to assume that the probability of censored population for the susceptible
group equal to the difference between the probability of getting censored and cured; i.e.,

P (Y ≥ Cx ∩M ≥ 1|X = x) = cx − p0x. (36)

If we assume the censoring time Cx follows an exponential distribution with rate λx on x = 0, 1, 2, 3, Eq. (36) can
be re-written as

λx

∫ ∞

0

Sp(Cx)e
−λxcxdcx = cx. (37)
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The choice of (γ0, γ1) in the underlying distribution of the proportional odds survival model are (0.571, 0.307)
and (1.75, 3.25) for Weibull and log-logistic distributions, respectively. The odds parameter is specified by
γ2 = −0.75 to ensure a decreasing lifetime for the four nodule categories. We consider an inverse transform
sampling method to simulate the actual survival lifetime Yi for each individual under different competing risks, i.e.,
wi =

1
γ1
[log(1 + ( 1u − 1)exiγ2)]γ0 and wi = γ0(

u
1−ue

xiγ2)1/γ1 , i = 1, . . . , n, under the proportional odds model
with Weibull and log-logistic baseline distribution, respectively, where u follows an uniform distribution with
range 0 to 1.

Under the above setting, the procedure to generate the data form different cure rate models is as follows.
Geometric cure rate model: For each individual, we simulate the number of competing risk Mi from Geometric
distributions with probability P (Mi = 0) = p0x; and we simulate the censoring time Cx from exponential
distribution with rate λx, the parameter λx can be found from (37). If Mi does not equal zero, we simulate Mi

number of actual lifetimes {Yi, .., YMi} from proportional odds survival model, and the observed lifetime Ti is
taken as the minimum of all the actual lifetime and the censoring time, i.e., min{Yi, .., YMi , Ci}. If Yi = Ci, we
make the censoring indicator δi = 1, otherwise δi = 0. On the other hand, Mi = 0 means the individual is censored,
we assign Ci to the actual lifetime Ti, and the censoring indicator is taken to be δi = 0. Poisson cure rate model:
In this case, the procedure is the same as the Geometric cure rate model except that Mi is simulated from Poisson
distribution with parameter −log(p0x). Bernoulli cure rate model: There are two ways to do the data generation
in this case. One is the same as Geometric cure rate model except that Mi is simulated from Bernoulli distribution
with probability of success as 1− p0x. Another way is a little bit simpler since Mi can only be taken as 0 or 1 in
this case. For each individual, we simulate the censoring time Cx from exponential distribution with rate λx. Then,
we simulate an uniform random variable Ui and if Ui ≤ p0x, the observed lifetime Ti is set to Cx; otherwise, we
generate the observed lifetime Ti from the proportional odds survival model.

In our simulation study, 1000 Monte Carlo runs were considered in each scenario. The estimates were calculated
through EM method. We stopped our estimation if the absolute difference between two consecutive estimates was
less than 10−5. We calculated the empirical Bias, standard errors(SE), root Mean Square Error (RMSE), and 95%
coverage probabilities (CPs) for the estimates of the parameters. In addition, we computed the cure rate, SE and
95% CPs. Here, the initial values of the parameters (βββ,γγγ) were taken from a grid of parameters with a range from
80% to 120% of the true value, and those estimates having the maximum likelihood were chosen as the initial
value.

Tables 1-6 present the bias, SE, RMSE, and coverage probabilities for the three special cases. We can see that the
estimates are quite accurate under different cure rate models. The Bias, standard error along with RMSE get reduced
as the sample size increases. The same follows when the censoring is light or the cure rate is high. The standard
errors and RMSE of β0 are always larger than other parameters. The coverage probabilities of the confidence
intervals based on the asymptotic normality of the MLEs are quite close to the nominal level in most of the cases.
To summarize, a larger sample size, smaller censoring proportion, and lower cure rate would result in more accurate
estimates.

6. Model discrimination

The COM-Poisson distribution contains many commonly used discrete distributions under different selection of ϕ.
It would be of interest to select the suitable ϕ and make full use of the COM-Poisson distribution to get the best
fit for the data. So, we focus here on a model discrimination among the three special cases of the COM-Poisson
distribution.

We simulated 1000 random samples from the following five choice of ϕ from COM-Poisson distributions: ϕ = 0
(Geometric), ϕ = 0.5, ϕ = 1 (Poisson), ϕ = 2, ϕ → ∞ (Bernoulli). Two different sample sizes were considered:
n = 400 (95, 102, 97, 106) and n = 800 (200, 168, 212, 220) for medium and large sample sizes. The light and
heavy censoring rates considered were (0.52, 0.45, 0.37, 0.3) and (0.65,0.49,0.4,0.35) with cure rates (0.4,0.2)
if the lifetime follows proportional odds model under Weibull baseline with parameter γ0 = 0.571, γ1 = 0.307,
γ2 = −0.75. The light and heavy censoring rates were taken as (0.7, 0.57,0.45,0.34) and (0.8, 0.64, 0.5, 0.38) with
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Table 1. Bias, SE, RMSE, and CP for the estimates of the parameters of the Geometric cure rate model under proportional
odds with log-logistic baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 0.003 0.208 0.212 94.7 -0.405 -0.005 0.205 0.208 94.5
β1 0.327 0.003 0.116 0.121 94.5 0.501 0.007 0.111 0.111 94
γ0 1.75 0.01 0.147 0.151 93.4 1.75 -0.001 0.154 0.155 93.8
γ1 3.25 0.021 0.186 0.195 93.6 3.25 0.033 0.205 0.202 95.6
γ2 -0.75 -0.003 0.149 0.153 94.7 -0.75 -0.001 0.156 0.154 95.2

n=400, HC
β0 0.405 0.012 0.25 0.248 96.1 -0.405 -0.002 0.257 0.265 95.1
β1 0.327 0.002 0.134 0.133 95.6 0.501 0.004 0.131 0.133 95.3
γ0 1.75 0.019 0.18 0.182 95.3 1.75 0.014 0.198 0.197 95.3
γ1 3.25 0.026 0.199 0.195 96 3.25 0.045 0.225 0.236 94.6
γ2 -0.75 -0.011 0.17 0.165 95.8 -0.75 -0.015 0.18 0.178 95.3

n=800, LC
β0 0.405 0.004 0.146 0.147 94.3 -0.405 -0.002 0.145 0.146 94.4
β1 0.327 0.001 0.08 0.078 95.2 0.501 0.001 0.077 0.076 95.7
γ0 1.75 0.01 0.104 0.106 95.1 1.75 0 0.11 0.111 95.4
γ1 3.25 0.005 0.13 0.132 95 3.25 0.019 0.144 0.144 94.9
γ2 -0.75 -0.006 0.103 0.102 95.6 -0.75 -0.003 0.109 0.111 93.8

n=800, HC
β0 0.405 0.007 0.177 0.175 95.6 -0.405 -0.003 0.183 0.184 95.7
β1 0.327 -0.002 0.092 0.091 95.3 0.501 0.003 0.091 0.093 95.5
γ0 1.75 0.012 0.127 0.126 95.5 1.75 0 0.14 0.144 94.4
γ1 3.25 0.011 0.14 0.139 94.7 3.25 0.017 0.157 0.155 95.1
γ2 -0.75 -0.007 0.118 0.115 95.5 -0.75 -0.001 0.126 0.128 95.2

Table 2. Bias, SE, RMSE, and CP for the estimates of the parameters of the Poisson cure rate model under proportional odds
model with log-logistic baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 0.004 0.207 0.202 95.8 -0.405 -0.007 0.205 0.204 95.2
β1 0.327 0.003 0.115 0.113 96.1 0.501 0.004 0.111 0.108 95.4
γ0 1.75 0.001 0.12 0.115 95 1.75 -0.005 0.14 0.141 94.8
γ1 3.25 0.031 0.189 0.195 95.5 3.25 0.039 0.208 0.208 96
γ2 -0.75 -0.004 0.12 0.119 95.1 -0.75 -0.003 0.134 0.137 94.9

n=400, HC
β0 0.405 0.009 0.247 0.248 94 -0.405 -0.004 0.256 0.258 95.7
β1 0.327 0 0.131 0.133 93.6 0.501 0.007 0.13 0.129 95.5
γ0 1.75 0.004 0.141 0.136 95.7 1.75 0.006 0.173 0.168 95.2
γ1 3.25 0.048 0.203 0.213 94.4 3.25 0.041 0.227 0.24 94.2
γ2 -0.75 -0.013 0.133 0.132 95.3 -0.75 -0.009 0.152 0.159 94

n=800, LC
β0 0.405 0.001 0.146 0.141 95.2 -0.405 -0.006 0.145 0.15 94.2
β1 0.327 0 0.079 0.077 95.6 0.501 0.001 0.077 0.078 95.3
γ0 1.75 0 0.086 0.084 96 1.75 0.002 0.101 0.101 95.3
γ1 3.25 0.014 0.132 0.131 94.8 3.25 0.007 0.145 0.138 95.8
γ2 -0.75 -0.001 0.084 0.082 95.4 -0.75 -0.001 0.094 0.094 94.8

n=800, HC
β0 0.405 0.008 0.175 0.176 94.7 -0.405 -0.007 0.182 0.182 95.3
β1 0.327 -0.002 0.091 0.094 94 0.501 0.003 0.09 0.09 95.1
γ0 1.75 0.006 0.102 0.1 95.3 1.75 0.001 0.124 0.125 95
γ1 3.25 0.018 0.142 0.148 93.7 3.25 0.019 0.159 0.163 94.7
γ2 -0.75 -0.008 0.093 0.096 94.6 -0.75 -0.001 0.107 0.111 93.7
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Table 3. Bias, SE, RMSE, and CP for the estimates of the parameters of the Bernoulli cure rate model under proportional
odds model with log-logistic baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 0.002 0.208 0.214 94.6 -0.405 -0.02 0.205 0.207 94.8
β1 0.327 0.002 0.116 0.117 95.7 0.501 0.011 0.111 0.114 94.2
γ0 1.75 0.003 0.112 0.114 94.9 1.75 0.002 0.136 0.137 94.1
γ1 3.25 0.025 0.186 0.193 95.3 3.25 0.032 0.206 0.204 95.2
γ2 -0.75 -0.004 0.11 0.111 94.6 -0.75 -0.006 0.126 0.127 94.9

n=400, HC
β0 0.405 -0.009 0.25 0.257 94 -0.405 0.004 0.256 0.244 96.3
β1 0.327 0.009 0.134 0.138 94.9 0.501 -0.002 0.13 0.127 96.2
γ0 1.75 0.011 0.128 0.126 95.6 1.75 0.01 0.162 0.164 94.4
γ1 3.25 0.028 0.2 0.212 94 3.25 0.037 0.225 0.236 94.2
γ2 -0.75 -0.012 0.12 0.114 96.4 -0.75 -0.013 0.14 0.146 93.8

n=800, LC
β0 0.405 0 0.146 0.146 94.5 -0.405 -0.005 0.145 0.146 95.1
β1 0.327 0.002 0.08 0.079 95.5 0.501 0.005 0.077 0.078 94.6
γ0 1.75 0.001 0.079 0.076 95.6 1.75 0.001 0.097 0.097 94.9
γ1 3.25 0.015 0.131 0.135 94.6 3.25 0.018 0.144 0.148 94.7
γ2 -0.75 -0.002 0.077 0.076 94.8 -0.75 -0.002 0.088 0.087 95.2

n=800, HC
β0 0.405 -0.005 0.177 0.181 94 -0.405 -0.001 0.182 0.17 96.6
β1 0.327 0.004 0.092 0.092 95.4 0.501 0 0.09 0.085 96.7
γ0 1.75 0.006 0.091 0.089 94.8 1.75 0.003 0.116 0.117 94.9
γ1 3.25 0.011 0.14 0.136 95.9 3.25 0.016 0.157 0.156 94.7
γ2 -0.75 -0.005 0.084 0.083 95.3 -0.75 -0.004 0.098 0.1 94.1

Table 4. Bias, SE, RMSE, and CP for the estimates of the parameters of the Geometric cure rate model under proportional
odds model with Weibull baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 -0.002 0.208 0.209 94.589 -0.405 -0.011 0.197 0.199 94.6
β1 0.327 0.004 0.117 0.119 94.6 0.501 0.002 0.107 0.108 95.6
γ0 0.571 -0.001 0.033 0.034 94.399 0.571 0.011 0.037 0.044 95.76
γ1 0.307 0.005 0.037 0.035 95.884 0.307 0.007 0.037 0.04 94.333
γ2 -0.75 -0.003 0.153 0.155 93.265 -0.75 0.004 0.157 0.15 94.425

n=400, HC
β0 0.405 0.007 0.274 0.282 94.874 -0.405 -0.028 0.26 0.279 94.668
β1 0.327 0.001 0.143 0.144 95.3 0.501 0.005 0.129 0.133 94.684
γ0 0.571 0 0.036 0.037 95.19 0.571 0.012 0.046 0.046 93.89
γ1 0.307 0.005 0.052 0.054 94.874 0.307 0.015 0.057 0.058 93.443
γ2 -0.75 -0.002 0.183 0.184 95.33 -0.75 0.005 0.189 0.181 93.552

n=800, LC
β0 0.405 -0.004 0.146 0.148 94.45 -0.405 -0.015 0.139 0.144 93.3
β1 0.327 0.002 0.081 0.081 94.289 0.501 0.005 0.075 0.074 95.2
γ0 0.571 0.001 0.023 0.025 92.893 0.571 0.009 0.026 0.035 93.318
γ1 0.307 0.002 0.026 0.026 94.864 0.307 0.007 0.026 0.029 93.251
γ2 -0.75 0 0.106 0.108 94.914 -0.75 0.001 0.109 0.106 94.49

n=800, HC
β0 0.405 0.002 0.191 0.191 94.271 -0.405 -0.014 0.183 0.196 93.493
β1 0.327 0.002 0.098 0.096 95.395 0.501 0.001 0.09 0.091 95.495
γ0 0.571 0.002 0.026 0.027 93.594 0.571 0.01 0.031 0.037 88.934
γ1 0.307 0.002 0.037 0.037 94.456 0.307 0.009 0.039 0.041 91.247
γ2 -0.75 0 0.127 0.125 94.586 -0.75 -0.005 0.131 0.125 94.153
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Table 5. Bias, SE, RMSE, and CP for the estimates of the parameters of the Poisson cure rate model under proportional odds
model with Weibull baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 0.005 0.21 0.207 96 -0.405 0.001 0.207 0.212 94.3
β1 0.327 0.002 0.118 0.115 95.7 0.501 0.006 0.113 0.118 94.4
γ0 0.571 -0.003 0.034 0.035 94.1 0.571 -0.005 0.037 0.038 94.5
γ1 0.307 0 0.028 0.028 95.4 0.307 0.002 0.031 0.032 93.8
γ2 -0.75 -0.009 0.12 0.119 95.1 -0.75 -0.009 0.132 0.132 95.3

n=400, HC
β0 0.405 0.007 0.262 0.257 95.2 -0.405 0.011 0.273 0.267 95.7
β1 0.327 0.003 0.139 0.141 94.6 0.501 -0.001 0.136 0.134 95.9
γ0 0.571 -0.003 0.036 0.036 94.3 0.571 -0.005 0.041 0.041 93.9
γ1 0.307 0.004 0.036 0.037 94.2 0.307 0.005 0.044 0.046 94.5
γ2 -0.75 -0.005 0.136 0.14 93.7 -0.75 -0.011 0.153 0.157 95.4

n=800, LC
β0 0.405 0.003 0.148 0.145 95.7 -0.405 0 0.147 0.146 95.3
β1 0.327 0.001 0.081 0.08 95.4 0.501 0.001 0.078 0.073 96.2
γ0 0.571 -0.001 0.024 0.025 93.3 0.571 -0.002 0.027 0.027 94.8
γ1 0.307 -0.001 0.02 0.02 95.5 0.307 0.001 0.022 0.023 95.2
γ2 -0.75 -0.008 0.083 0.082 95.3 -0.75 -0.004 0.092 0.093 94.8

n=800, HC
β0 0.405 0.007 0.185 0.187 94.8 -0.405 -0.004 0.193 0.197 95
β1 0.327 -0.003 0.096 0.098 95.3 0.501 0.001 0.095 0.095 94.7
γ0 0.571 -0.001 0.026 0.025 95.4 0.571 -0.003 0.029 0.028 94.7
γ1 0.307 0.003 0.026 0.026 95 0.307 0.003 0.032 0.033 94
γ2 -0.75 -0.001 0.095 0.097 95 -0.75 -0.006 0.107 0.11 95

Table 6. Bias, SE, RMSE, and CP for the estimates of the parameters of the Bernoulli cure rate model under proportional
odds model with Weibull baseline.

low cure rate high cure rate
Param True Bias SE RMSE CP(95%) True Bias SE RMSE CP(95%)

n=400, LC
β0 0.405 0.011 0.209 0.207 96.2 -0.405 -0.008 0.207 0.206 96.2
β1 0.327 0.003 0.118 0.118 95.6 0.501 0.009 0.113 0.112 95.8
γ0 0.571 -0.001 0.034 0.034 95 0.571 -0.004 0.038 0.038 94.1
γ1 0.307 0.002 0.023 0.023 94.9 0.307 0.003 0.028 0.028 95.6
γ2 -0.75 -0.004 0.107 0.103 95.5 -0.75 -0.006 0.12 0.125 94.2

n=400, HC
β0 0.405 -0.001 0.255 0.266 93.6 -0.405 -0.004 0.266 0.266 95.9
β1 0.327 0.007 0.138 0.142 93.9 0.501 0.003 0.135 0.135 94.7
γ0 0.571 -0.003 0.036 0.036 94.7 0.571 -0.005 0.041 0.04 94.7
γ1 0.307 0.004 0.028 0.029 94.5 0.307 0.003 0.036 0.038 94.2
γ2 -0.75 -0.002 0.116 0.121 94.5 -0.75 -0.011 0.135 0.14 94.4

n=800, LC
β0 0.405 0.005 0.147 0.152 94 -0.405 0.002 0.146 0.149 94.9
β1 0.327 0.002 0.081 0.081 95.9 0.501 0.001 0.078 0.08 94.6
γ0 0.571 0 0.024 0.024 95 0.571 -0.002 0.027 0.027 95
γ1 0.307 0.001 0.016 0.017 93.4 0.307 0.001 0.02 0.02 94.6
γ2 -0.75 0 0.074 0.073 95.7 -0.75 -0.004 0.084 0.086 94.2

n=800, HC
β0 0.405 -0.001 0.181 0.187 93.8 -0.405 -0.009 0.189 0.187 95.9
β1 0.327 0.004 0.095 0.094 95.1 0.501 0.006 0.094 0.095 96.1
γ0 0.571 -0.002 0.026 0.025 95.1 0.571 -0.002 0.029 0.028 94.6
γ1 0.307 0.001 0.02 0.02 95.1 0.307 0.003 0.026 0.027 95.1
γ2 -0.75 -0.003 0.081 0.083 94.2 -0.75 -0.002 0.095 0.095 94.5
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Table 7. Bias, SE, RMSE, and CP for the cure rates of the Geometric cure rate model under proportional odds with log-
logistic (Weibull) baseline.

n C p0 True Bias SE RMSE CP(95%)
400 light p01 0.4 0 ( 0.002 ) 0.049 ( 0.049 ) 0.051 ( 0.05 ) 74 ( 76.7 )

p02 0.325 -0.001 ( 0 ) 0.03 ( 0.03 ) 0.03 ( 0.029 ) 93.5 ( 94.4 )
p03 0.257 -0.001 ( 0 ) 0.028 ( 0.029 ) 0.027 ( 0.027 ) 94.6 ( 95.3 )
p04 0.2 0.001 ( 0.001 ) 0.036 ( 0.037 ) 0.036 ( 0.036 ) 88 ( 88.8 )

heavy p01 0.4 -0.001 ( 0 ) 0.059 ( 0.064 ) 0.058 ( 0.066 ) 71.4 ( 70.5 )
p02 0.325 -0.002 ( 0 ) 0.035 ( 0.038 ) 0.035 ( 0.04 ) 91.7 ( 91.2 )
p03 0.257 -0.002 ( 0 ) 0.03 ( 0.032 ) 0.03 ( 0.032 ) 94.8 ( 94.5 )
p04 0.2 0 ( 0.001 ) 0.038 ( 0.041 ) 0.039 ( 0.04 ) 87.9 ( 89.4 )

800 light p01 0.4 0 ( 0.001 ) 0.035 ( 0.035 ) 0.035 ( 0.035 ) 73.9 ( 75.3 )
p02 0.325 -0.001 ( 0.001 ) 0.021 ( 0.022 ) 0.022 ( 0.022 ) 92.1 ( 92.8 )
p03 0.257 0 ( 0.001 ) 0.019 ( 0.02 ) 0.019 ( 0.02 ) 94.9 ( 94.3 )
p04 0.2 0 ( 0.001 ) 0.025 ( 0.026 ) 0.024 ( 0.025 ) 89.5 ( 87.4 )

heavy p01 0.4 -0.001 ( 0 ) 0.042 ( 0.045 ) 0.042 ( 0.045 ) 71 ( 70.7 )
p02 0.325 -0.001 ( 0 ) 0.025 ( 0.027 ) 0.025 ( 0.027 ) 92.1 ( 90.2 )
p03 0.257 0 ( -0.001 ) 0.021 ( 0.022 ) 0.02 ( 0.022 ) 95.9 ( 96.1 )
p04 0.2 0.001 ( 0 ) 0.026 ( 0.028 ) 0.026 ( 0.027 ) 89.9 ( 90.8 )

400 light p01 0.6 0 ( 0.002 ) 0.049 ( 0.047 ) 0.049 ( 0.047 ) 78.9 ( 79.7 )
p02 0.476 0 ( 0.003 ) 0.033 ( 0.032 ) 0.034 ( 0.032 ) 92 ( 93.5 )
p03 0.355 -0.001 ( 0.002 ) 0.03 ( 0.031 ) 0.031 ( 0.029 ) 94.4 ( 95.6 )
p04 0.25 -0.001 ( 0.003 ) 0.038 ( 0.039 ) 0.039 ( 0.037 ) 87.6 ( 89.2 )

heavy p01 0.6 -0.001 ( 0.005 ) 0.061 ( 0.061 ) 0.063 ( 0.066 ) 73.4 ( 75.3 )
p02 0.476 0 ( 0.006 ) 0.04 ( 0.042 ) 0.041 ( 0.044 ) 88.6 ( 88.8 )
p03 0.355 -0.001 ( 0.005 ) 0.033 ( 0.035 ) 0.033 ( 0.033 ) 95.2 ( 95.1 )
p04 0.25 0 ( 0.005 ) 0.041 ( 0.042 ) 0.041 ( 0.04 ) 89.9 ( 92.2 )

800 light p01 0.6 0 ( 0.003 ) 0.035 ( 0.033 ) 0.035 ( 0.034 ) 77.5 ( 77.4 )
p02 0.476 0 ( 0.003 ) 0.024 ( 0.023 ) 0.024 ( 0.024 ) 92 ( 91.6 )
p03 0.355 0 ( 0.002 ) 0.021 ( 0.022 ) 0.021 ( 0.022 ) 94.4 ( 93.8 )
p04 0.25 0.001 ( 0.001 ) 0.027 ( 0.027 ) 0.026 ( 0.026 ) 89.4 ( 88.1 )

heavy p01 0.6 0 ( 0.002 ) 0.044 ( 0.044 ) 0.044 ( 0.046 ) 74 ( 74.7 )
p02 0.476 0 ( 0.003 ) 0.029 ( 0.03 ) 0.029 ( 0.032 ) 90.1 ( 87.4 )
p03 0.355 0 ( 0.003 ) 0.023 ( 0.024 ) 0.024 ( 0.024 ) 95.3 ( 94.7 )
p04 0.25 0 ( 0.003 ) 0.028 ( 0.029 ) 0.03 ( 0.028 ) 89.5 ( 91.9 )

cure rate (0.6, 0.25) if the lifetime follows proportional odds model under log-logistic baseline with parameter
γ0 = 01.75, γ1 = 3.25, γ2 = −0.75. Here, we carry out the model discrimination by two methods, namely,
Likelihood-based method and information-based method.

6.1. Likelihood-based method

We consider a likelihood ratio test for the null hypothesis H0 that the competing risk follows one of the three
special cases of COM-Poisson distribution, namely, Geometric ϕ = 0, Poisson ϕ = 1, and Bernoulli ϕ −→ ∞
versus the alternative hypothesis Ha that the competing risk follows the COM-Poisson distribution. The test statistic
is taken as Λ = −2(l̂0 − l̂), where l̂0 and l̂ are the values of the maximized log-likelihood function under the
null and alternative hypotheses, respectively. The asymptotic distribution of the test statistic Λ, under H0 : ϕ = 1
follows a χ2 distribution with one degree of freedom. However, the boundary distribution of the test statistic Λ
when ϕ = 0 (Geometric) and ϕ −→ ∞ (Poisson) has a mixture distribution of χ2

0 and χ2
1 distributions such that

P (Λ ≤ λ) = 1
2 + 1

2χ
2
1, where χ2

0 is chi-square distribution with 0 degrees of freedom and χ2
1 is the chi-square

distribution with one degree of freedom.
The values of ϕ used in the profile likelihood approach for the COM-Poisson distribution are

{0,0.25,0.5,2/3,1,1.5,2,4,∞}. Figure 1 provides the histograms of the test statistics Λ on the Poisson cure rate
model with proportional odds assumption under log-logistic baseline when sample size equals to 400 and 4000
over 1000 generated datasets. These plots also display the probability density of chi-square distribution with one
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Table 8. Bias, SE, RMSE, and CP for the cure rates of the Poisson cure rate model under proportional odds with log-logistic
(Weibull) baseline.

n C p0 True Bias SE RMSE CP(95%)
400 light p01 0.4 0 (0 ) 0.049 (0.05 ) 0.048 (0.049 ) 75.9 (75 )

p02 0.325 -0.001 (-0.001 ) 0.03 (0.03 ) 0.029 (0.03 ) 93.9 (93.5 )
p03 0.257 -0.001 (-0.001 ) 0.028 (0.028 ) 0.027 (0.028 ) 95.7 (95.3 )
p04 0.2 0 (0.001 ) 0.035 (0.036 ) 0.035 (0.036 ) 88.2 (88.9 )

heavy p01 0.4 -0.001 (0 ) 0.058 (0.062 ) 0.059 (0.06 ) 73.2 (73.6 )
p02 0.325 -0.001 (-0.001 ) 0.034 (0.037 ) 0.034 (0.036 ) 91.8 (91.8 )
p03 0.257 -0.001 (-0.001 ) 0.029 (0.031 ) 0.029 (0.032 ) 95 (94.3 )
p04 0.2 0.001 (0.001 ) 0.038 (0.039 ) 0.038 (0.041 ) 88.8 (87.2 )

800 light p01 0.4 0 (0 ) 0.035 (0.035 ) 0.034 (0.035 ) 77 (75.3 )
p02 0.325 0 (-0.001 ) 0.021 (0.022 ) 0.021 (0.021 ) 93.3 (94.7 )
p03 0.257 0 (0 ) 0.019 (0.02 ) 0.02 (0.02 ) 94.4 (95.3 )
p04 0.2 0.001 (0 ) 0.025 (0.025 ) 0.025 (0.025 ) 89.3 (87.1 )

heavy p01 0.4 -0.001 (-0.001 ) 0.042 (0.044 ) 0.042 (0.044 ) 71 (72.2 )
p02 0.325 -0.001 (0 ) 0.025 (0.026 ) 0.025 (0.026 ) 91.2 (91.4 )
p03 0.257 0 (0.001 ) 0.021 (0.022 ) 0.021 (0.022 ) 96.1 (94.8 )
p04 0.2 0.001 (0.002 ) 0.026 (0.027 ) 0.027 (0.028 ) 88 (88.2 )

400 light p01 0.6 0.001 (-0.001 ) 0.049 (0.049 ) 0.048 (0.051 ) 79 (77.8 )
p02 0.476 0.001 (-0.002 ) 0.033 (0.033 ) 0.034 (0.033 ) 91 (92.2 )
p03 0.355 0.001 (-0.002 ) 0.03 (0.031 ) 0.031 (0.031 ) 94.1 (95.1 )
p04 0.25 0.001 (-0.001 ) 0.038 (0.039 ) 0.038 (0.04 ) 87.5 (86.8 )

heavy p01 0.6 0 (-0.004 ) 0.06 (0.065 ) 0.061 (0.063 ) 73.5 (76.3 )
p02 0.476 0 (-0.002 ) 0.04 (0.043 ) 0.041 (0.042 ) 90.5 (90.3 )
p03 0.355 -0.002 (-0.001 ) 0.033 (0.034 ) 0.033 (0.034 ) 94.7 (95.2 )
p04 0.25 -0.001 (0.001 ) 0.041 (0.042 ) 0.04 (0.042 ) 90.3 (91.7 )

800 light p01 0.6 0.001 (0 ) 0.035 (0.035 ) 0.036 (0.035 ) 77.6 (76.4 )
p02 0.476 0.001 (0 ) 0.024 (0.024 ) 0.024 (0.024 ) 91.9 (90.5 )
p03 0.355 0.001 (0 ) 0.021 (0.022 ) 0.021 (0.021 ) 95.2 (94.3 )
p04 0.25 0.001 (0 ) 0.026 (0.027 ) 0.026 (0.025 ) 88.5 (90.7 )

heavy p01 0.6 0.001 (0 ) 0.043 (0.046 ) 0.043 (0.047 ) 75 (74.2 )
p02 0.476 0.001 (0.001 ) 0.029 (0.031 ) 0.029 (0.031 ) 90 (89.5 )
p03 0.355 0.001 (0.001 ) 0.023 (0.024 ) 0.023 (0.024 ) 94.6 (95.3 )
p04 0.25 0.001 (0.002 ) 0.028 (0.029 ) 0.029 (0.029 ) 90.1 (91 )

degree of freedom, and 90% quantiles. The histogram of Λ is not close to the asymptotic distribution when sample
size is small while they become close as the sample size increases. This suggests that a parametric bootstrap method
would be better when the sample size is small, and we will describe this method in detail in the illustrative example
section. Incidentally, the same was observed under the proportional odds assumption with Weibull baseline.

6.2. Information-based method

We use Akaike information criterion (AIC) and Bayesian information criterion (BIC) for model selection among
Geometric, Poisson, and Bernoulli distribution cure rate models. The AIC and BIC are given by

AIC = 2k − 2l̂ and BIC = k logn− 2l̂, (38)

where k is the number of model parameters to be estimated, l̂ is the maximized likelihood value, and n is the sample
size. We select the model with the smallest value of AIC or BIC. AIC and BIC would give us the same selection
rate since k = 5, n = 400 or 800 are the same in each of the scenarios among Geometric, Poisson, and Bernoulli
distributions, i.e., the model with the largest l̂ is the model that fits the data best. We examine the total relative bias
(TRB) and total root mean square error (TRMSE) due to misspecification of the cure rate model. TRB is the sum
of the absolute bias of the estimated cure rates to that of the true cure rates for each of the four groups. Similarly,
TRMSE is the sum of the absolute MSE of the estimated cure rates. TRB and TRMSE due to misspecification is
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Table 9. Bias, SE, RMSE, and CP for the cure rates of the Bernoulli cure rate model under proportional odds with log-logistic
(Weibull) baseline.

n C p0 True Bias SE RMSE CP(95%)
400 light p01 0.4 0.001 (-0.002 ) 0.049 (0.05 ) 0.051 (0.049 ) 74.4 (75.1 )

p02 0.325 0 (-0.002 ) 0.03 (0.03 ) 0.031 (0.03 ) 92.2 (92.1 )
p03 0.257 0 (-0.002 ) 0.028 (0.028 ) 0.028 (0.029 ) 94.8 (93 )
p04 0.2 0.001 (-0.001 ) 0.036 (0.036 ) 0.035 (0.037 ) 88 (86.4 )

heavy p01 0.4 0.004 (0.002 ) 0.059 (0.06 ) 0.061 (0.063 ) 71.3 (71.9 )
p02 0.325 0.001 (0 ) 0.035 (0.036 ) 0.035 (0.037 ) 91.6 (90.9 )
p03 0.257 -0.001 (-0.001 ) 0.03 (0.031 ) 0.029 (0.031 ) 95.6 (95.5 )
p04 0.2 0 (0 ) 0.038 (0.039 ) 0.038 (0.04 ) 89.3 (88.3 )

800 light p01 0.4 0 (-0.001 ) 0.035 (0.035 ) 0.035 (0.036 ) 76 (72.3 )
p02 0.325 0 (-0.001 ) 0.021 (0.021 ) 0.021 (0.022 ) 92 (92.3 )
p03 0.257 0 (-0.001 ) 0.019 (0.02 ) 0.019 (0.02 ) 95.5 (93.7 )
p04 0.2 0 (-0.001 ) 0.025 (0.025 ) 0.024 (0.025 ) 88.5 (87.2 )

heavy p01 0.4 0.002 (0.001 ) 0.042 (0.043 ) 0.043 (0.045 ) 72.6 (71.2 )
p02 0.325 0.001 (0 ) 0.025 (0.026 ) 0.025 (0.027 ) 90.5 (90 )
p03 0.257 0 (0 ) 0.021 (0.021 ) 0.02 (0.022 ) 96.5 (94.5 )
p04 0.2 0 (0 ) 0.026 (0.027 ) 0.025 (0.027 ) 89.4 (89.1 )

400 light p01 0.6 0.004 (0.001 ) 0.049 (0.049 ) 0.049 (0.049 ) 78.4 (76.9 )
p02 0.476 0.002 (0 ) 0.033 (0.033 ) 0.033 (0.034 ) 92.8 (92.1 )
p03 0.355 0 (-0.002 ) 0.03 (0.031 ) 0.031 (0.032 ) 94.6 (94.4 )
p04 0.25 0 (-0.001 ) 0.038 (0.039 ) 0.039 (0.039 ) 88.3 (87 )

heavy p01 0.6 -0.002 (-0.001 ) 0.061 (0.063 ) 0.058 (0.063 ) 76 (75.3 )
p02 0.476 0 (0 ) 0.04 (0.042 ) 0.038 (0.042 ) 92.5 (90.8 )
p03 0.355 0.001 (0 ) 0.033 (0.034 ) 0.032 (0.034 ) 95.7 (95.5 )
p04 0.25 0.003 (0.001 ) 0.041 (0.043 ) 0.041 (0.042 ) 90 (88.6 )

800 light p01 0.6 0.001 (-0.001 ) 0.035 (0.035 ) 0.035 (0.035 ) 77.1 (76.3 )
p02 0.476 0 (-0.001 ) 0.024 (0.024 ) 0.024 (0.024 ) 92 (90.9 )
p03 0.355 -0.001 (-0.001 ) 0.021 (0.022 ) 0.022 (0.023 ) 93.7 (93.1 )
p04 0.25 -0.001 (0 ) 0.026 (0.027 ) 0.027 (0.028 ) 88.8 (86.3 )

heavy p01 0.6 0 (0.001 ) 0.043 (0.045 ) 0.041 (0.045 ) 75.8 (73.9 )
p02 0.476 0 (0.001 ) 0.029 (0.03 ) 0.028 (0.029 ) 90.8 (90.7 )
p03 0.355 0.001 (0 ) 0.023 (0.024 ) 0.023 (0.024 ) 94.7 (95.4 )
p04 0.25 0.001 (0 ) 0.028 (0.029 ) 0.028 (0.03 ) 90 (89.7 )

(a) (b)

Figure 1. Histogram of Λ for the Poisson cure rate model under Proportional odds assumption with log-logistic baseline,
n=400 (left), n=4000 (right).
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Table 10. TRB (in %) in the estimation of cure proportions when fitting different models for a given true model under
proportional odds due to misspecification.

Weibull Baseline Loglogistic Baseline
n censoring Fitted Model Geometric Poisson Bernoulli Geometric Poisson Bernoulli

400 light Geometric - 1.4 -1.5 - 0.3 -0.5
Poisson 48 - -0.4 0.2 - 0.8

Bernoulli 80.8 1.4 - 0.4 0.3 -
heavy Geometric - 0.9 1.5 - 2.6 1.1

Poisson 45.9 - 1.1 0.4 - -1.4
Bernoulli 99.8 0 - 1.1 1.3 -

800 light Geometric - 1.4 -0.3 - 1.2 1.4
Poisson 47.1 - 1.7 1 - 1.5

Bernoulli 82.7 2 - -0.1 -1.1 -
heavy Geometric - -0.1 1.5 - 2.5 1.5

Poisson 48.3 - 2.5 0.9 - 1.4
Bernoulli 100.6 -0.5 - 0.8 0.3 -

Table 11. TRMSE in the estimation of cure proportions when fitting different models for a given true model under
proportional odds due to misspecification.

Weibull Baseline Loglogistic Baseline
n censoring Fitted Model Geometric Poisson Bernoulli Geometric Poisson Bernoulli

400 light Geometric - 0.999 0.961 - 0.3 -0.5
Poisson 2.081 - 1.407 0.2 - 0.8

Bernoulli 3.354 1.434 - 0.4 0.3 -
heavy Geometric - 1.013 1.023 - 2.6 1.1

Poisson 1.637 - 1.266 0.4 - -1.4
Bernoulli 3.73 0.991 - 1.1 1.3 -

800 light Geometric - 1.026 1 - 1.2 1.4
Poisson 3.692 - 2.071 1 - 1.5

Bernoulli 6.693 1.539 - -0.1 -1.1 -
heavy Geometric - 0.967 0.97 - 2.5 1.5

Poisson 3.26 - 1.38 0.9 - 1.4
Bernoulli 7.868 0.996 - 0.8 0.3 -

defined as the difference of TRB and TRMSE between the true model and the wrongly specified model (see Tables
10 and 11).

Table 12 shows that the selection rates under AIC or BIC for the correct models increase as the sample size
increases, while it decrease as censoring rate increases, and the selection rates for the correct models are always
the highest among all the cases. If the true model is under Weibull baseline, the rate to select log-logistic as the
true baseline is low, and the rate becomes even lower for large sample size, or light censoring.

7. Illustration with melanoma data

In this section, we consider a cutaneous melanoma (a type of manlignant cancer) data to illustrate the performance
of the proposed methodology. The data was first introduced by [13], and subsequently studied by many authors
including [2], [4], [5], [6],[1], [21]. These data were taken from [11], and were originally used to detect the
prospective treatment performance on the high-dose interferon alfa-2b therapy in order to prevent the recurrence
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Table 12. Selection rates based on Akaike information criterion under different settings. The data were simulated from
proportional odds with Weibull baseline (γ0= 0.571 γ1= 0.307 γ2= -0.75).

True COM-Poisson Model
n censoring Fitted Model ϕ = 0 ϕ = 0.5 ϕ = 1 ϕ = 2 ϕ −→ ∞

400 light Weibull Geometric 0.470.470.47 0.0551 0.0828 0.0262 0.004
Poisson 0.235 0.2906 0.49190.49190.4919 0.2553 0.2913

Bernoulli 0.19 0.3567 0.3758 0.5146 0.69960.69960.6996
log-logistic Geometric 0.039 0.0802 0.0141 0.0585 0

Poisson 0.037 0.1283 0.0222 0.0898 0.003
Bernoulli 0.029 0.0892 0.0131 0.0555 0.002

heavy Weibull Geometric 0.3440.3440.344 0.0452 0.1047 0.0241 0.011
Poisson 0.197 0.2199 0.3797 0.204 0.279

Bernoulli 0.229 0.3624 0.3867 0.5065 0.6770.6770.677
log-logistic Geometric 0.065 0.1014 0.0393 0.0894 0.01

Poisson 0.103 0.1627 0.0584 0.0985 0.012
Bernoulli 0.062 0.1084 0.0312 0.0774 0.011

800 light Weibull Geometric 0.5870.5870.587 0.0512 0.0849 0.0271 0.002
Poisson 0.266 0.4137 0.59050.59050.5905 0.3601 0.2402

Bernoulli 0.105 0.2801 0.3104 0.4935 0.75780.75780.7578
log-logistic Geometric 0.015 0.0753 0.0051 0.0411 0

Poisson 0.012 0.1265 0.0081 0.0431 0
Bernoulli 0.015 0.0532 0.001 0.0351 0

heavy Weibull Geometric 0.4330.4330.433 0.051 0.1085 0.0301 0.002
Poisson 0.245 0.301 0.51360.51360.5136 0.2417 0.283

Bernoulli 0.154 0.311 0.3126 0.5035 0.7090.7090.709
log-logistic Geometric 0.055 0.088 0.0111 0.0662 0.003

Poisson 0.074 0.159 0.0352 0.0832 0.001
Bernoulli 0.039 0.09 0.0191 0.0752 0.002

of the disease. The study included 427 patients in total from years 1991 to 1995 and follow up until year 1998.
Among them, 10 patients were removed in our analysis due to the missingness of the tumor thickness data. The
overall percentage of censored observations is 55.6%. The mean and standard deviation of the observed lifetimes
are 3.18 and 1.69 in years, respectively. We choose the nodule categories based on the tumor thickness as the only
covariate. The subjects were therefore divided into four different categories (x = 0, 1, 2, 3), with corresponding
sample sizes n1 = 111, n2 = 137, n3 = 87, n4 = 82. The percentage of censored observations for each group are
67.57%, 61.31%, 52.87%, 32.93%. See Figure 2 for the lifetimes of susceptibles.

The initial values for the EM algorithm are chosen in the following way. We consider the censored rate as
the over-estimated cured rate of groups one and four, and then calculated β0 and β1. The initial guess for γγγ are
estimated from the linear relationship between Nelson-Aalen estimates of log odds and log t, i.e.,

logO(t;γγγ) = −γ1logt+ γ1logγ0 + xγ2 (39)

logO(t;γγγ) = xγ2 − log(e(γ1t)
1/γ0 − 1) ≈ − 1

γ0
logt− 1

γ0
logγ1 + xγ2, (40)

for log-logistic and Weibull baseline distributions, respectively. We then fitted these data by Geometric (ϕ = 0),
COM-Poisson (ϕ = 0.5), Poisson (ϕ = 1), COM-Poisson (ϕ = 2) and Bernoulli (ϕ ≈ ∞) cure rate model. These
models, along with cure rate models proposed by [6] and [1], are compared on the basis of AIC and BIC. From
Table 13, we observe that ϕ̂ ≈ ∞ and ϕ̂ = 0 provide the maximized log-likelihood values, which means that the
Bernoulli and Geometric cure rate models provide a good fit for the data under log-logistic odds and Weibull
odds models, respectively. Moreover, the maximized log-likelihood value increases and decreases as ϕ increases
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Figure 2. Cutaneous Melanoma data

under the log-logistic odds and Weibull odds, respectively. The proposed model based on Weibull odds provides
smaller values of l̂, AIC, and most of BIC values than the model for Weibull lifetimes, and the proportional hazards
lifetimes with a Weibull baseline. Our proposed model based on log-logistic odds provides the smallest l̂, AIC and
most of BIC values among all the models. In conclusion, ϕ̂ = 0 under proportional odds model with a log-logistic
distribution as the baseline gives the best fit for the data.

From Table 13, we can see that the maximum difference between l̂ is only 0.09, which means that the difference
between the maximized likelihood value is e0.09 = 1.09 among different ϕ’s. Table 14 presents the estimates,
standard errors and 95% CI of the cure rates stratified by nodule category. The confidence interval for all the
models do not overlap for the first and forth nodule categories. Table 15 presents the MLES and their standard
errors for different cure rate models under proportional odds assumption. It is to be noted that l̂ is very close to
each other under proportional odds model with log-logistic baseline even-though the estimates are quite different.
The same behaviour was also seen in the model discrimination section.

In order to further investigate the effect of ϕ under the COM-Poisson distribution, we fix ϕ from 0 to 5 with
an increment of 0.1 and evaluate the maximum log-likelihood value for each ϕ through likelihood approach. And
we test the null hypothesis H0 : ϕ = ∞ vs. H1 : 0 ≤ ϕ < ∞ using the likelihood ratio test for the log-logistic
odds baseline. And H0 : ϕ = 0 vs. H1 : ϕ > 0 under the Weibull odds baseline. The test statistic is given by
Λ = −2(l̂0 − l̂). Figure 3 shows that the likelihood ratio test statistic decreases and increases as ϕ increases for
log-logistic and Weibull odds, respectively, which suggest that the maximized likelihoods increase and decrease as
ϕ increases. As we mentioned during the model discrimination, the asymptotic distribution is not suitable when the
sample size is small. So, we use a bootstrap method to obtain the distribution of the likelihood ratio test statistic Λ.
We generated 1000 samples from Geometric, Poisson, Bernoulli cure rate models under proportional odds model
with log-logistic and Weibull distributions, respectively. For each of the dataset, we fit the true cure rate model as
well as the COM-Poisson cure rate model, then we calculate the values of Λ. The histograms of Λ are given in
Figure 4. The p-value is the proportion of times Λ greater than the corresponding value determined from the data.
We obtained p-values of 0.142, 0.132 and 0.681 if we test for Geometric, Poisson and Bernoulli cure rate models
with log-logistic odds. Also, we obtained p-values of 0.599, 0.001 and 0.000 if we test for Geometric, Poisson and
Bernoulli cure rate models under Weibull odds. Moreover, it would be of interest to get an acceptable range of ϕ if
we are using the Weibull baseline for the proportional odds model. Figure 3 present the values of Λ against ϕ with
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Table 13. AIC, BIC and l̂ under different cure rate models

COM- Geometric Poisson Bernoulli
Poisson ϕ = 0 ϕ = 0.5 ϕ = 1 ϕ = 2 ϕ = ∞

Proportional AIC 1022.863 1022.845 1022.821 1022.768 1022.6831022.6831022.683
Odds BIC 1043.029 1043.011 1042.986 1042.933 1042.8491042.8491042.849

log-logistic l̂ -506.432 -506.423 -506.41 -506.384 -506.342-506.342-506.342
Proportional AIC 1025.6441025.6441025.644 1026.014 1026.374 1026.862 1027.414

Odds BIC 1045.8091045.8091045.809 1046.179 1046.539 1047.027 1047.579
Weibull l̂ -507.822-507.822-507.822 -508.007 -508.187 -508.431 -508.707

Proportional AIC 1028.67661028.67661028.6766 1032.4676 1034.1606 1036.0434 1038.948
Hazard BIC 1048.8421048.8421048.842 1052.633 1054.326 1056.2088 1059.114

Weibull∗ l̂ -509.3383-509.3383-509.3383 -511.2338 -512.0803 -513.0217 -514.474
AIC 1026.8381026.8381026.838 1032.388 1034.788 1037.792 1043.182

Weibull∗∗ BIC 1042.971042.971042.97 1048.52 1050.92 1053.924 1059.314
l̂ -509.419-509.419-509.419 -512.194 -513.394 -514.896 -517.591

Section ∗ is taken from [6]. Section ∗∗ is taken from [1].

Table 14. Estimates, standard errors and 95% CI for the cure rates

Cure rate model, Baseline Bernoulli, log-logistic Geometric, Weibull
X p̂0 SE 95% C.I. p̂0 SE 95% C.I.
1 0.602 0.053 ( 0.497 , 0.706 ) 0.63 0.047 ( 0.538 , 0.721 )
2 0.508 0.038 ( 0.434 , 0.583 ) 0.537 0.034 ( 0.471 , 0.603 )
3 0.415 0.037 ( 0.343 , 0.486 ) 0.442 0.033 ( 0.377 , 0.507 )
4 0.327 0.049 ( 0.231 , 0.422 ) 0.351 0.046 ( 0.261 , 0.44 )

Table 15. MLEs and SEs of the model parameters

Cure rate model,PO Baseline Bernoulli, log-logistic Geometric, Weibull
Param MLEs SE MLEs SE
β0 -0.413 0.2226 -0.53 0.2003
β1 0.379 0.1151 0.382 0.1049
γ0 2.461 0.2995 0.488 0.0361
γ1 2.266 0.1877 0.298 0.0338
γ2 -0.473 0.1254 -0.293 0.1385

ϕ ∈ [0, 5]. We may reject the null hypothesis H0 : ϕ = 0 with 10% level of significance if Λ is greater than 0.16.
This implies that ϕ ∈ [0, 0.2), and the Geometric model under Weibull odds adequately fits the data.

We also set up a test on the effect of the proportional odds parameter: H0 : γ2 = 0 as null hypothesis vs.
H1 : γ2 ̸= 0 as alternative hypothesis for Geometric, Poisson, Bernoulli cure rate models with ϕ = 0, 1,∞ under
Weibull (log-logistic) baseline. Note that the covariate or the nodule categories would not affect the analysis
if γ2 = 0, and the lifetime would just follow a Weibull (log-logistic) distribution. The test statistic turned out
to be 3.194 (14.95), 10.414 (19.564), 17.767 (25.99) with corresponding p-values 0.0739(0.00011), 0.00125
(9.73× 10−6), 0.000025 (3.4× 10−7). Most of the p-values were less than 0.05, which shows that the proportional
odds model provides a better fit than a constant lifetime model over the four nodule categories.

Deviance residual is examined to check the error, which is defined as

Di = sign(Ii + logŜp(ti))

√
−2(Ii + logŜp(ti) + Iilog[−(logŜp(ti))]) (41)
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(a) (b)

Figure 3. The plot of Λ = −2(l̂0 − l̂1) vs ϕ under log-logistic baseline (left) and Weibull baseline (right), for cutaneous
melanoma data.

Figure 7, 8 and 5, 6 present the deviance residuals as well as qq plot for various fitted cure rate models. It can be
seen that the deviance residuals are distributed around 0, and satisfied the normality assumption.

7.1. Model diagnosis

In this section, we check if the proportional odds model with log-logistic baseline assumption on the lifetime
is met for the cutaneous melanoma data that we have discussed in the previous section. From (40), we can see
that logÔ(t(i)) and logt(i) should have a linear relationship between them. For the cutaneous melanoma data, we
calculated the cumulative hazard function Ĥ(t) as the observed hazard through the non-parametric Nelson-Aalen
estimator, and then get the log-odds function accordingly as

Ĥ(t) =
∑
ti≤t

di
ni

; Ŝ(t) = e−Ĥ(t); log(Ô) = log(Ŝ(t))− log(1− Ŝ(t)), (42)

where di and ni are the number of events and total individuals at risk at time ti, respectively. Figure 9 presents
the scatter plot of logÔ(t(i)) vs. logt(i) for each category. The plot shows almost a linear relationship among the
four groups. It is to be noticed that there is an intersection among x = 2 and x = 3 for short survival times which
violates our proportional odds assumption. Figure 10 shows the difference of log-odds between nodule categories
1, 2, 3 and baseline 0. In this figure, the log odds for each of the nodule categories are calculated by using the
linear interpolation within the range of discrete points from 0.4 to 2. From our proportional odds assumption,
logO − logO0 = xxxγγγ2, we know that the difference should be a linear horizontal line and does not depend on the
time. However, the lines in Figure 10 look parallel but do show give a little curvature. Since our data include the
cured individuals and are not independent, linear regression test may not be good for model diagnosis.

We use the parametric bootstrap and Monte Carlo methods to develop a goodness of fit test to check whether the
Bernoulli cure rate model with proportional odds assumption under log-logistic baseline is sufficient. The critical
region for this test will be to the left. We simulated 1000 data based on Bernoulli cure rate model with proportional
odds survival assumption under log-logistic baseline. The parameters are β0 = −0.413, β1 = 0.379, γ0 = 2.461,
γ1 = 2.266, γ2 = −0.473. The censored proportion for the nodule categories are (0.676, 0.613, 0.529, 0.329),
respectively. We calculated the values of maximum likelihood l̂1, ..., l̂1000 for each of these generated datasets,
and order them (̂l)1, ..., l̂(1000). Then, we determine the proportion of times the l̂ is smaller than the maximum
likelihood we obtained from the data as -506.342. Figure 11 presents the histogram of the log-likelihood over 1000

Stat., Optim. Inf. Comput. Vol. 6, September 2018



324 PROPORTIONAL ODDS UNDER CONWAY-MAXWELL-POISSON CURE RATE MODEL

Figure 4. The histogram of Λ = −2(l̂ − l̂0) from 1000 generated datasets with respect to MLEs on Geometric (top), Poisson
(middle), Bernoulli (bottom) cure rate model with the lifetime distribution as a proportional odds model with log-logistic(left)
and Weibull (right) baseline .
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Figure 5. QQ plot for deviance residual on proportional odds model with log-logistic baseline for cutaneous melanoma data.

Figure 6. QQ plot for deviance residual on proportional odds model with Weibull baseline for cutaneous melanoma data.

simulated datasets. We obtained the p-value for this test as 0.895, which indicates that our model is quite good as
suitable for these data.

Stat., Optim. Inf. Comput. Vol. 6, September 2018



326 PROPORTIONAL ODDS UNDER CONWAY-MAXWELL-POISSON CURE RATE MODEL

Figure 7. Deviance residual on proportional odds model with log-logistic baseline for cutaneous melanoma data.

Figure 8. Deviance residual on proportional odds model with log-logistic baseline for cutaneous melanoma data.

Figure 9. Log odds against log t for cutaneous melanoma data based on Nelson-Aalen estimator on patients who died.
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Figure 10. Difference of log odds between nodule categories against log t for cutaneous melanoma data based on Nelson-
Aalen estimator.

Figure 11. Histogram of l̂

8. Concluding remarks

In this paper, we develop a flexible COM-Poisson cure rate model under a proportional odds assumption for
the lifetime distribution of susceptibles with the baseline function being that of a Weibull distribution or log-
logistic distribution. An EM algorithm is developed for the maximum likelihood estimation of the parameters from
the proposed cure rate model. We perform an extensive Monte Carlo simulation study by varying sample sizes,
censoring proportion, cure rates, parameters in different distributions to evaluate the performance of our proposed
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methodology. Overall, our methodology provides accurate estimates of the model parameters as well as of the cure
rates. Moreover, a real data on cutaneous melanoma is analyzed and model diagnosis is performed for illustrative
purpose. There are many potential future works in this direction. One may consider the use of a non-parametric
specification of the baseline distribution in the proportional odds model of the lifetimes of susceptible group. In
addition, a destructive cure survival rate model, by including a damage or destruction term for the initial risk
factors, can also be considered in the context of proportional odds model.
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Appendix

Results for the Special cases of COM-Poisson cure rate model

As mentioned earlier, the COM-Poisson distribution includes the Bernoulli, Poisson and Geometric distributions
as special cases. Here, we detail the steps of the EM algorithm for these three special cure models.

Bernoulli cure rate model Let the competing cause random variable M follow a Bernoulli distribution with
probability of success η/(1 + η). The probability density function for the whole population can then be expressed
as

fp(ti, θθθ) =
η

1 + η
f(ti;γγγ). (43)

The survival function for the susceptible group is just the survival function for the time to event W , i.e., Ss(ti;θθθ) =
S(ti;γγγ). The inverse of the cure rate under this setting is 1/p0 = 1 + η. We, therefore, have Hϕ(η) = 1 + η under
the logistic link with a fixed value of ϕ, which implies η = exxx

′
iβββ . The Q(θθθ∗,πππ(k)) function is then given by∑

i∈∆1

xxx′
iβββ +

∑
i∈∆1

logf(ti;xxxi, γγγ)−
∑
i∈∆∗

log(1 + exxx
′
iβββ) +

∑
i∈∆0

πππ
(k)
i xxx′

iβββ +
∑
i∈∆0

πππ
(k)
i logS(ti;xxxic, γγγ). (44)

It is readily seen that some of the terms in the Q function are only corresponding to βββ while the others are only
corresponding to γγγ. So, it can be split into two parts as follows:

Q(θθθ∗,πππ(k)) = Q1(βββ,πππ
(k)) +Q2(γγγ,πππ

(k)), (45)

Q1(γγγ,πππ
(k)) =

∑
I∈∆1

logf(ti;xxxi, γγγ) +
∑
I0

πππ
(k)
i logS(ti;xxxic, γγγ), (46)

Q2(βββ,πππ
(k)) =

∑
i∈∆1

xxx′
iβββ −

∑
i∈∆∗

log(1 + exxx
′
iβββ) +

∑
i∈∆0

πππ
(k)
i xxx′

iβββ, (47)

with the update step

πππ
(k)
i =

exxx
′
iβββ

(k)

S(ti;γγγ
(k))

1 + exxx
′
iβββ

(k)
S(ti;γγγ(k))

(48)

for the ith censored observation. The required first- and second-order derivatives of Q(θθθ∗,πππ(k)) with respect to βββ
and γγγ are as follows:
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∂Q

∂γj
=

∑
i∈∆1

∂logf(ti;xxxi, γγγ)

∂γj
+

∑
i∈∆0

πππ(k) ∂logS(ti;xxxic, γγγ)

∂γj
,

∂Q

∂βl
=

∑
i∈∆1

xil −
∑
i∈∆∗

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

πππ(k)xil,

∂2Q

∂βl∂βl′
= −

∑
i∈∆∗

xilxil′e
xxx′
iβββ

(1 + exxx
′
iβββ)2

,

∂2Q

∂γj∂γj′
=

∑
i∈∆1

∂logf(ti;xxxi, γγγ)

∂γj∂γj′
+

∑
i∈∆0

πππ(k) ∂logS
2(ti;xxxic, γγγ)

∂γj∂γj′
,

for l, l′ = 0, . . . , p, j, j′ = 1, 2, h = 21, . . . , 2p, i = 1, . . . , n.

Poisson cure rate model Let the competing cause random variable M follow a Poisson distribution. The probability
density function for the whole population in this case can be expressed as

fp(ti;θθθ) = [log(1 + exxx
′
iβββ)]f(ti;γγγ)(1 + exxx

′
iβββ)(S(ti;γγγ)−1), (49)

and the survival function for the susceptible group as

Ss(ti;θθθ) = [(1 + exxxiβββ)S(ti;γγγ) − 1]e−xxxiβββ . (50)

The cure rate is p0 = e−η. We would then have Hϕ(η) = eη under the logistic link with a fixed value of ϕ, which
implies that η = ln(1 + exxx

′
iβββ). The Q(θθθ∗,πππ(k)) function is then given by

Q =
∑
I∈∆1

log[log(1 + exxx
′
iβββ)] +

∑
I∈∆1

logf(ti;xxxi, γγγ) +
∑
I∈∆1

S(ti;xxxic, γγγ)log(1 + exxx
′
iβββ)

−
∑
i∈∆∗

log(1 + exxx
′
iβββ) +

∑
i∈∆0

πππ(k)log((1 + exxxiβββ)S(ti;xxxic,γγγ) − 1) (51)

with the update step

πππ
(k)
i = 1− (1 + exxx

′
iβββ

(k)

)−S(ti;γγγ
(k)) (52)

for the ith censored observation. The required first- and second-order derivatives of Q(θθθ∗,πππ(k)) with respect to βββ
and γγγ are as follows:

∂Q

∂βl
=

∑
i∈∆1

1

log(1 + exxx
′
iβββ)

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆1

xile
xxx′
iβββS(ti;xxxic, γγγ)

1 + exxx
′
iβββ

−
∑
i∈∆∗

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

πππ(k)S(ti;xxxic, γγγ)

1− (1 + exxx
′
iβββ)−S(ti;xxxic,γγγ)

xile
xxx′
iβββ

1 + exxx
′
iβββ
,

∂Q

∂γj
=

∑
i∈∆1

∂logf(ti;xxxic, γγγ)

∂γj
+

∑
i∈∆1

∂S(ti;xxxic, γγγ)

∂γj
log(1 + exxx

′
iβββ)

+
∑
i∈∆0

πππ(k) log(1 + exxxiβββ)

1− (1 + exxxiβββ)−S(ti;xxxic,γγγ)

∂S(ti;xxxic, γγγ)

∂γj
,
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∂2Q

∂βl∂βl′
=

∑
i∈∆1

xilxil′e
xxx′
iβββ

[1 + exxx
′
iβββ ]2

{ 1

log(1 + exxx
′
iβββ)

[1− exxx
′
iβββ

log(1 + exxx
′
iβββ)

] + S(ti;xxxic, γγγ)} −
∑
i∈∆∗

xilx
′
ile

xxx′
iβββ

[1 + exxx
′
iβββ ]2

+
∑
i∈∆0

πππ(k) S(ti;xxxic, γγγ)

1− (1 + exxx
′
iβββ)−S(ti;xxxic,γγγ)

xilxil′e
xxx′
iβββ

[1 + exxx
′
iβββ ]2

[1− S(ti;xxxic, γγγ)e
xxx′
iβββ

(1 + exxx
′
iβββ)S(ti;xxxic,γγγ) − 1

],

∂2Q

∂βl∂γj
=

∑
i∈∆1

∂S(ti;xxxic, γγγ)

∂γj

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

πππ(k)xile
xxx′
iβββ

1 + exxx
′
iβββ

1− (1 + exxx
′
iβββ)−S(ti;xxxic,γγγ)(1 + S(ti;xxxic, γγγ)log(1 + exxx

′
iβββ))

[1− (1 + exxx
′
iβββ)−S(ti;xxxic,γγγ)]2

∂S(ti;xxxic, γγγ)

∂γj
,

∂2Q

∂γj∂γj′
=

∑
i∈∆1

∂logf2(ti;xxxic, γγγ)

∂γj∂γj′
+

∑
i∈∆1

∂2S(ti;xxxic, γγγ)

∂γj∂γ′
j

log(1 + exxx
′
iβββ)

+
∑
i∈∆0

πππ(k) log(1 + exxxiβββ)

1− (1 + exxxiβββ)−S(ti;xxxic,γγγ)

∂2S(ti;xxxic, γγγ)

∂γj∂γ′
j

−
∑
i∈∆0

πππ(k) (1 + exxxiβββ)−S(ti;xxxic,γγγ)[log(1 + exxxiβββ)]2

[1− (1 + exxxiβββ)−S(ti;xxxic,γγγ)]2
∂S(ti;xxxic, γγγ)

∂γj

∂S(ti;xxxic, γγγ)

∂γj′
,

for l, l′ = 0, . . . , p, j, j′ = 1, 2, h = 21, . . . , 2p, i = 1, . . . , n.

Geometric cure rate model Let the competing cause random variable M follow a Geometric distribution. The
probability density function for the whole population in this case can be expressed as

fp(ti;θθθ) =
exxx

′
iβββf(ti, γγγ)

RG(ti, θθθ)2
, (53)

and the survival function for the susceptible group as

Ss(ti;θθθ) =
S(ti;γγγ)

RG(ti, θθθ)
, (54)

where RG(ti, θθθ) = 1 + exxx
′
iβββ − exxx

′
iβββS(ti;xxxic, γγγ). The cure rate under this setting is p0 = 1− η, and under the logistic

link with a fixed value of ϕ, we would have Hϕ(η) = (1− η)−1, which implies that η = exxx
′
iβββ(1 + exxx

′
iβββ)−1. The

Q(θθθ∗,πππ(k)) function is then given by

Q =
∑
I∈∆1

xxx′
iβββ +

∑
I∈∆1

logf(ti,xxxic, γγγ)−
∑
I∈∆1

2logRG(ti, θθθ)−
∑
i∈∆0

log(1 + exxx
′
iβββ) +

∑
i∈∆0

πππ(k)xxx′
iβββ

+
∑
i∈∆0

πππ(k)logS(ti;γγγ)−
∑
i∈∆0

πππ(k)logRG(ti, θθθ), (55)

with the update step

πππ
(k)
i =

S(ti;γγγ
(k))exxx

′
iβββ

(k)

1 + exxx
′
iβββ

(k)
(56)

for the ith censored observation. The required first- and second-order derivatives of Q(θθθ∗,πππ(k)) with respect to βββ
and γγγ are as follows:
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∂Q

∂βl
=

∑
i∈∆1

xil − 2
∑
i∈∆1

∂logRG(ti, θθθ)

∂βl
−

∑
i∈∆0

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

πππ(k)xil −
∑
i∈∆0

πππ(k) ∂logRG(ti, θθθ)

∂βl
,

∂Q

∂γj
=

∑
i∈∆1

(
∂logf(ti,xxxic, γγγ)

∂γj
− 2

∂logRG(ti, θθθ)

∂γj
) +

∑
i∈∆0

πππ(k)(
∂logS(ti;xxxic, γγγ)

∂γj
− ∂logRG(ti, θθθ)

∂γj
),

∂2Q

∂βl∂βl′
= −2

∑
i∈∆1

∂logR2
G(ti, θθθ)

∂βl∂βl′
−

∑
i∈∆0

xilxil′e
xxx′
iβββ

[1 + exxx
′
iβββ ]2

−
∑
i∈∆0

πππ(k) ∂logR
2
G(ti, θθθ)

∂βl∂βl′
,

∂2Q

∂βl∂γj
= −2

∑
i∈∆1

∂logR2
G(ti, θθθ)

∂βl∂γj
−

∑
i∈∆0

πππ(k) ∂logR
2
G(ti, θθθ)

∂βl∂γj
,

∂Q2

∂γj∂γj′
=

∑
i∈∆1

(
∂logf(ti,xxxic, γγγ)

∂γj∂γj′
− 2

∂logR2
G(ti, θθθ)

∂γj∂γj′
) +

∑
i∈∆0

πππ(k)(
∂logS(ti;xxxic, γγγ)

∂γj∂γj′
− ∂logR2

G(ti, θθθ)

∂γj∂γj′
),

∂logRG(ti, θθθ)

∂γj
=

−exxx
′βββ

RG(ti, θθθ)

∂S(ti, θθθ)

∂γj
,

∂logRG(ti, θθθ)

∂βl
=

xihe
xxx′βββ(1− S(ti, θθθ))

RG(ti, θθθ)
,

∂logR2
G(ti, θθθ)

∂γj∂γj′
=

−exxx
′βββ

RG(ti, θθθ)

∂S2(ti, θθθ)

∂γj∂γj′
− e2xxx

′βββ

RG(ti, θθθ)2
∂S(ti, θθθ)

∂γj

∂S(ti, θθθ)

∂γj′
,

∂logR2
G(ti, θθθ)

∂βl∂βl
=

xilxil′e
xxx′βββ

RG(ti, θθθ)2
(1− S(ti, θθθ)),

∂logR2
G(ti, θθθ)

∂βl∂γj
= − xile

xxx′βββ

RG(ti, θθθ)2
∂S(ti, θθθ)

∂γj
,

for l, l′ = 0, . . . , p, j, j′ = 1, 2, h = 21, . . . , 2p, i = 1, . . . , n.

Observed information matrix

COM-Poisson cure rate model: The score functions, for a fixed value of ϕ, are

∂l

∂βl
= −

∑
i∈∆∗

xil
exxx

′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆1

exxx
′
iβββ

z21,i
z2,iz01,i

xil +
∑
i∈∆0

z2,ixile
xxx′
iβββ

z01,i(1 + z1i)
,

∂l

∂γh
=

∑
i∈∆1

∂logf(ti, γγγ)

∂γh
+

∑
i∈∆1

(
z21,i
z2,i

− 1)
∂logS(ti, γγγ)

∂γh
+

∑
i∈∆0

z2,i
1 + z1,i

∂logS(ti, γγγ)

∂γh
.
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Hence, the components of the observed information matrix, for a fixed value of ϕ, are

− ∂2l

∂βl∂βl′
= −{−

∑
i∈∆∗

xilx
′
ile

xxx′
iβββ

(1 + exxx
′
iβββ)2

+
∑
i∈∆1

xilx
′
ile

xxx′
iβββ

(z2,iz01,i)2
[z2,i(z21,iz01,i + z31,ie

xxx′
iβββ)− z21,i[z21,i +

z2,iz02,i
z01,i

]exxx
′
iβββ ]

+
∑
i∈∆0

xilx
′
ile

xxx′
iβββ

(z1,i + 1)2z201,i
[(
z21,i
z01,i

exxx
′
iβββ + z2,i)(z1,i + 1)z01,i − z2,ie

xxx′
iβββ [

z02,i
z01,i

(z1,i + 1) + z2,i]]},

− ∂2l

∂βl∂γh
= −{

∑
i∈∆1

xile
xxx′
iβββ
z31,iz2,i − z221,i

z22,iz01,i

∂logS(ti;γγγ)

∂γh
+

∑
i∈∆0

xile
xxx′
iβββ

z01,i(1 + z1,i)
(z21,i −

z22,i
1 + z1,i

)
∂logS(ti;γγγ)

∂γh
},

− ∂2l

∂γh∂γh′
= −{

∑
i∈∆1

∂logf2(ti, γγγ)

∂γh∂γh′
+

∑
i∈∆1

(
z21,i
z2,i

− 1)
∂logS2(ti, γγγ)

∂γh∂γh′

+
∑
i∈∆1

(
z31,iz2,i − z221,i

z22,i
)
∂logS(ti, γγγ)

∂γh

∂logS(ti, γγγ)

∂γh′

+
∑
i∈∆0

z2,i
1 + z1,i

∂logS2(ti, γγγ)

∂γh∂γh′
+

∑
i∈∆0

z21,iz1,i + z21,i − z22,i
(1 + z1,i)2

∂logS(ti, γγγ)

∂γh

∂logS(ti, γγγ)

∂γh′
},

for l, l′ = 0, . . . , p, xi0 ≡ 1, h, h′ = 0, 1, j∗, j∗ = 21, 22, . . . , 2p, i = 1, . . . , n.
Bernoulli cure rate model: The score functions are

∂l

∂βl
=

∑
i∈∆1

xil −
∑
i∈∆∗

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

wixil,

∂l

∂γj
=

∑
i∈∆1

∂logf(ti;xxxi, γγγ)

∂γj
+

∑
i∈∆0

wi
∂logS(ti;xxxic, γγγ)

∂γj
,

where wi =
exxx

′
iβ
ββS(ti;γγγ)

1+ex
xx′
i
βββS(ti;γγγ)

.

Hence, the components of the observed information matrix are

− ∂2l

∂βl∂βl′
= −{−

∑
i∈∆∗

xilxil′e
xxx′
iβββ

(1 + exxx
′
iβββ)2

+
∑
i∈∆0

xilxil′wi(1− wi)},

− ∂2l

∂βl∂γj
= −{

∑
i∈∆0

xilwi(1− wi)
∂logS(ti;γγγ)

∂γj
},

− ∂2l

∂γj∂γj′
= −{

∑
i∈∆1

∂logf(ti;γγγ)

∂γj∂γj′
+

∑
i∈∆0

wi
∂logS2(ti;γγγ)

∂γj∂γj′
+

∑
i∈∆0

wi(1− wi)
∂logS(ti;γγγ)

∂γj

∂logS(ti;γγγ)

∂γj′
},

for l, l′ = 0, . . . , p, xi0 ≡ 1, h, h′ = 0, 1, j∗, j∗ = 21, 22, . . . , 2p, i = 1, . . . , n.
Poisson cure rate model: The score functions are

∂l

∂βl
=

∑
i∈∆1

1

log(1 + exxx
′
iβββ)

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆∗

xile
xxx′
iβββ(S(ti;γγγ)− 1)

1 + exxx
′
iβββ

,

∂l

∂γj
=

∑
i∈∆1

∂logf(ti;xxxic, γγγ)

∂γj
+

∑
i∈∆∗

∂S(ti;γγγ)

∂γj
log(1 + exxx

′
iβββ).
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Hence, the components of the observed information matrix are

− ∂2l

∂βl∂βl′
= −{

∑
i∈∆1

xilxil′e
xxx′
iβββ(log(1 + exxx

′
iβββ)− exxx

′
iβββ)

(1 + exxx
′
iβββ)2[log(1 + exxx

′
iβββ)]2

+
∑
i∈∆∗

xilx
′
ile

xxx′
iβββ

[1 + exxx
′
iβββ ]2

(S(ti;γγγ)− 1)},

− ∂2l

∂βl∂γj
= −{

∑
i∈∆∗

∂S(ti;xxxic, γγγ)

∂γj

xile
xxx′
iβββ

1 + exxx
′
iβββ
},

− ∂2l

∂γj∂γj′
= −{

∑
i∈∆1

∂logf2(ti;xxxic, γγγ)

∂γj∂γj′
+

∑
i∈∆∗

∂2S(ti;xxxic, γγγ)

∂γj∂γ′
j

log(1 + exxx
′
iβββ)},

for l, l′ = 0, . . . , p, xi0 ≡ 1, h, h′ = 0, 1, j∗, j∗ = 21, 22, . . . , 2p, i = 1, . . . , n.
Geometric cure rate model: The score functions are

∂l

∂βl
=

∑
i∈∆1

xil − 2
∑
i∈∆1

∂logRG(ti, θθθ)

∂βl
−

∑
i∈∆0

xile
xxx′
iβββ

1 + exxx
′
iβββ

+
∑
i∈∆0

S(ti;γγγ)e
xxx′
iβββ

1 + exxx
′
iβββ

(xil −
∂logRG(ti, θθθ)

∂βl
),

∂l

∂γj
=

∑
i∈∆1

(
∂logf(ti,xxxic, γγγ)

∂γj
− ∂logRG(ti, θθθ)

∂γj
)−

∑
i∈∆∗

∂logRG(ti, θθθ)

∂γj
.

Hence, the components of the observed information matrix are

− ∂2l

∂βl∂βl′
= −{−2

∑
i∈∆1

∂logR2
G(ti, θθθ)

∂βl∂βl′
+

∑
i∈∆0

xilxil′e
xxx′
iβββ

(1 + exxx
′
iβββ)2

(S(ti;γγγ)− 1)

−
∑
i∈∆0

S(ti;γγγ)e
xxx′
iβββ

1 + exxx
′
iβββ

∂logR2
G(ti, θθθ)

∂βl∂βl′
−

∑
i∈∆0

xil′e
xxx′
iβββS(ti;γγγ)

(1 + exxx
′
iβββ)2

∂logRG(ti, θθθ)

∂βl
},

− ∂2l

∂βl∂γj
= −{−

∑
i∈∆1

∂logR2
G(ti, θθθ)

∂βl∂γj
−

∑
i∈∆∗

∂logR2
G(ti, θθθ)

∂βl∂γj
},

− ∂2l

∂γj∂γj′
= −{

∑
i∈∆1

(
∂logf(ti,xxxic, γγγ)

∂γj∂γj′
− ∂logR2

G(ti, θθθ)

∂γj∂γj′
)−

∑
i∈∆∗

∂logR2
G(ti, θθθ)

∂γj∂γj′
},

where RG(ti, θθθ) = 1− exxx
′
iβββ(S(ti;γγγ)− 1).

∂logRG(ti, θθθ)

∂γj
=

−exxx
′βββ

RG(ti, θθθ)

∂S(ti, θθθ)

∂γj
,

∂logRG(ti, θθθ)

∂βl
=

xile
xxx′βββ(1− S(ti, θθθ))

RG(ti, θθθ)
,

∂logR2
G(ti, θθθ)

∂γj∂γj′
=

−exxx
′βββ

RG(ti, θθθ)

∂S2(ti, θθθ)

∂γj∂γj′
− e2xxx

′βββ

RG(ti, θθθ)2
∂S(ti, θθθ)

∂γj

∂S(ti, θθθ)

∂γj′
,

∂logR2
G(ti, θθθ)

∂βl∂βl
=

xilxil′e
xxx′βββ(1− S(ti, θθθ))

RG(ti, θθθ)2
,

∂logR2
G(ti, θθθ)

∂βl∂γj
= − xile

xxx′βββ

RG(ti, θθθ)2
∂S(ti, θθθ)

∂γj
,

for l, l′ = 0, . . . , p, xi0 ≡ 1, h, h′ = 0, 1, j∗, j∗ = 21, 22, . . . , 2p, i = 1, . . . , n.
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