
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 6, September 2018, pp 383–397.
Published online in International Academic Press (www.IAPress.org)
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Abstract In this work the exact distribution of the linear combination of p independent logistic random variables is
studied. It is shown that the exact distribution may be represented as a shifted infinite sum of independent random variables
distributed as the difference of two independent Generalized Integer Gamma distributions. In addition, two near-exact
approximations are developed for this distribution. Numerical studies are conducted to access the degree of precision
and also the computational performance of these approximations. The developed methodology is used to derive near-exact
approximations for the linear combination of independent generalized logistic random variables.
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1. Introduction

The logistic distribution is an important distribution in statistics and is used in several areas of research. For
example, in logistic regression to model categorical variables [7] and in physics, survival analysis, growth models,
medical diagnosis and public health [3, 16, 8, 2, 10, 1] among others. This distribution has many similarities
with the Normal distribution but with heavier tails. Problems related with the use of linear combinations of
independent logistic random variables may arise naturally from the applications addressed in the above references
when these are considered in the multivariate setting. Despite the importance of this distribution, as far as the
author knows, there are few results available for the distribution of the linear combination of independent logistic
random variables. [9] addresses the sum of logistic random variables when the variables are independent and
identically distributed. The probability density and cumulative distribution functions for the linear combination of
n independent logistic random variables were obtained in [18] in terms of the H-function, which is difficult to use
in practice. [15] develops approximations for the distribution of the sum of random variables with a generalized
logistic distribution also for the independent and identically distributed case. In [17] it is defined that a random
variable Y has a generalized logistic distribution if Y = log[X/(1−X)] with X ∼ Beta(p, q) and the moment
generating function is given as

M(t) =
Γ(p+ t)Γ(q − t)

Γ(q)Γ(p)
.

We will denote this fact by Y ∼ GLogistic(p, q) . It will be shown, in Section 5, that the results in this paper can
also be used to address the distribution of linear combination of independent generalized logistic random variables.
We should also note that this distribution was already presented in Table A, page 155 of [14]. We should point
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out that the methodology developed in this work can also be extended to the product of independent log-logistic
random variables by using a simple logarithm transformation.

In this paper we derive two near-exact approximations [5] for the linear combinations of independent logistic
random variables, which will have as distribution: i) a shifted difference of two Generalized Integer Gamma
distributions [4, 6] denoted in Appendix 1 of [13] by SDGIG or ii) the sum of a shifted Gamma random variable and
an independent variable with a SDGIG distribution. The near-exact distributions were introduced in [5] and they
are developed by making an adequate factorization of the exact characteristic function of the random variable in
study and by approximating just one of the factors in such way that the resulting characteristic function corresponds
to a known and manageable distribution.

This paper is organized as follows, in Section 2 it is shown that the exact distribution of the linear combination
of independent logistic random variables may be represented as a shifted infinite sum of DGIG distributions.
In Section 3, two near-exact approximations are developed for the linear combination of independent logistic
random variables. In Section 4, numerical studies are provided to illustrate the precision, asymptotic properties and
computational performance of these distributions. In Section 5, it is shown how it is possible to use the procedure
developed in Section 3 to develop near-exact approximations for the linear combination of independent generalized
logistic distributions. Finally, section 6, is dedicated to the conclusions.

2. The exact distribution of the linear combination of independent logistic random variables

In this section we present two results on the exact distribution of the linear combination of independent logistic
random variables. Theorem 2 is the basis for the near-exact approximations developed in Section 3.

Let X1, . . . , Xp be p independent logistic random variables, with parameters µj ∈ R (the set of real numbers)
and σj ∈ R+ (the set of positive real numbers), that is

Xj
ind.∼ Logist(µj , σj),

FXj (x) =
1

1 + exp
(
−x−µj

σj

) x ∈ R, (1)

for j = 1, . . . , p. It is known that the characteristic function of Xj is given by [1]

ΦXj (t) = exp(itµj)B(1 + σj it, 1− σj it) = exp(itµj)Γ(1 + σj it)Γ(1− σj it) , t ∈ R

where B(., .) denotes the usual Beta function. Therefore, the characteristic function of the linear combination of p
independent logistic random variables, W =

∑p
j=1 αjXj , for αj ∈ R, is defined as [1]

ΦW (t) =

p∏
j=1

exp(itµjαj)Γ(1 + σjαj it)Γ(1− σjαj it) , t ∈ R. (2)

Theorem 1
Let X1, . . . , Xp be p independent logistic random variables, with parameters µj ∈ R and σj ∈ R+. Then the
characteristic function of W =

∑p
j=1 αjXj with αj ∈ R may be written as

ΦW (t) = exp

{
it

p∑
j=1

µjαj

} ∞∏
n=0

{(
p∏

j=1

n+ 1

n+ 1 + itσjαj

)(
p∏

j=1

n+ 1

n+ 1− itσjαj

)}
. (3)

Proof: We may write the expression of the characteristic function of W in (2) as

ΦW (t) = exp

{
it

p∑
j=1

µjαj

}
p∏

j=1

Γ(1 + σjαj it)Γ(1− σjαj it) (4)
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then using the equality [11, p. 9, expression (12)]

Γ(z) =
1

z

∞∏
n=1

[(
1 +

1

n

)z (
1 +

z

n

)−1
]
, z ∈ C (the set of complex numbers),

we have

ΦW (t) = exp

{
it

p∑
j=1

µjαj

}
p∏

j=1

{
1

(1− σjαj it)(1 + σjαj it)

∞∏
n=1

n+ 1

n+ 1 + σjαj it

n+ 1

n+ 1− σjαj it

}

which gives rise to the desired result. 2

In the expression of the characteristic function of W in (3) in Theorem 1, we may identify the following:

• the expression
p∏

j=1

n+ 1

n+ 1− itσjαj

corresponds to the characteristic function of the sum of independent Exponential distributions multiplied by
σjαj with parameters n+ 1, which corresponds to a Generalized Integer Gamma (GIG) distribution [4],

• the expression
p∏

j=1

n+ 1

n+ 1 + itσjαj

is the characteristic function of the sum of independent Exponential distributions multiplied by −σjαj with
parameters n+ 1, which corresponds to a negative GIG distribution,

• thus expression (
p∏

j=1

n+ 1

n+ 1 + itσjαj

)(
p∏

j=1

n+ 1

n+ 1− itσjαj

)
is the characteristic function of a DGIG distribution,

• finally, from the expression of the characteristic function of W in (3) we may say that the exact distribution
of W may be represented as a shifted infinite sum of independent DGIG distributions.

The result provided by Theorem 1 provides an interesting insight about the exact distribution of W however is not
useful in practice due to the infinite product in expression (3). We intend to overcome this problem by developing
near-approximations for the distribution of W . In order to develop these approximations we have to consider a
different representation of the exact characteristic function of W which is given in the following theorem.

Theorem 2
Let X1, . . . , Xp be p independent logistic random variables, with parameters µj ∈ R and σj ∈ R+. Then, for
δ ∈ N\{1} (N denotes the set of positive integers numbers), the characteristic function of W =

∑p
j=1 αjXj with

αj ∈ R may be written as
ΦW (t) = ΦW1(t)× ΦW2(t) (5)

with

ΦW1(t) =

{
p∏

j=1

δ−2∏
k=0

(
1 + k

σjαj

)(
1 + k

σjαj
− it

)−1
}{

p∏
j=1

δ−2∏
k=0

(
1 + k

σjαj

)(
1 + k

σjαj
+ it

)−1
}

(6)

and

ΦW2(t) = exp

{
it

p∑
j=1

µjαj

}
p∏

j=1

Γ(δ − σjαj it)

Γ(δ)

Γ(δ + itσjαj)

Γ(δ)
(7)
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Proof: If in the expression of the characteristic function of W in (2) we multiply and divide by Γ(δ), by
Γ(δ − σjαj it) and by Γ(δ + σjαj it), for some δ ∈ N, we obtain

ΦW (t) =

p∏
j=1

Γ(1 + δ − 1)

Γ(1)

Γ(1 + σjαj it)

Γ(1 + δ − 1 + σjαj it)

Γ(1 + δ − 1)

Γ(1)

Γ(1− σjαj it)

Γ(1 + δ − 1− σjαj it)

× exp

{
it

p∑
j=1

µjαj

}
p∏

j=1

Γ(δ − σjαj it)

Γ(δ)

Γ(δ − σjαj it)

Γ(δ)
.

Now using the equality [11, p. 8-9, expressions (6) and (7)]

Γ(z + δ − 1)

Γ(z)
=

δ−2∏
h=0

(z + h)

for z ∈ Z, the result provided by this theorem follows after some simplifications. 2

For a matter of simplicity, from now on, one will only consider the case αj > 0 for j = 1, . . . , p. However, the
general case can be addressed using the same procedure.

From Theorem 2 we may conclude that
W = W1 +W2 (8)

with W1 and W2 independent random variables and where W1 has a DGIG distribution and W2 has the
distribution of a shifted sum of independent random variables whose distribution corresponds to the difference
of two independent LogGamma random variables or equivalently the distribution of a shifted sum of independent
generalized logistic random variables, according to the definition provided in [17]. Addressing now with more
detail the distribution of W1; if some of the positive or negative Exponential distributions in (6) have the same
parameter we can sum them, obtaining in this way Gamma distributions, so that equation (6) can be written as

ΦW1(t) =


ℓ+∏
j=1

(λ+
j )

r+j (λ+
j − it)−r+j




ℓ−∏
j=1

(λ−
j )

r−j × (λ−
j + it)−r−j

 (9)

where r+ = (r+1 , . . . , r
+
ℓ+
) and λ+ = (λ+

1 , . . . , λ
+
ℓ+
), are respectively the shape and the rate parameters

corresponding to the positive Exponential distributions, and r− = (r−1 , . . . , r
−
ℓ−
) and λ− = (λ−

1 , . . . , λ
−
ℓ−
) are

respectively the shape and the rate parameters corresponding to the negative Exponential distributions, and where
ℓ+ is the number of positive Exponential distributions with different rate parameters and ℓ− is the number of
negative Exponential distributions with different rate parameters. Clearly, in this case, we have ℓ+ = ℓ−. As already
referred, the exact distribution of W1 is a DGIG distribution which using the notation in Appendix 1 of [13] may
be denoted by ,

DGIG

(
r+, r−,λ+,λ−, ℓ+, ℓ−

)
. (10)

In the next section we will show how it is possible to derive near-exact approximations using the result in Theorem
2 .

3. Near-exact distributions for W

The idea behind the development of near-exact approximations is to approximate just a ’part’ of the characteristic
function of W , in the present work ΦW2 in (7), by another characteristic function in such way that the resulting
characteristic function corresponds to a known and manageable distribution. Similar to [13] we will consider the
two following approaches.
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First near-exact approximation In the first approach we will approach the distribution of W = W1 +W2 by
the distribution of W1 + E(W2), which is the distribution of W1 with a shift. It is easy to show that E(W2) =∑p

j=1 µjαj , therefore the approach is completely defined, and one will have as an approximating distribution of
the distribution of W a shifted DGIG distribution. The result is established in the following theorem.

Theorem 3
Let X1, . . . , Xp be p independent logistic random variables, with parameters µj ∈ R and σj ∈ R+. If we replace
W2 in (8) by E(W2) =

∑p
j=1 µjαj we obtain as near-exact distribution for W =

∑p
j=1 αjXj , with αj ∈ R+,

j = 1, . . . , p, a shifted DGIG distribution which, considering the notation in [13], may be represented as

SDGIG
(
r+, r−,λ+,λ−, ℓ+, ℓ−,

p∑
j=1

µjαj

)
,

where r+, r−, λ+, and λ−, ℓ+ and ℓ− are the ones in expression (9) and E(W2) =
∑p

j=1 µjαj is the shift
parameter.

Please see Appendix A, for the expression of the probability density function of the SDGIG distribution which
is used to build the densities in Figure 1.

Second near-exact approximation To develop the second near-exact distribution we approximate the distribution of
W2 in (7) with a shifted Gamma distribution denoted by W ⋆

2 ∼ SGamma(ρ, λ, θ), where ρ is the shape parameter,
λ is the rate parameter and θ is the shift parameter, and whose characteristic function is

ΦW⋆
2
(t) =

(
λ

λ− it

)ρ

exp{itθ} . (11)

The parameters ρ, λ, and θ are determined by solving the system of equations

∂jΦW⋆
2
(t)

∂tj

∣∣∣∣
t=0

=
∂jΦW2(t)

∂tj

∣∣∣∣
t=0

, j = 1, 2, 4 . (12)

The following theorem holds.

Theorem 4
Let X1, . . . , Xp be p independent logistic random variables, with parameters µj ∈ R and σj ∈ R+. If we use
as an asymptotic approximation of ΦW2 in (7) the characteristic function ΦW⋆

2
in (11), we obtain as near-exact

distribution for W =
∑p

j=1 αjXj with and αj ∈ R+ the distribution of

W1 +W ⋆
2

with W1 distributed as in (10) and W ⋆
2 ∼ SGamma(ρ, λ, θ), where ρ, λ, and θ are given as solutions of the system

in (12).

In Appendix A we present the expression of the cumulative distribution function of W1 +W ⋆
2 . Please see also

[13] for more details.

Remark: We could have also considered a mixture of shifted Gamma distributions to approximate the
distribution of W2 instead of a single shifted Gamma distribution (11). This would give rise to even more accurate
approximations. However, these approximations would be more difficult to implement and more time consuming
in computational terms. For these reasons we have decided to leave this approach out of the present work.

4. Measuring the accuracy and computational performance of the approximations

All the calculus in this section and also the implementation of the approximations developed in the previous section
were made in the software Mathematica 10.0. We should emphasize that these approximations are only possible
due to the strong connection between the theoretical results and the computational power available today.
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To illustrate the properties and qualities of these approximations one will consider the following scenarios.

—Scenario I: µI = (1, 2), σI = (5, 6), and αI = {2, 3};
—Scenario II: µII = (−2,−1, 3), σII = (1, 5, 3), and αII = (1, 2, 3);
—Scenario III: µIII = (−10,−1, 1, 3), σIII = (1, 5, 3, 2), and αIII = (10, 20, 30, 40).

In Figure 1 we present: i) the smooth empirical density determined from a simulation of 5 000 000 values of
W (solid line), ii) the probability densities functions of the near-exact approximations given in Theorem 3 (see
Appendix A for details) for δ = 4 (dotted line), 10 (dashed line) and 40 (Dot-dashed line).

Scenario I Scenario II

Scenario III

Figure 1. Plots of the smooth empirical distribution of W (solid line) and of the near-exact approximations in Theorem 3,
which density functions are given in Appendix A, for δ = 4 (dotted line), 10 (dashed line) and 40 (Dot-dashed line). In these
plots f(.) stands for the density functions and y is the running value.

We see from Figure 1 that, for the near-exact approximations developed in Theorem 3 and for values of δ = 40
there is a fairly reasonable adjustment between the exact and approximating distribution. Clearly, a more perfect fit
can be reached by considering higher values of δ.

To access the precision of the approximations we use a measure of proximity between characteristic functions
which is also a measure of proximity between cumulative distribution functions. The measure is defined as,

∆ =
1

2π

∫ ∞

−∞

∣∣∣∣ΦW (t)− Φapp(t)

t

∣∣∣∣ dt , (13)

where ΦW represents the exact characteristic function of W and Φapp represents an approximate characteristic
function for ΦW . This measure has already been used in several related studies, for further details please see
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[12, 13] . In Table 1, we computed the values of the measure ∆ between the exact characteristic function of W in
(2) and the approximating characteristic function corresponding to the distribution in Theorem 3 which is given by

ΦW1(t)× exp {itE(W2)} = ΦW1(t)× exp

{
it

p∑
j=1

µjαj

}

with ΦW1 in (6). In Table 2 we considered the same exact characteristic function of W and the approximating
characteristic function corresponding to the distribution in Theorem 4 and which is given by

ΦW1(t)× ΦW⋆
2
(t)

with ΦW1 in (6) and ΦW⋆
2

in (11) .

Table 1. Values of ∆ for the first type of near-exact approximations given by Theorem 3

δ Scenario I Scenario II Scenario III
4 3.9× 10−2 3.8× 10−2 3.5× 10−2

10 1.3× 10−2 1.3× 10−2 1.2× 10−2

16 8.0× 10−3 7.7× 10−3 7.3× 10−3

20 6.3× 10−3 6.1× 10−3 5.8× 10−3

30 4.1× 10−3 3.9× 10−3 3.8× 10−3

40 3.1× 10−3 3.0× 10−3 2.8× 10−3

50 2.5× 10−3 2.4× 10−3 2.2× 10−3

100 1.2× 10−3 1.2× 10−3 1.1× 10−3

500 2.4× 10−4 2.3× 10−4 2.2× 10−4

Table 2. Values of ∆ for the second type of near-exact approximations given by Theorem 4

δ Scenario I Scenario II Scenario III
4 6.3× 10−4 4.9× 10−4 5.1× 10−4

10 3.5× 10−5 2.7× 10−5 2.9× 10−5

16 8.1× 10−6 6.2× 10−6 6.9× 10−6

20 4.1× 10−6 3.1× 10−6 3.5× 10−6

30 1.2× 10−6 8.9× 10−7 1.0× 10−6

40 4.9× 10−7 3.7× 10−7 4.2× 10−7

50 2.7× 10−7 1.9× 10−7 2.1× 10−7

100 3.1× 10−8 2.3× 10−8 2.6× 10−8

500 2.4× 10−10 1.9× 10−10 3.5× 10−9

From Tables 1 and 2 we may see that the second near-exact approximation, corresponding to the result
in Theorem 4, tends to give smaller values of the measure ∆ than the first near-exact approximation. Both
approximations improve their precision when δ increases. Thus, the parameter δ can be used to control the quality of
these approximations. To study the efficiency of these approximations in computational terms we have determined
the empirical 0.90 and 0.95 quantiles from a simulated sample of size 5 000 000 and evaluated the cumulative
distribution functions corresponding to the first and second near-exact approximations. We present, in Tables 3
and 4, the results and also the computing time in seconds for the approximating values of P (W ≤ q) obtained
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using the first and second type of near-exact approximations given in Theorems 3 and 4 and denoted in the tables,
respectively, by F̃1,q and F̃2,q.

From Tables 3 and 4 we may observe, in the scenarios considered, that i) the second near-exact approximation,
although more accurate, it can be quite time consuming, therefore we suggest the use of small values of δ for this
approximation, ii) the first near-exact approximation is quite fast but not so accurate, iii) in both approximations the
computing time increases with the value of δ and with the number of variables, iv) finally, for practical purposes,
we suggest the use of the second near-exact approximation in cases where high accuracy is required and the first
near-exact approximation for cases where it is preferable to choose speed rather than precision. In Table 4 we only
considered values δ ≤ 10 because, for bigger values of δ, the computing time starts to be very high and thus the
approximation is of reduced interest in practical terms.

Table 3. Computing times, in seconds, for the approximating values of P (W ≤ q) obtained using the first type of near-exact
approximations given by Theorem 3 where q is the 0.90 or 0.95 empirical quantile

Scenario I Scenario II Scenario III
δ F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time
4 0.92 0.00 0.96 0.02 0.92 0.02 0.96 0.00 0.92 0.03 0.96 0.02
5 0.92 0.02 0.96 0.00 0.92 0.02 0.96 0.02 0.92 0.03 0.96 0.05
6 0.91 0.02 0.96 0.02 0.91 0.03 0.96 0.02 0.91 0.03 0.96 0.05
7 0.91 0.02 0.96 0.02 0.91 0.03 0.96 0.03 0.91 0.06 0.96 0.06
8 0.91 0.02 0.96 0.02 0.91 0.05 0.96 0.03 0.91 0.08 0.96 0.08
9 0.91 0.03 0.96 0.03 0.91 0.06 0.96 0.06 0.91 0.14 0.96 0.14

10 0.91 0.04 0.96 0.03 0.91 0.08 0.96 0.06 0.91 0.13 0.96 0.14
20 0.90 0.14 0.95 0.14 0.90 0.34 0.95 0.34 0.90 0.67 0.95 0.67
30 0.90 0.34 0.95 0.34 0.90 0.84 0.95 0.86 0.90 1.67 0.95 1.67
40 0.90 0.66 0.95 0.66 0.90 1.64 0.95 1.63 0.90 3.28 0.95 3.30
50 0.90 1.06 0.95 1.06 0.90 2.72 0.95 2.72 0.90 5.53 0.95 5.55
60 0.90 1.59 0.95 1.59 0.90 4.16 0.95 4.14 0.90 8.53 0.95 8.55
70 0.90 2.25 0.95 2.27 0.90 6.00 0.95 6.08 0.90 12.7 0.95 18.1
80 0.90 3.08 0.95 3.06 0.90 8.30 0.95 8.33 0.90 25.8 0.95 21.2
90 0.90 3.98 0.95 4.01 0.90 13.4 0.95 13.4 0.90 29.4 0.95 29.3

100 0.90 5.17 0.95 5.17 0.90 17.5 0.95 17.3 0.90 37.4 0.95 37.3

Table 4. Computing times, in seconds, for the approximating values of P (W ≤ q) obtained using the second type of near-
exact approximations given by Theorem 4 where q is the 0.90 or 0.95 empirical quantile

Scenario I Scenario II Scenario III
δ F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time
4 0.90 0.91 0.95 1.06 0.90 2.30 0.95 2.44 0.90 4.81 0.95 5.27
5 0.90 2.22 0.95 2.45 0.90 5.52 0.95 6.00 0.90 11.1 0.95 11.9
6 0.90 4.52 0.95 5.08 0.90 11.1 0.95 12.3 0.90 16.9 0.95 18.6
7 0.90 8.27 0.95 9.36 0.90 20.6 0.95 23.1 0.90 30.1 0.95 36.6
8 0.90 13.8 0.95 15.6 0.90 35.2 0.95 40.1 0.90 52.0 0.95 57.7
9 0.90 22.4 0.95 25.5 0.90 79.0 0.95 66.9 0.90 101.1 0.95 98.3

10 0.90 38.8 0.95 55.5 0.90 123.2 0.95 114.0 0.90 177.7 0.95 189.3
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5. Application of this procedure to the linear combination of independent generalized logistic distributions

The near-exact approximations developed in Section 3 were obtained by approximating ΦW2 in (7). The expression
exp

{
it
∑p

j=1 µjαj

}
in (7) corresponds to a shift in the distribution with characteristic function given by

p∏
j=1

Γ(δ − σjαj it)

Γ(δ)

Γ(δ + itσjαj)

Γ(δ)

which, according to the definition in [17], is a linear combination of independent generalized logistic random
variables. Thus, to derive near-exact approximations for the linear combination of independent logistic random
variables we have approximated a shifted linear combination of independent generalized logistic random variables
by a shifted Gamma distribution. Thus, it seems appropriate to consider the same procedure developed in Section
3 to develop near-exact approximations for the linear combination of generalized logistic distributions. We will
briefly explain the procedure since it is very similar to the one developed in Section 3. Let us consider Y1, . . . , Yp

independent generalized logistic random variables, with parameters pj , qj ∈ R+ that is

Yj
ind.∼ GLogist(pj , qj) (14)

for j = 1, . . . , p. In [17] the authors give the moment generating function for Yj from which it is possible to derive
easily the corresponding characteristic function of Yj . Thus, the characteristic function of Yj is given by

ΦYj (t) =
Γ(pj − it)Γ(qj + it)

Γ(pj)Γ(qj)
, t ∈ R .

Therefore, the characteristic function of the linear combination of p independent logistic random variables,
Z =

∑p
j=1 αjYj , for αj ∈ R, is defined as

ΦZ(t) =

p∏
j=1

Γ(pj − iαjt)Γ(qj + iαjt)

Γ(pj)Γ(qj)
t ∈ R. (15)

In order to develop near-exact approximations for the distribution of Z we may represent the exact characteristic
function of Z as in the following theorem.

Theorem 5
Let Y1, . . . , Yp be p independent generalized logistic random variables, with parameters pj , qj ∈ R+. Then, for
δ ∈ N, the characteristic function of Z =

∑p
j=1 αjYj with αj ∈ R may be written as

ΦZ(t) = ΦZ1(t)× ΦZ2(t) (16)

with

ΦZ1(t) =

{
p∏

j=1

δ−1∏
k=0

(
pj + k

αj

)(
pj + k

αj
− it

)−1
}{

p∏
j=1

δ−1∏
k=0

(
qj + k

αj

)(
qj + k

αj
+ it

)−1
}

(17)

and

ΦZ2(t) =

p∏
j=1

Γ(pj + δ − αj it)

Γ(pj + δ)

Γ(qj + δ + αj it)

Γ(qj + δ)
(18)

Proof: The proof is similar to the one of Theorem 2. 2

Similar to what was referred for W1 in Section 3 but now for the distribution of Z1; if some of the positive or
negative Exponential distributions in (17) have the same parameter we can sum them, obtaining in this way Gamma
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distributions, so that

ΦZ1
(t) =


ℓ+∏
j=1

(λ+
j )

r+j (λ+
j − it)−r+j




ℓ−∏
j=1

(λ−
j )

r−j × (λ−
j + it)−r−j

 (19)

where, again, r+ = (r+1 , . . . , r
+
ℓ+
) and λ+ = (λ+

1 , . . . , λ
+
ℓ+
), are respectively the shape and rate parameters

corresponding to the positive Exponential distributions, and r− = (r−1 , . . . , r
−
ℓ−
) and λ− = (λ−

1 , . . . , λ
−
ℓ−
) are

respectively the shape and rate parameters corresponding to the negative Exponential distributions, and where ℓ+

is the number of positive Exponential distributions with different rate parameters and ℓ− is the number of negative
Exponential distributions with different rate parameters. In this case ℓ+ may not be equal to ℓ−.

Very succinctly, noticing that Z = Z1 + Z2 and following a similar procedure to the one used in Section 3 and
stated in Theorems 3 and 4, we will consider the following approximations:

1. in the first approach for the distribution of Z = Z1 + Z2 we consider the distribution of Z1 + E(Z2). The
resulting distribution is a shifted DGIG distribution

SDGIG

(
r+, r−,λ+,λ−, ℓ+, ℓ−, E(Z2)

)
with corresponding characteristic function given by

ΦZ1(t)× exp {itE(Z2)} . (20)

2. For the second near-exact distribution it may happen that the solution of a similar system to the one in (12)
may provide a negative value for λ. In this case we will consider a negative shifted Gamma distribution for
Z⋆
2 to approximate the distribution of Z2. One should note that, in this case, the resulting approximating

distribution of Z1 + Z⋆
2 was also studied in [13]. Thus, the second near-exact approximation will be obtained

approximating the distribution of Z2 in (18) with a positive or negative shifted Gamma distribution. For the
positive case the characteristic function is given by

ΦZ⋆
2
(t) =

(
λ

λ− it

)ρ

exp{itθ} .

and for the negative case by ΦZ⋆
2
(−t). This procedure was also adopted in [13] for the linear combination

of independent Gumbel random variables. The parameters ρ, λ, and θ are determined by solving the system
of equations in (12), but now replacing ΦW⋆

2
(t) by ΦZ⋆

2
(t) and ΦW2(t) by ΦZ2(t). Thus, the distribution of

Z =
∑p

j=1 αjYj will be approximated by the distribution of

Z1 + Z⋆
2 or by Z1 − Z⋆

2

with characteristic functions given, respectively, by

ΦZ1(t)× ΦZ⋆
2
(t) or ΦZ1(t)× ΦZ⋆

2
(−t) . (21)

Details on the distribution of Z1 + Z⋆
2 and of Z1 − Z⋆

2 can be found in Appendix 1 of [13]

To illustrate the quality of these approximations one will also use the measure ∆ in (13). In this measure one
will consider the exact characteristic function of Z in (15) and the characteristic function corresponding to the first
near-exact approximation in (20) and to the one corresponding to the second near-exact approximation in (21). In
Tables 5–8 ahead we consider the following three scenarios:

—Scenario IV: pIV = (1, 2), qIV = (5, 6), and αIV = (2, 3);
—Scenario V: pV = (1, 2, 3), qV = (1, 5, 3), and αV = (4, 5, 6);
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—Scenario VI: pVI = (1, 1, 3, 10), qVI = (1, 5, 3, 2), and αVI = (10, 20, 30, 40).

In scenarios IV and V we considered for the distribution of Z⋆
2 a shifted Gamma distribution and in Scenario

VI we used a negative shifted gamma distribution for the approximating distribution. In Tables 5–8 we may
observe, for both approximations, the same kind of behaviour already described in Tables 1–4 for the near-exact
approximations developed in Section 3. The second near-exact approximation is again more precise but requires
more computing power and time.

Table 5. Values of ∆ for the first type of near-exact approximations

δ Scenario IV Scenario V Scenario VI
6 4.4× 10−2 3.7× 10−2 4.4× 10−2

10 2.8× 10−2 2.4× 10−2 2.9× 10−2

16 1.9× 10−2 1.5× 10−2 1.9× 10−2

20 1.5× 10−2 1.2× 10−2 1.6× 10−2

30 1.0× 10−2 8.5× 10−3 1.1× 10−2

40 7.9× 10−3 6.4× 10−3 8.2× 10−3

50 6.3× 10−3 5.2× 10−3 6.6× 10−3

100 3.2× 10−3 2.6× 10−3 3.3× 10−3

500 6.6× 10−4 5.2× 10−4 6.9× 10−4

Table 6. Values of ∆ for the second type of near-exact approximations

δ Scenario IV Scenario V Scenario VI
6 1.5× 10−4 1.8× 10−4 1.4× 10−4

10 5.7× 10−5 7.8× 10−5 5.2× 10−5

16 2.3× 10−5 3.4× 10−5 2.1× 10−5

20 1.5× 10−5 2.3× 10−5 1.4× 10−5

30 7.2× 10−6 1.1× 10−5 6.5× 10−6

40 4.2× 10−6 6.2× 10−6 3.8× 10−6

50 2.7× 10−6 4.0× 10−6 2.5× 10−6

100 7.2× 10−7 1.1× 10−6 6.5× 10−7

500 3.0× 10−8 4.4× 10−8 2.8× 10−8

Again, in this case we have only consider positive αj (j = 1, . . . , p) however the general case with αj ∈ R can
be addressed in the same manner. Further research must be done in order to analyse all the details of this second
near-exact approximation, for example it is important to find out in which cases should we use the positive or
the negative shifted Gamma distribution. Another issue is what moments should be matched? We have chosen to
match the first, second and fourth moments because when we tried to match the first three moments we found
out that the system in (12) had no solution, in the case of the linear combination of independent logistic random
variables. However, for the linear combination of independent generalized logistic distributions it is possible to
use the first three moments. For both near-exact approximations, when the number of variables and/or δ increases
the computing time also increases, this trend is more notorious for the second near-exact approximation. Final
remark, to emphasize that the approximations developed in this work are only possible due to the fundamental
combination of theory and computation techniques and can only be implemented, for practical purposes, because
of the computing power available today.
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Table 7. Computing times, in seconds, for the approximating values of P (W ≤ q) obtained using the first type of near-exact
approximations where q is the 0.90 or 0.95 empirical quantile

Scenario IV Scenario V Scenario VI
δ F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time
4 0.92 0.02 0.96 0.00 0.93 0.00 0.97 0.02 0.92 0.03 0.96 0.02
5 0.92 0.00 0.96 0.02 0.93 0.02 0.97 0.02 0.92 0.03 0.96 0.05
6 0.92 0.02 0.96 0.02 0.92 0.03 0.96 0.03 0.91 0.03 0.96 0.05
7 0.92 0.02 0.96 0.02 0.92 0.06 0.96 0.04 0.91 0.06 0.96 0.06
8 0.92 0.02 0.96 0.02 0.92 0.06 0.96 0.06 0.91 0.08 0.96 0.08
9 0.91 0.03 0.96 0.02 0.92 0.08 0.96 0.08 0.91 0.14 0.96 0.14

10 0.91 0.03 0.96 0.03 0.91 0.09 0.96 0.09 0.91 0.13 0.96 0.14
20 0.91 0.16 0.95 0.17 0.91 0.39 0.96 0.41 0.90 0.67 0.95 0.67
30 0.91 0.27 0.95 0.28 0.90 0.98 0.95 0.95 0.90 1.67 0.95 1.67
40 0.90 0.48 0.95 0.53 0.90 1.31 0.95 1.31 0.90 3.28 0.95 3.30
50 0.90 0.79 0.95 0.81 0.90 2.95 0.95 2.88 0.90 5.53 0.95 5.55
60 0.90 1.20 0.95 1.20 0.90 3.12 0.95 3.63 0.90 8.53 0.95 8.55
70 0.90 1.63 0.95 1.67 0.90 4.30 0.95 4.33 0.90 12.7 0.95 18.1
80 0.90 2.19 0.95 2.25 0.90 5.84 0.95 5.96 0.90 25.8 0.95 21.2
90 0.90 2.84 0.95 2.85 0.90 7.72 0.95 7.66 0.90 29.4 0.95 29.3

100 0.90 3.50 0.95 3.59 0.90 10.2 0.95 10.5 0.90 37.4 0.95 37.3

Table 8. Computing times, in seconds, for the approximating values of P (W ≤ q) obtained using the second type of near-
exact approximations where q is the 0.90 or 0.95 empirical quantile

Scenario IV Scenario V Scenario VI
δ F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time F̃1,q0.90 time F̃1,q0.95 time
4 0.90 1.25 0.95 1.31 0.90 6.42 0.95 6.73 0.90 7.48 0.95 6.14
5 0.90 2.52 0.95 2.61 0.90 10.5 0.95 11.3 0.90 10.8 0.95 9.78
6 0.90 4.05 0.95 4.28 0.90 15.9 0.95 16.8 0.90 15.8 0.95 11.2
7 0.90 6.22 0.95 6.56 0.90 26.7 0.95 29.5 0.90 22.5 0.95 24.4
8 0.90 9.61 0.95 10.2 0.90 41.8 0.95 50.6 0.90 31.9 0.95 31.1
9 0.90 14.3 0.95 16.4 0.90 68.3 0.95 79.2 0.90 46.3 0.95 54.4

10 0.90 22.1 0.95 26.3 0.90 100.4 0.95 116.0 0.90 78.0 0.95 77.3

6. Conclusions

In this work the exact distribution of the linear combination of independent logistic random variables was addressed
and two near-exact approximations were developed for this distribution. These two approximations are useful for
different purposes, the first for cases where speed of computation is important and the second for cases where
high precision is need. Numerical studies show that the parameter δ can be used to control the level of accuracy in
both approximations. In the process, near-exact approximations for the linear combination of generalized logistic
random variables were also developed. Further developments on these topics, may involve the development of
packages or computational modules that allow the generalized use of the results obtained in this work. It is still
intended in the future to obtain a new approach that may combine high precision with computational speed.
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Appendix A

The density function of the SDGIG distribution proposed in Theorem 3

The near-exact distribution for W =
∑p

j=1 αjXj , with αj ∈ R+, j = 1, . . . , p, proposed in Theorem 3, is a shifted
DGIG distribution [6] which, considering the notation in [13], may be represented as

SDGIG
(
r+, r−,λ+,λ−, ℓ+, ℓ−,

p∑
j=1

µjαj

)
,

where r+, r−, λ+, and λ−, ℓ+ and ℓ− are the ones in expression (9) and E(W2) =
∑p

j=1 µjαj is the shift
parameter. The density function of this distribution which was used to plot the near-exact approximating density
functions in Figure 1 is given by

f (y) =



ℓ+∑
j=1

r+j∑
k=1

k−1∑
i=0

pjki fYjki

(
y −

p∑
j=1

µjαj

)
, y −

∑p
j=1 µjαj ≥ 0,

ℓ−∑
j=1

r−j∑
k=1

k−1∑
i=0

p∗jki fY ∗
jki

(
−y +

p∑
j=1

µjαj

)
, y −

∑p
j=1 µjαj < 0,

where, for j=1, . . . , ℓ+; k=1, . . . , r+j ; i=0, . . . , k − 1,

pjki =
K1K2

(λ+
j )

k−i
cjk

ℓ−∑
ℓ=1

r−ℓ∑
h=1

dℓh
(k − 1)!

i!

(h+ i− 1)!

(λ+
j + λ−

ℓ )
h+i

(22)

and, for j = 1, . . . , ℓ−; k = 1, . . . , r−j ; i = 0, . . . , k − 1,

p∗jki =
K1K2

(λ−
j )

k−i
djk

ℓ+∑
ℓ=1

r+ℓ∑
h=1

cℓh
(k − 1)!

i!

(h+ i− 1)!

(λ+
j + λ−

ℓ )
h+i

, (23)

with

K1 =

ℓ+∏
j=1

(λ+
j )

r+j , K2 =

ℓ−∏
j=1

(λ−
j )

r−j ,

and cjk (j = 1, . . . , ℓ+; k = 1, . . . , r+j ) given by (2.9)–(2.11) in [6], with p replaced by ℓ+ and rj replaced by r+j
and djk (j=1, . . . , ℓ−; k=1, . . . , r−j ) defined in a similar manner, replacing ℓ+ by ℓ− and r+j by r−j , and where,
for y ≥ 0,

fYjki
(y) =

(λ+
j )

k−i

Γ(k − i)
yk−i−1e−λ+

j y ,

and

FYjki
(y) = 1−

k−i−1∑
t=0

(λ+
j )

t

t!
yt e−λ+

j y , (24)
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are respectively the density and distribution functions of Yjki ∼ Gamma(k − i, λ+
j ), while fY ∗

jki
( · ) and FY ∗

jki
( · )

are the density and distribution functions of Y ∗
jki ∼ Gamma(k − i, λ−

j ).
The weights pjki and p∗jki verify the relation

ℓ+∑
j=1

r+j∑
k=1

k−1∑
i=0

pjki +

ℓ−∑
j=1

r−j∑
k=1

k−1∑
i=0

p∗jki = 1 .

The corresponding cumulative distribution function may be obtained, with the correct choice of parameters, from
[6, 13].

The cumulative distribution function of W1 +W ⋆
2 defined in Theorem 4

The near-exact distribution for W =
∑p

j=1 αjXj with and αj ∈ R+ defined in Theorem 4 is given by the
distribution of

W1 +W ⋆
2

with W1 distributed as in (10) and W ⋆
2 ∼ SGamma(ρ, λ, θ), where ρ, λ, and θ are given as solutions of the system

in (12). The cumulative distribution function of W1 +W ⋆
2 may be represented as [13]

F (z) =



ℓ+∑
j=1

r+j∑
k=1

k−1∑
i=0

pjkiFG1
(z − θ; r⋆,λ⋆

1, 2)

+

ℓ−∑
j=1

r−j∑
k=1

k−1∑
i=0

p∗jki FW⋆
2 −Y ∗

jki
(z − θ) , z − θ ≥ 0,

ℓ−∑
j=1

r−j∑
k=1

k−1∑
i=0

p∗jki FW⋆
2 −Y ∗

jki
(z − θ) , z − θ < 0.

(25)

with r⋆ = (k − i, ρ), λ⋆
1 = (λ+

j , λ) and G1 ∼ GNIG(r⋆,λ⋆
1, 2) (where GNIG stands for the Generalized Near-

Integer Gamma distribution of depth 2 [5]). The weights pjki and p∗jki are the same as in (22) and (23), and
Y ∗
jki ∼ Gamma(k − i, λ−

j ) . Concerning the distribution of W ⋆
2 − Y ∗

jki, corresponds to the difference between two
independent Gamma random variables, one with a non-integer shape parameter and the other with an integer shape
parameter. In detail, if one considers Y1 ∼ Gamma(r, λ1) and Y2 ∼ Gamma(ρ, λ) where ρ, λ1 and λ are positive
real numbers and r is a positive integer, the distribution function of Y2 − Y1 is given by

FY2−Y1
(z) =



1−Γ(ρ, λz)

Γ(ρ)
+

λρ

Γ(ρ)
eλ1z

{
r−1∑
t=0

λr
1

t!

t∑
k=0

(
t

k

)

(−z)k(λ+λ1)
−t−ρ+kΓ(t+ρ−k, (λ+λ1)z)

}
, z ≥ 0 ,

λρ

Γ(ρ)
eλ1z

{
r−1∑
t=0

λr
1

t!

t∑
k=0

(
t

k

)
(−z)k

(λ+ λ1)
−t−ρ+kΓ(t+ ρ− k)

}
, z< 0.

For more details please see the Appendix in [13].
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