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Limit distributions for asymptotically linear statistics with spherical error
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Abstract The aim of this work is to obtain general results for the limit distributions of asymptotically linear statistics
when the error is spherical, increasing non-centrality. These results apply directly to homoscedastic normal error thus to high
precision measurements. We present a numerical example on cylinder volume to illustrate the usefulness of our approach.
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1. Introduction

Let r(uuu) be the spectral radius of the hessian matrix g(uuu) of g(uuu), then we take

ρd(uuu) = Sup{r(vvv) : ∥vvv − uuu∥ ≤ d}. (1)

If, whatever d > 0,

Sup

{
ρd(uuu)

∥g(uuu)∥
; ∥uuu∥ ≥ ℓ

}
−→
ℓ→∞

0, (2)

with g(.) the gradient of g(.), the function g(.) will be asymptotically linear, see [6], [7] and [8].
In this paper we intend to obtain limit distributions for statistics

Y =
g(aaa+ eee)− g(aaa)

∥g(aaa)∥
, (3)

where g(.) is asymptotically linear and the error eee has spherical density, when ∥aaa∥ → ∞.
Numerical methods may be used to obtain a lower bound for ∥aaa∥ such that the distribution of Y is sufficiently

near to the limit distribution for this to be used. Namely, this approach was applied in [6] and [8] leading to the
establishing of applications domains for the limit distributions. We point out that those domains are defined from
lower bounds for ∥aaa∥ and not from minimums sample sizes. Besides this, considering an observation X = µ+ e

with mean value µ and variance σ2 will have non-centrality µ2

σ2 which decreases with σ2. In this way high non-
centrality will be associated to great precision. We thus may associate the application of these limit distributions to
high precision observations.
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In the next section we will present the required results on spherical densities. This will be followed by the
presentation of the key result that the limit density will be the marginal density of eee whose components have
identical densities. The case in which eee is normal is singled out in Section 4. Namely, we will show how to
use additional information to overcome eee which will have variance-covariance matrix σ2IIIk with unknown σ2. In
Section 5 we apply our results to a numerical study considering the cylinder volume. Finally we present some
concluding remarks.

2. Spherical densities

Spherical densities, f(.), are such that
f(xxx) = h(∥xxx∥),

for any nonnegative function h(.), see e. g. [1], [3] and [9]. So, we can establish the following proposition.

Proposition 1
If f(xxx) is spherical

1. is invariant for orthogonal transformations;
2. its marginal densities, f̈(.), are identical;
3. if it has a dispersion parameter γ so that

f(xxx|γ) = 1

γk
f(xxx),

where f(xxx) = f(xxx|1), and aaa′XXX will have density f̈(.| ∥aaa∥γ), whenever XXX has density f(.|γ);
4. the marginal densities and f(.|γ) are symmetrical.

Proof
Let XXX have spherical density f(.). Then, with PPP orthogonal,

XXX• = PPPXXX

will have density
f(xxx•) = h(∥xxx•∥),

since the jacobian of this transformation is equal to one, so 1. is established.
Let PPP i be the orthogonal matrix whose first row has all null elements, except the i-th which is equal to 1,

i = 1, ..., k. Then XXX•
i = PPP iXXX will have the same density than XXX and its first marginal density will be the i-th

marginal of f(.), i = 1, ..., k. Thus all marginal of f(.) will be identical and 2. is established.
Next, let P (aaa) be the orthogonal matrix whose first row vector is 1

∥aaa∥aaa. Thus aaa′eee will be the product by ∥aaa∥ of

the first component of P (aaa)eee. This first component has density f̈(.|γ), the marginal density of f(.|γ). Since γ is a
dispersion parameter, the density of aaa′XXX will be f̈(.| ∥aaa∥γ).

The last part of the thesis follows from −IIIk being an orthogonal matrix.

3. Limit distributions

We will take the statistics
Y =

g(aaa+ eee)− g(aaa)

∥g(aaa)∥
,

and

Z =
(g(aaa))′eee

∥g(aaa)∥
,
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whatever the random vector eee. With FL the distribution of L, we have

FY −→u
∥aaa∥→∞

FZ , (4)

where −→u stands for uniform convergence, whenever FZ does not depend on

bbb =
1

∥g(aaa)∥
g(aaa)

(as long as it has norm 1), see [6].
As we saw in the previous section, if eee has spherical density, the density fZ of Z will be f̈(.), which corresponds

to the marginal density of f . If there is a dispersion parameter the density will be f̈(.|γ).
We thus establish the following theorem.

Theorem 1
If g(.) is asymptotically linear and eee has spherical density the limit density of Y , when ∥aaa∥ → ∞, will be the
density of the components of eee.

4. Normal case

Let us put KKK ∼ N(ηηη, σ2VVV ) to indicate that KKK is normal with mean vector ηηη and variance-covariance matrix σ2VVV .
If eee ∼ N(000, σ2IIIk), its components will have distribution N(0, σ2) so, from Theorem 1, we can conclude that,
N(0, σ2) will also be the limit distribution of Y , whatever the asymptotically linear function g(.).

Let us consider an example. We will take aaa = µµµ, assuming thatXXX = µµµ+ eee ∼ N(µµµ, σ2IIIk) and the asymptotically
linear function

g(uuu) = ∥uuu∥2.

We obtain {
g(uuu) = 2uuu
g(uuu) = 2IIIk

,

and, according to the Theorem 1, the limit density of

Y =
∥µµµ+ eee∥2 − ∥µµµ∥2

2∥µµµ∥
, (5)

when ∥µµµ∥ → ∞, will be the density of the components of eee. So, for large values of ∥µµµ∥,

Y =
∥XXX∥2 − ∥µµµ∥2

2∥µµµ∥
∼o N(0, σ2), (6)

where ∼o indicates ”approximately distributed”.
With y a value taken by Y and ∥xxx∥2 the value taken by ∥XXX∥2 we have an equation on ∥µµµ∥ where the solution is

∥µ̃µµ∥ = −y +
√

y2 + ∥xxx∥2. (7)

If we have additional information, for instance that σ2 = σ̈2, we can generate samples

Ÿ1, ..., Ÿn iid ∼ N(0, σ̈2),

where iid indicates independent and identical distributed, and from these obtain the samples

∥µ̃µµ∥1, ..., ∥µ̃µµ∥n.
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According to the reverse Glivenko-Cantelli theorem, in whatever interval [q, 1− q], with q ≤ p ≤ 1− p,

Sup{|un,p − up|} −→
n→∞

0,

where un,p [up] is the p-th empirical [exact] quantile for ∥µµµ∥, see [4] and [5].
Another interesting situation is when, instead of additional information, we have XXX independent of S, where S

is the product by σ2 of a central chi-square with r degrees of freedom, S ∼ σ2χ2
r . Then, see [4], with s the value

taken by S, the q-th quantile for the distribution induced by s/χ2
r for σ2 is

σ2
q =

s

χr,1−q
, (8)

where χr,1−q denote the (1− q)-th quantile for the distribution of χ2
r .

Moreover, we can replace the expression for ∥µ̃µµ∥ by

δ̃1/2 = −y

√
w

s
+

√
y2

w

s
+ ∥xxx∥2w

s

=

√
w

s

(
−y +

√
y2 + ∥xxx∥2

)
, (9)

where w is a value taken by a χ2
r and δ̃ will be a simulated value for the non-centrality parameter

δ =
∥µµµ∥2

σ2
.

The q-th quantile of δ̃1/2 will be given by

δ̃1/2q =

√(w
s

)
q

(
−y +

√
y2 + ∥xxx∥2

)
, (10)

where
(

s
w

)
q

denotes the q-th quantile for σ2. So we can conclude that δ̃1/2q decreases with s
w .

We can also use the reverse Glivenko-Cantelli theorem to obtain confidence intervals for δ1/2 and δ. These
intervals can be used to test, through duality, the hypothesis

H0 : δ = δ0.

Namely we may be interested in certain applications for STATIS methodology, see e.g. [10], on testing H0 against

H1 : δ > δ0

since only when H0 is rejected we can be confident in certain model formulation applying.

5. Numerical example: Cylinder volume

In this section we will apply the proposed methodology to the cylinder volume, see [2] and [8]. Now, the
asymptotically linear function involved is

g(uuu) =
π

4
u2
1u2,

that corresponds to the volume of a cylinder with diameter u1 and height u2. So we have

g(uuu) =
π

4

[
2u1u2

u2
1

]
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and

g(uuu) =
π

2

[
u2 u1

u1 0

]
.

Considering eee ∼ N(000, σ2III2) we obtain

XXX = µµµ+ eee ∼ N(µµµ, σ2III2)

and, for large values of ∥µµµ∥,

Y =
π
4X

2
1X2 − π

4µ
2
1µ2

π
4

√
4µ2

1µ
2
2 + µ4

1

=
X2

1X2 − µ2
1µ2√

4µ2
1µ

2
2 + µ4

1

∼o N(0, σ2), (11)

where X1, X2 are the components of XXX and µ1, µ2 the components of µµµ.
We will consider the data used in Nunes et al. [8]. In this research the authors generated samples with size

30 using R software, assuming the diameters and heights to be normal distributed with mean values 2 and 4,
respectively, and standard deviation 0.01. The results are presented in Tables 1 and 2. The corresponding volumes
are presented in Table 3 and the values of Y in Table 4.

Table 1. Values of diameters

1.998453 1.988018 2.009190 2.011452 2.007588 2.015884
2.000025 1.985956 2.007079 2.001321 2.003486 1.989625
1.996678 2.008400 1.990175 1.994048 2.008467 1.999402
1.997339 1.995141 1.990827 1.997725 1.996254 2.001284
2.016228 2.008911 2.009408 1.996999 2.015621 2.022904

Table 2. Values of heights

3.993445 4.002777 4.007956 3.992823 3.990726 3.998639
3.985255 3.997894 4.002110 4.009253 3.987402 3.989987
3.979206 4.015282 3.988615 4.010963 3.997377 3.994258
3.991256 3.993969 3.996335 3.996736 4.018685 3.996539
3.999213 3.987138 3.982822 3.982265 3.996033 3.998660

Table 3. Cylinders volumes

12.52638 12.42487 12.70734 12.68789 12.63255 12.76243
12.52036 12.38398 12.66216 12.61209 12.57050 12.40520
12.45956 12.72057 12.40780 12.52592 12.66469 12.54082
12.50555 12.48653 12.43995 12.52757 12.57782 12.57162
12.76861 12.63783 12.63040 12.47314 12.75078 12.85154

Table 4. Values of Y

-0.003088 -0.010924 0.010883 0.009381 0.005109 0.015136
-0.003552 -0.014080 0.007395 0.003529 0.000319 -0.012443
-0.008247 0.011904 -0.012242 -0.003123 0.007590 -0.001972
-0.004695 -0.006164 -0.009759 -0.002996 0.000884 0.000406
0.015613 0.005517 0.004943 -0.007198 0.014237 0.022015
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The p-value of the Kolmogorov-Smirnov test for normality, considering null mean value and variance σ2 = 0.012,
was 0.9052. So we don’t reject the hypothesis of normality of Y for the usual levels of significance.

Taking the value y = 0.022015 of Y (randomly selected) we obtained

∥µ̃µµ∥ = 4.925884.

In this case, S ∼ χ2
58 and s = 0.005.

The quantiles of δ̃1/2, δ̃1/2q , are presented in Table 5.

Table 5. Quantiles of δ̃1/2

Values of q 0.9 0.95 0.99
δ̃
1/2
q 645.8365 610.4035 591.7619

The high values obtained for these quantiles are due to the fact that we worked with small variance. So we can
conclude that we are in a non-central situation in which the limit distributions, obtained through the asymptotic
linearity, apply.

6. Final Remarks

With this research it was shown that the general results of the limit distributions apply when the error has spherical
density, namely if it is normal. The numerical application on cylinder volume illustrates the usefulness of our
approach. Moreover the approach presented for the normal case can be applied to Wishart matrices. Namely, we
intend to publish results on limit distributions for these matrices, their trace and determinant. Others applications
may be found in [2], [6] and [8].
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