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Abstract Many-multi parameter distributions have limit cases containing fewer parameters. This paper demonstrates that,
when fitting distributions to data realized from a distribution resembling one of these limit cases, the parameter estimates
obtained vary wildly between estimators. Special attention is paid to the modelling of financial log-returns. Two classes
of estimators are used in order to illustrate the behaviour of the parameter estimates; the maximum likelihood estimator
and the empirical characteristic function estimator. This paper discusses numerical problems associated with the maximum
likelihood estimator for certain distributions and proposes a solution using Fourier inversion. In addition to simulation results,
parameter estimates are obtained by fitting the normal inverse Gaussian and Meixner distributions to smooth bootstrap
samples from the log-returns of the Dow Jones Industrial Average index are included as examples.
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1. Introduction and motivation

Multi-parameter distributions are used to model a variety of phenomena. When estimating the parameters of these
distributions, the aim is often to accurately model the density function of the underlying distribution from which the
data are realized (with little or no regard for the individual parameter estimates themselves). Consider, for instance,
the use of a multi-parameter distribution in the modelling of financial log-returns in an option pricing model. The
resulting option prices are functions of the density, but not of the individual parameter estimates.

Many multi-parameter distributions possess limit cases containing fewer parameters. The aim of this paper is to
numerically demonstrate the instability of the resulting parameter estimates when a multi-parameter distribution is
fitted to a distribution resembling one of these limit cases. In these cases, the instability in the parameter estimates
can, at least partially, be explained by noting that a distribution containing redundant parameters is fitted to the
data.

Two different estimators are used in order to illustrate the instability of the parameter estimates: the maximum
likelihood estimator (MLE) and the empirical characteristic function estimator (ECFE). Many multi-parameter
distributions have complicated densities. In some cases, the calculation of these densities lead to numerical
problems. These problems and their effects on the calculation of the MLE are discussed in this paper. The ECFE
is a popular alternative to the MLE, especially in cases where the characteristic function of the distribution has a
form that is simpler to evaluate numerically than is the case for the density function.

The properties of the MLE are well-known and are available in many standard texts on asymptotic theory. For
example, [4] discusses the strong consistency of MLEs together with the corresponding assumptions in Chapter
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4. The same text examines the asymptotic normality and asymptotic efficiency of MLEs in Chapters 18 and 20
respectively. Other excellent references on the properties of MLEs include Chapters 5 and 7 of [13] as well as
Chapter 7 of [9].

The second estimation method, the ECFE, minimizes a distance measure between the characteristic function
and its empirical counterpart. Minimum distance estimators, of which the ECFE is a special case, were introduced
in a general setting in [15]. [11] proposed the use of the ECFE for estimating the parameters of the stable
law. Thereafter, the asymptotic properties of this estimator for both the single and multi-parameter cases were
considered in [8]. In the mentioned paper, the author showed that, under certain regularity conditions, the estimator
is consistent and asymptotically normally distributed. The efficiency of the ECFE relative to the MLE is also
considered in this paper. [5] presented results relating to the efficiency of the ECFE. A general exposition of
the ECFE and related Fourier methods was presented in [6], while [7] considered the efficiency of empirical
characteristic function procedures.

[16] provided an explanation of the use of the ECFE wherein the author favoured a practical exposition. The
author pointed out that this estimation method may be preferred in cases where difficulties are encountered when
applying likelihood based methods. The paper lists various assumptions implicit in the use of this estimation
method and includes a number of examples. In addition to the Monte Carlo results presented, the author also
provides a practical application, wherein the ECFE is used in order to fit a model to observed values of the Dow
Jones Industrial Average index.

In this paper, the normal inverse Gaussian (N ◦ IG) and Meixner distributions are used as specific examples
in the context of financial modelling. These distributions are chosen since they are popular models for financial
log-returns.

The remainder of the paper is structured as follows. In Section 2, we discuss the estimators used as well as the
method used to obtain starting values for the numerical optimization procedures required in order to calculate the
estimates. Five empirical examples are shown in Section 3; the examples relating to the N ◦ IG distribution and
the Meixner distribution are discussed separately. Section 4 is the conclusion.

2. Estimation methods

Two different estimators, the maximum likelihood estimator (MLE) and the empirical characteristic function
estimator (ECFE), are used in order to obtain the empirical results shown in Section 3.

2.1. The maximum likelihood estimator

The density functions of many multi-parameter distributions are known. In these cases it is, in principle, possible to
calculate MLEs. Usually, no formulae are available for the MLEs and numerical optimization is used to maximize
the likelihood function. However, as a result of the limited computational power of the computer packages used,
the calculation of the density function (and likelihood function) may break down for certain parameter sets.

Often, distributions with complicated density (and likelihood) functions have much simpler characteristic
functions. In these cases, the well-known Fourier inversion formula can be used to evaluate the density numerically.
Denote by f (x; θ) and ϕ (t; θ) the density and characteristic functions of some distribution with parameter set θ.
The Fourier inversion formula can be expressed as:

f (x; θ) =
1

2π

∫ ∞

−∞
e−itxϕ (t; θ) dt; (1)

see [3]. In cases where the direct numerical calculation of the density function breaks down, (1) can be used to
calculate the density function (and the likelihood function).

For distributions for which numerical problems are encountered when calculating the density function we
distinguish between two methods of obtaining MLEs. In the first one we use an algorithm that sets the likelihood
function to 0 for parameter sets for which the density cannot be calculated directly; we call this method DMLE
(direct MLE). In effect, this method maximizes the likelihood function by varying the parameter estimates subject
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to the restriction that the density function can be calculated directly (without the use of Fourier inversion). In the
second method, (1) is used to evaluate the likelihood when direct calculation of the likelihood is not feasible.
This method is referred to as IMLE (indirect MLE). Depending on the form of the characteristic function of the
distribution considered, the calculation of the IMLEs may require substantial amounts of computer time.

2.2. The empirical characteristic function estimator

The ECFE obtains parameter estimates by minimizing a given distance measure between the theoretical
characteristic function of the distribution and the empirical version of this function. The characteristic functions of
the N ◦ IG and Meixner distributions are substantially simpler than the corresponding density functions, meaning
that the ECFE is simpler to calculate for these distributions. Two variations of the ECFE are considered, the
difference between the two estimators being the weight function used.

The empirical characteristic function of the dataset x1, x2, ..., xn is

ϕn(u) =
1

n

n∑
j=1

exp(iuxj).

The ECFE of θ is defined as the minimizer over θ of the expression

Dn (θ) =

∫ ∞

−∞
|ϕn(u)− ϕ(u; θ)|2 w(u)du, (2)

where w is some positive weight function satisfying∫ ∞

−∞
w (u) du < ∞.

Two variations of the weight function are used:

w1(u) = exp (− |u|) , (3)

and
w2(u) = exp

(
−u2

)
. (4)

Below, ECFEA and ECFEN respectively denote the estimators obtained using (3) and (4). As was the case
for the MLEs, in general, no formulae exist for the ECFEs so numerical optimization is employed in order to
calculate the estimates.

2.3. Starting values

The numerical optimization procedures used to obtain parameter estimates require starting values. Since optimal
starting values are generally unknown in practice, it is often advisable to make use of a random procedure to choose
starting values. In the numerical results shown below, starting values for the MLEs are obtained as follows. First,
a range for the starting values of each of the parameters of the distribution is specified; this range is specified by the
user and is chosen so as to include values deemed likely based on previous experience. Then, a possible starting
value for each of the parameters is simulated independently from a uniform distribution. Next, the likelihood
function is calculated for the realized parameter set. Finally, this process is repeated a large number of times and
the parameter set associated with the largest value of the likelihood function is chosen as the set of starting values
for the optimization procedure.

A similar approach is used in order to obtain starting values for the ECFEs. In this case, the distance defined
in (2) is calculated and the parameter set resulting in the smallest distance is used as the starting values for the
optimization algorithm.

The numerical results shown below were obtained by generating 10 000 random possible starting values for each
optimization procedure used. The ranges chosen for the starting values are omitted for the sake of brevity.
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In the case of the IMLE, the time required to calculate the likelihood function for all of the possible starting
values is extreme; in some cases, the calculation of the IMLE required roughly 1 000 times as much computer
time as was the case for the DMLE. In order to alleviate this computation burden, the likelihood function is
not calculated for each possible set of starting values. Instead, the procedure used is as follows. The mean and
the standard deviation of the dataset under consideration are calculated. The mean of the theoretical distribution
for each of the parameter sets considered as possible starting values is also calculated. Thereafter, the likelihood
function is only evaluated in cases where the mean of the theoretical distribution is within three standard deviations
of the mean of the dataset. The remaining combinations of possible starting values are discarded. Similar techniques
to reduce the time required to calculate the remaining estimates are deemed unnecessary.

The aim of this paper is to illustrate the instability of the parameter estimates obtained when using
different estimators for multi-parameter distributions. In terms of the above-mentioned method, the algorithms
corresponding to the different estimators may use different starting values. The author would like to emphasize
that this is not the cause of the vast differences between the estimates obtained in the empirical results shown
below. Given a dataset, the parameter estimates calculated using the different estimators vary wildly even when the
procedures use the same starting values.

3. Empirical results

The empirical results shown below were achieved using the N ◦ IG and Meixner distributions. [1] presents a set of
properties common to all financial returns. In his paper, the author argues for the use of distributions with at least
four parameters as models for financial returns. Note that both the N ◦ IG and Meixner distribution each contain
four parameters. Three examples relating to the N ◦ IG distribution and two relating to the Meixner distribution are
presented. Some of the properties of these distributions are highlighted below before the examples are presented.

The empirical results relating to the first and second application of the N ◦ IG distribution were obtained as
follows. 250 realizations (which roughly corresponds to the number of business days in a year) were simulated
from a N ◦ IG distribution with known parameter set. The parameters were then estimated using each of the
DMLE, IMLE, ECFEA and ECFEN . This process was repeated 1 000 times in each example. A similar
approach is used in order to obtain the results presented in the fourth example, where the N ◦ IG distribution is
replaced by the Meixner.

Unlike the examples mentioned above, the third and final examples are not concerned with data simulated from
a known distribution. These examples are based on the observed log-returns of the Dow Jones Industrial Average
(DJIA) index for the period starting on January 1, 2017 and ending on January 1, 2018. This index is comprised
of a price-weighted average of 30 large publicly owned companies in the United States. A total of 250 log-returns
were calculated from the prices for this index, retrieved from http://finance.yahoo.com.

Samples were drawn from the distribution underlying the calculated log-returns using the smooth bootstrap.
(See [2].) The procedure used to sample from the underlying distribution is as follows. The bandwidth h used in
the simulation was calculated using Silverman’s rule of thumb;

h =

(
4

3n

)1/5

σ̂,

where σ̂ denotes the sample standard deviation and n denotes the sample size (250 in this case). The value of h
was calculated to be 0.0015 for this dataset. Then, smooth bootstrap samples were achieved by resampling 250
values from the observed log-returns with replacement and adding an independent realizations from a N

(
0, h2

)
distribution to each sampled value. This process was repeated 1 000 times. The N ◦ IG and Meixner distributions
were fitted to each of the resulting samples.

As mentioned above, both of the distributions considered are characterized by four parameters. For the sake
of brevity, this paper discusses the estimates obtained for one of these parameters only in each example. In the
case of the N ◦ IG distribution, the estimates of the parameter denoted by α are considered throughout. In the
case of the Meixner distribution, the estimates achieved for the scale parameter α are considered in the simulated
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example, while the results relating to the shape parameter δ are used in the analysis of the log-return data. Similar
configurations were observed for the estimates of the remaining parameters. Boxplots are employed to showcase
the resulting values of the chosen parameter estimates. Note that a cross is used in order to indicate an outlier in
the boxplots presented throughout.

The numerical results achieved below were calculated using Matlab. The fminsearch.m subroutine in Matlab
was used in order to calculate the presented parameter estimates. The mentioned subroutine uses the Nelder-Mead
optimization algorithm. (See [10].)

3.1. The N ◦ IG distribution

A random variable X : Ω → R is said to follow a N ◦ IG distribution with parameter set θ = (α, β, µ, δ) if it has
density

f(x; θ) =
αδ

π
exp

(
δ
√

α2 − β2 + β(x− µ)
) K1

(
α
√

δ2 + (x− µ)2
)

√
δ2 + (x− µ)2

, (5)

where α > 0, |β| < α, µ ∈ R, δ > 0, and K1 denotes the modified Bessel function of the third kind with index 1.
For the definition of this Bessel function; see [12]. The characteristic function of the N ◦ IG (α, β, µ, δ)

distribution is
ϕ(t; θ) = exp

(
iµt− δ

(√
α2 − (β + it)2 −

√
α2 − β2

))
. (6)

[14] introduced an alternative parameterization for the N ◦ IG distribution. Results similar to those shown below
were obtained when using this parameterization.

When evaluating the density function of the N ◦ IG distribution for certain parameter sets, numerical difficulties
are encountered because of the limited computation power available. The Bessel function K1 (z) ↓ 0 as z ↑ ∞.
Since most computer packages used for numerical work round all sufficiently small positive numbers to 0, the
Bessel function is rounded to 0 for sufficiently large arguments. If α ↑ ∞ and δ ↑ ∞, then the exponential and
Bessel functions in (5) both have large arguments. If these arguments are large enough, the computer package
used sets the value of the Bessel function to 0 and that of the exponential function to ∞ so the calculation of the
density function breaks down. This problem can be remedied using characteristic function inversion. The N ◦ IG
distribution is an example of a multi-parameter distributions with a special case containing fewer parameters.

Theorem 1
Let X ∼ N ◦ IG (α, β, µ, δ). If α ↑ ∞, δ ↑ ∞ and δ/α → σ2 while β is held constant, then the distribution of X
converges to the N

(
µ+ βσ2, σ2

)
distribution.

For a proof, see the appendix. The first example below simulates from a N ◦ IG with substantial skewness and
excess kurtosis. The second example resembles the normal in that it exhibits little skewness and excess kurtosis.
The two examples are contrasted in order to demonstrate the difference in the behavior of estimates when the true
distribution resembles its limiting case and when it does not.

3.1.1. Example 1: The N ◦ IG (1, 0.5, 0, 1) distribution Figure 1 shows boxplots of the realized values of α̂
calculated using the four estimators discussed above. The boxplots suggest that the distribution of each of the
estimators is positively skewed. The plots also clearly indicate that there are differences in the values obtained
using the various estimators. Nevertheless, the median of each of the estimators is close to the true parameter
value of 1. Furthermore, the largest estimate calculated using the MLE is less than 4, while the largest estimate
associated with the ECFE is less than 14.

Below, the moments associated with the fitted distributions are compared to the moments of the underlying
distribution. The first four standardized central moments (hereafter simply referred to as the moments) of the
N ◦ IG distribution associated with each set of parameter estimates are calculated; let νj (θ) denote the jth moment
of the distribution with parameter set θ. Table 1 shows the average and standard deviation (in brackets) of the
moments associated with each estimator. The moments of the N ◦ IG (1, 0.5, 0, 1) distribution are included in the
table (at the top of the table) for comparison.
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Figure 1. Boxplot of the estimates of α in Example 1.

ν1

(
θ̂
)

ν2

(
θ̂
)

ν3

(
θ̂
)

ν4

(
θ̂
)

True values 0.577 1.540 1.612 9.928

DMLE 0.572 (0.078) 1.537 (0.277) 1.595 (0.458) 10.186 (3.351)

IMLE 0.572 (0.078) 1.537 (0.277) 1.595 (0.458) 10.185 (3.352)

ECFEA 0.576 (0.089) 1.581 (0.354) 1.639 (0.577) 10.738 (4.378)

ECFEN 0.575 (0.083) 1.562 (0.322) 1.619 (0.543) 10.474 (4.299)

Table 1: The moments associated with the
various estimates obtained in Example 1.

Table 1 indicates that the moments associated with the fitted distributions closely resemble those of the true
distribution. This observation, combined with the seemingly accurate estimates of α displayed in Figure 1, indicates
that the estimation procedures perform satisfactorily in this case.

3.1.2. Example 2: The N ◦ IG (50, 20, 2, 20) distribution Figure 2 shows a boxplot of the DMLEs of α achieved
by fitting the N ◦ IG distribution to the realized samples of the N ◦ IG (50, 20, 2, 20) distribution. The boxplots of
the remaining estimators for α are shown in Figure 3.

In contrast to the DMLE, the estimators shown in Figure 3 clearly overestimate the true value of α (note that
the scale on the vertical axis of the figure is 105). The large estimates of α can be explained by recalling that
the N ◦ IG distribution approaches the normal distribution for large values of α and δ. In effect, we are fitting a
(four-parameter) N ◦ IG distribution to data generated from a distribution resembling a (two-parameter) normal
distribution.

Clearly the estimates calculated using the various estimators differ substantially. Moreover, it seems that
no simple relations exist between the estimates. In order to illustrate the relationship between the estimates
obtained, the correlations between the logarithms of the estimates are considered; logarithms are taken because
the distributions of the estimates are positively skewed. The resulting correlation matrix is shown in Table 2. Note
that the majority of the off-diagonal entries in this correlation matrix are close to 0.
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Figure 2. Boxplot of the DMLEs obtained in Example 2.

Figure 3. Boxplot of the remaining estimates of α in Example 2.

DMLE IMLE ECFEA ECFEN

DMLE 1.000 0.051 0.022 0.033

IMLE 0.051 1.000 0.107 0.035

ECFEA 0.022 0.107 1.000 0.047

ECFEN 0.033 0.035 0.047 1.000

Table 2: Correlation matrix of the logarithm of
the estimates for α obtained in Example 2.

Keeping the vast differences in the parameter estimates, the associated density functions are more similar than
one might expect. Let θ̂DMLE denote an estimate obtained using the DMLE, and let θ̂IMLE denote an estimate
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obtained using the IMLE. For one of the datasets, the following estimates were obtained:

θ̂DMLE = (5.031, 0.318, 10.634, 2.508) ,

θ̂IMLE = (17624,−1356, 683, 8716) .

Figure 4 shows the density functions associated with θ̂DMLE (dashed line) and θ̂IMLE (dotted line). The true
density is also included in the figure (solid line) for reference. The density functions achieved are similar in spite
of substantial differences in the estimates of the parameters.

Figure 4. Comparison of estimated density functions.

In order to investigate the similarity between the fitted distributions that Figure 4 seems to imply, we turn to the
moments associated with the fitted distributions. Table 3 shows the average and standard deviation (in brackets) of
the moments associated with each estimator. As before, the true moments are included for reference.

ν1

(
θ̂
)

ν2

(
θ̂
)

ν3

(
θ̂
)

ν4

(
θ̂
)

True values 10.729 0.520 0.040 3.005

DMLE 10.730 (0.045) 0.527 (0.079) 0.040 (0.140) 3.094 (0.197)

IMLE 10.730 (0.045) 0.518 (0.047) 0.043 (0.106) 3.048 (0.132)

ECFEA 10.728 (0.047) 0.522 (0.054) 0.036 (0.108) 3.056 (0.176)

ECFEN 10.728 (0.045) 0.520 (0.049) 0.020 (0.065) 3.026 (0.096)

Table 3: The moments associated with the
various estimates obtained in Example 2.

The moments associated with each estimator closely resemble the moments of the true distribution. It is
interesting to note that the closeness of the fitted densities to the true density (shown in Figure 4) and the close
correspondence between the moments (illustrated in Table 3) imply that the estimators succeed in accurately
modelling the shape of the true distributions. Nevertheless, the parameter estimates obtained by these estimators
vary wildly.
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3.1.3. Example 3: The N ◦ IG distribution fitted to the log-returns of the DJIA As a third example, the N ◦ IG
distribution is fitted to samples obtained from the distribution of the log-returns of the DJIA. Figure 5 shows a
boxplot of the DMLEs of α calculated using this distribution, while Figure 6 shows boxplots of the remaining
estimates.

Figure 5. Boxplot of the DMLEs of α obtained in Example 3.

Figure 6. Boxplot of the remaining estimates for α obtained in Example 3.

As was the case in the previous example, it is clear that the estimates obtained by the various estimators differ
substantially. It is also clear that extremely large estimates are often achieved. Following similar lines of inquiry as
before, we are interested in determining whether or not the estimates associated with the different estimators are
highly correlated. To this end, Table 4 contains the correlation matrix for the logarithms of the estimates calculated
using the various estimators. The correlation between each pair of the different estimators is close to 0.
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DMLE IMLE ECFEA ECFEN

DMLE 1.000 0.036 −0.000 0.031

IMLE 0.036 1.000 0.020 −0.007

ECFEA −0.000 0.020 1.000 0.025

ECFEN 0.031 −0.007 0.025 1.000

Table 4: Correlation matrix of the logarithm of
the estimates for α obtained in Example 3.

Next, we compare the moments of the fitted distributions to those of the data in order to determine the adequacy
of the performance of the estimators. Table 5 shows the average and standard deviation (in brackets) of the moments
associated with each estimator. Note that the entries relating to the first and second moments in Table 5 are
multiplied by 103 and 104 respectively. This is done in order to ease comparisons between the results since these
values are close to 0. The same convention is used in Table 8.

103 × ν1

(
θ̂
)

104 × ν2

(
θ̂
)

ν3

(
θ̂
)

ν4

(
θ̂
)

Moments 0.871 0.174 −0.185 5.316

DMLE 0.844 (0.837) 4.689 (69.955) 0.121 (1.024) 8.202 (10.928)

IMLE 0.978 (0.326) 0.192 (0.025) 0.029 (0.223) 3.492 (1.128)

ECFEA 0.876 (0.268) 0.183 (0.027) 0.002 (0.028) 3.002 (0.010)

ECFEN 0.876 (0.267) 0.181 (0.026) 0.003 (0.032) 3.002 (0.019)

Table 5: The moments associated with the
various estimates obtained in Example 3.

The results reported in Table 5 clearly indicate that the moments associated with the DMLEs do not perform
as well as those associated with the remaining estimators. However, upon further investigation, it becomes clear
that the DMLE algorithm is able to accurately model the underlying distribution in all but a few cases. In order to
illustrate this, consider the variance implied by the various estimated parameter sets. The variance of the log-returns
is 1.737× 10−5, while the mean of the variances implied by the obtained estimates is 4.168× 10−3. Nevertheless,
the median of the implied variances is 2.009× 10−5, which closely corresponds to the variance of the log-returns.
Figure 7 shows a boxplot of the variances implied by the DMLEs. The figure indicates that the large mean of the
variances implied by DMLEs is a result of a few outliers and not a systematic overestimation. For a few samples,
the DMLE algorithm was unable to converge to satisfactory results. This can, at least partially, be explained by
the fact that the variance of the N ◦ IG distribution becomes small for large values of α, in which case direct
evaluation of the likelihood function may not be possible.

The moments associated with the remaining parameter estimates correspond more closely to the moments of
the true distribution. However, the remaining estimates slightly overestimate the skewness and the kurtosis of the
log-returns. In this example, the implied moments achieved by the empirical characteristic function estimators are
closer to those of the true distribution than is the case for the estimators based on the likelihood function.

3.2. The Meixner distribution

A random variable X : Ω → R is said to follow a Meixner distribution with parameter set θ = (α, β, µ, δ) if it has
density

f(x; θ) =
(2 cos(β/2))

2δ

2απΓ(2δ)
exp

(
β(x− µ)

α

) ∣∣∣∣Γ(δ + i(x− µ)

α

)∣∣∣∣2 , (7)

where α > 0, |β| < π, µ ∈ R and δ > 0.
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Figure 7. Boxplot of variances implied by the DMLEs.

The characteristic function of the Meixner (α, β, µ, δ) distribution is:

ϕ(u; θ) = exp (iµu)

(
cos(β/2)

cosh
(
αu−iβ

2

))2δ

.

Consider the density of the Meixner distribution given in (7). The functions making up this density function
can lead to numerical difficulties: cos (β/2) → 0 if β → ±π, and Γ (z) ↑ ∞ as z ↑ ∞. As for the complex gamma
function, if k is some constant and z ↑ ∞, then |Γ (z + ik)|2 ↑ ∞. If, for example, the value of δ is excessively
large, then both the gamma function and the complex gamma function take large values and the computer package
used may set the value of both functions to ∞. In this situation, the calculation of the density function breaks down.

Similar to the case for the N ◦ IG distribution, the Meixner distribution has the normal distribution as a limit
case. The proof of the following theorem is deferred to the appendix.

Theorem 2
Let X ∼ Meixner (α, β, µ, δ). If α ↓ 0, β → 0 and δ ↑ ∞ so that α2δ/2 → σ2 and β/α → γ, then the distribution
of X converges to the N

(
µ+ γσ2, σ2

)
distribution.

3.2.1. Example 4: The Meixner (0.1,−0.2, 0, 10) The parameter in this example are chosen such that the true
distribution resembles the normal. Note, however, that the Meixner distribution presented in this example resembles
the normal to a lesser degree than is the case for the N ◦ IG distribution of Example 2; the kurtosis of the
distribution in the present example is 3.102 compared to the 3.005 of Example 2. As a result, the results presented
below are less extreme than those of the mentioned example.

The Meixner distribution resembles the normal for small values of α. Since closeness to 0 is hard to judge on a
figure, Figure 8 shows boxplots of α̂−1. Note that the true value of α−1 = 10. Several large outliers are omitted in
the figure; the maximum values associated with the IMLE and ECFE respectively are 1 018 877 and 6 095.

The results presented in Figure 8 indicate that the value of α−1 is often overestimated by a substantial margin
(meaning that the realized values of α̂ are often much closer to 0 than the true value). However, the estimators
associated with the ECFE achieves medians which are close to the true value of α−1, while the medians of both
of the MLEs substantially overestimate this value. As before, the moments associated with the true and fitted
distributions are compared in Table 6. The main entries in the table are the averages of the moments associated
with the fitted distributions, while the associated standard deviations are reported in brackets.
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Figure 8. Boxplot of the inverse of the estimates of α in Example 4.

ν1

(
θ̂
)

ν2

(
θ̂
)

ν3

(
θ̂
)

ν4

(
θ̂
)

True values −0.100 0.051 −0.045 3.102

DMLE −0.100 (0.015) 0.050 (0.005) −0.040 (0.168) 3.184 (0.247)

IMLE −0.100 (0.015) 0.050 (0.005) −0.042 (0.167) 3.182 (0.248)

ECFEA −0.100 (0.015) 0.050 (0.005) −0.025 (0.233) 3.228 (0.188)

ECFEN −0.100 (0.015) 0.050 (0.005) −0.021 (0.174) 3.176 (0.153)

Table 6: The moments associated with the
various estimates obtained in Example 4.

The averages and standard deviations associated with the first and second moments of the fitted distributions are
identical. Nevertheless, the MLEs clearly outperform the ECFEs in their ability to accurately model the skewness
and kurtosis of the underlying data. This observation is especially interesting in light of the fact that the boxplots
presented in Figure 8 seemed to indicate that the ECFEs were better able to accurately estimate the true value of
α−1.

3.2.2. Example 5: The Meixner distribution fitted to the log-returns of the DJIA As a final example, the Meixner
distribution is fitted to smooth bootstrap samples taken from the distribution underlying the log-returns of the
DJIA. Boxplots of the estimates obtained for δ using the various estimators are shown in Figure 9. Once again, the
distributions of the estimates are positively skewed.

Table 7 shows the correlation matrix for the logarithms of the estimates. As was the case when fitting the N ◦ IG
distribution to these data, the off-diagonal elements of the correlation matrix are close to 0.

DMLE IMLE ECFEA ECFEN

DMLE 1.000 −0.022 −0.044 0.012

IMLE −0.022 1.000 0.024 0.028

ECFEA −0.044 0.024 1.000 0.026

ECFEN 0.012 0.028 0.026 1.000

Table 7: Correlation matrix of the logarithm of
the estimates for δ obtained in Example 5.
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Figure 9. Boxplot of the estimates of δ in Example 5.

Table 8 shows the average and standard deviation (in brackets) of the moments associated with each estimator.
The moments implied by each of the estimators closely match those of the observed log-returns. Interestingly, the
DMLEs are best able to replicate the kurtosis of the log-returns. However, in line with the N ◦ IG distribution
case, all of the estimators underestimate the kurtosis of the log-returns.

103 × ν1

(
θ̂
)

104 × ν2

(
θ̂
)

ν3

(
θ̂
)

ν4

(
θ̂
)

Moments 0.871 0.174 −0.185 5.316

DMLE 0.856 (0.293) 0.193 (0.029) 0.075 (0.252) 4.056 (1.141)

IMLE 0.906 (0.304) 0.191 (0.026) 0.055 (0.208) 3.699 (1.021)

ECFEA 0.856 (0.284) 0.197 (0.061) −0.007 (0.240) 3.148 (0.378)

ECFEN 0.856 (0.284) 0.187 (0.073) 0.004 (0.240) 3.142 (0.406)

Table 8: The moments associated with the
various estimates obtained in Example 5.

4. Conclusions

This paper considers parameter estimation for multi-parameter distributions. It is demonstrated numerically that
the parameter estimates obtained using various estimators vary wildly in cases where the data are realized from a
distribution resembling a limit case of the distribution containing fewer parameters. The main contribution of the
paper lies in the explanation of this phenomenon: the observed variability is, at least partially, due to the fact that
a distribution containing redundant parameters is fitted to the data. In spite of the variability between estimates,
in many cases the density functions achieved using various estimators are almost identical in spite of substantially
different parameter estimates.

The maximum likelihood estimator (MLE) and the empirical characteristic function estimator (ECFE) are used
to illustrate the mentioned behavior of the estimates. Many multi-parameter distributions have complicated density
(and likelihood) functions. For some parameter sets the calculation of these densities may break down because of
the limited computational power available to the modeler. Two methods for calculating MLEs are used. The first
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discards parameter estimates for which the calculation of the likelihood function via the direct calculation of the
density function breaks down while the second uses Fourier inversion to evaluate the likelihood in these cases.
The ECFE obtains parameter estimates by minimizing a distance measure between the theoretical and empirical
characteristic functions. Two variations of the ECFE are considered, the difference between the two being the
weight functions used.

Specific empirical examples relating to the normal inverse Gaussian (N ◦ IG) and Meixner distributions are
included. It is shown that both of these distributions have the normal distribution as a limit case and the numerical
problems associated with the calculation of the density functions of these distributions are explained.

Practical examples are obtained by simulating realizations from the N ◦ IG and Meixner distributions. Samples
are also drawn from the distribution of the log-returns of the Dow Jones Industrial Average index using the smooth
bootstrap. In spite of the substantially different parameter estimates obtained using the various estimators, the
moments of the estimated distributions correspond closely to each other and to that of the distribution from
which the data are realized in the vast majority of the cases considered. We conclude that, when multi-parameter
distributions are fitted to data realized from a distribution resembling a limit case containing fewer parameters, the
estimators are able to accurately model the characteristics of the underlying distribution, even when the estimates
obtained differ substantially from the true parameters.
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Appendix

Theorem 3
Let X ∼ N ◦ IG (α, β, µ, δ). If α ↑ ∞, δ ↑ ∞ and δ/α → σ2 while β is held constant, then the distribution of X
converges to the N

(
µ+ βσ2, σ2

)
distribution.

Proof
Consider the characteristic function of the N ◦ IG distribution with parameter set θ = (α, β, µ, δ) where α ↑ ∞:

ϕ (t; θ) = exp
(
itµ− δ

(√
α2 − (β + it)2 −

√
α2 − β2

))

= exp

itµ− αδ

√1− (β + it)
2

α2
−
√

1− β2

α2


= exp

(
itµ− αδ

(
− (β + it)

2

2α2
+

β2

2α2
+O

(
α−4

)))

= exp

(
it

(
µ+ β

δ

α

)
− t2

2

δ

α
+O

(
α−3

))
.
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If δ = ασ2 +O
(
αλ
)

where λ < 1, then:

ϕ (t; θ) = exp

(
it
(
µ+ β

(
σ2 +O

(
αλ−1

)))
− t2

2

(
σ2 +O

(
αλ−1

))
+O

(
α−3

))

→ exp

(
it
(
µ+ βσ2

)
− t2

2
σ2

)
,

as α ↑ ∞. This is the characteristic function of the N
(
µ+ βσ2, σ2

)
distribution.

Theorem 4
Let X ∼ Meixner (α, β, µ, δ). If α ↓ 0, β → 0 and δ ↑ ∞ so that α2δ/2 → σ2 and β/α → γ, then the distribution
of X converges to the N

(
µ+ γσ2, σ2

)
distribution.

Proof
Consider the characteristic function of the Meixner distribution with parameter set θ = (α, β, µ, δ):

ϕ (t, θ) = eiµt

(
cos
(
β
2

)
cosh

(
αt−iβ

2

))2δ

= eiµt

(
2 cos

(
β
2

)
exp

(
αt−iβ

2

)
+ exp

(−αt+iβ
2

))2δ

= eiµt

(
2− β2

4 +O
(
β4
)

2− β(β+2αit)
4 + α2t2(8−β2)

32 +O (α3) +O (β3)

)2δ

, (8)

where the last equality above is obtained using Taylor expansions.
Taking logarithms in (8) and again using Taylor expansions we obtain:

log (ϕ (t, θ))

= iµt+ 2δ log

(
2− β2

4
+O

(
β4
))

−2δ log

(
2− β (β + 2αit)

4
+

α2t2
(
8− β2

)
32

+O
(
α3
)
+O

(
β3
))

= iµt− α2δt2

4
− 32α2δt2

(β2 − 8)
2 − 4αδt (αt+ iβ)

β2 − 8
+O

(
α3
)
+O

(
β3
)
. (9)

If we set

δ =
2σ2

α2
+O (αε) ,

where ε > −2 and
β = γα+O

(
αλ
)
,

where λ > 1, then after standard calculations (9) becomes as follows:

log (ϕ (t, θ)) = iµt− σ2t2(
β
8 − 1

)2 +
σ2t+ γσ2it

1− β2

8

+O
(
α3
)
+O

(
β3
)

+O
(
αε+2

)
+O

(
αλ−1

)
+O

(
αε+λ+1

)
. (10)
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Letting α ↓ 0 and β → 0 and simplifying, the characteristic exponent in (10) becomes:

log (ϕ (t, θ)) = it
(
µ+ γσ2

)
− σ2t2

2
,

which is the characteristic exponent of the N
(
µ+ γσ2, σ2

)
distribution.
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