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Abstract Motivated by some real life correlations among insurance claims, we consider three aggregate claim models
with dependence in this paper. Model one considers the dependence caused by a common index among indexed insurance
benefits; model two takes into account the correlation arisen from common fixed costs; model three covers both types of
dependence. Two random variables, Y1 denoting a random index and Y2 denoting a random cost, form the center part
in the above three dependence models and detailed discussions are given on how the aggregate claims amount interacts
with these sources of dependence. Theoretical results of these aggregate claim distributions are derived and algorithms for
computational purposes are also provided. Some numerical results are presented for the compound Poisson case together
with discussions and comparisons regarding the three dependence cases.
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1. Introduction

One of the major research interests in actuarial science field is to model aggregate claims amount for various
insurance business. The collective risk model is one well-known and widely used approach. A convenient yet
unrealistic assumption is to assume independence between number of claims and individual claim amounts as
well as among individual claim amounts. To make the collective risk models fit real insurance claims data better,
researchers have been developing models with various types of dependence in the past few decades.

Early research outputs on dependence among numbers of claims include [3], who considered a general method
of constructing a vector of p (p ≥ 2) dependent claim numbers from a vector of independent random variables, and
derived formulas to compute the aggregate claim distribution for the book of p dependent classes of business.
Motivated by these papers, researchers have developed collective risk models with dependence embedded in
number of claims, for example [6], [10], [13], [18], [19], [20] and [22]. Readers can also refer to Chapter XIII
of [7] for an informative survey.

Dependence between claim arrivals and claim amounts are also among the focuses of researchers in this field,
and various types of dependence models have been proposed and employed in risk theory, see [1], [8] and [9] for
example.

Another type of dependence is grounded on individual claim amounts only. Multivariate distributions and copulas
have all been employed to model such correlations in the literature. [12] and [14] studied the stop-loss premiums
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of insurance portfolios with dependent risks and [11] examined stochastic bounds on sums of dependent risks.
[2] used a simple idea of mixing to establish dependence among claim sizes and among claim inter-arrival times
in collective risk models and obtained a number of explicit formulas for ruin probabilities and related quantities.
More recently, [16] derived closed-form expressions for the probability distribution function of aggregated risks
with multivariate dependent Pareto type II distributions proposed by [4] and [5], which is widely used in insurance
and risk analysis.

In this paper we shall examine the aggregate claim distributions when the individual claim amounts follow a few
simple dependence structures. These dependence structures are motivated by a couple of real-life insurance claim
phenomena, i.e. the indexed insurance benefits and fixed costs in claim settlements. One typical implicit index
is inflation, which affects almost all kinds of insurance products. The inflation risk is one of the most common
risks that affect many industries, in particular the insurance business with long tails. Given a level of inflation,
the individual and aggregate claims amount can be modeled as usual by scaling. However, when addressing the
risk of inflation, actuaries also need to take into account the randomness of future inflation rates. This randomness
not only changes the overall scale of insurance claims, but also increases the overall variance of the aggregate
claims. Therefore, when modeling the aggregate claims amount we should introduce a common multiplicative
factor, which is a random variable itself, if the individual claims generated by an insurance portfolio are explicitly
or implicitly referring to a common economic index. Similarly, when settling claims there could be some common
fixed costs that also vary in years, which lead to a common additive factor. Both phenomena bring dependence into
the aggregate claim model alone or together.

Our main aim of this paper is to illustrate the impact of the above mentioned real-life dependence on aggregate
claim distributions from computational point of view, so we shall only adopt discrete settings for the random
variables involved in our models. The continuous case is also interesting but it would be much harder to develop
recursive algorithms as in the discrete case. In practice, the method of discretization can be used to bridge the two
cases nicely.

This paper is organized as follows. Three dependence structures are defined in Section 2 with some preliminary
results. Some computational aspects are discussed in Section 3 where algorithms are provided to calculate the
aggregate claim distributions. In Section 4, some numerical examples are given with detailed discussions.

2. Three Dependence Structures

In this section we consider three types of dependence structures: one with a common multiplicative factor, one with
a common additive factor and one with common multiplicative and additive factors.

2.1. A Multiplicative Dependence

The first dependence structure is built on a common multiplicative factor:

S1 =

N∑
i=1

XiY1, (1)

where N is a counting random variable (r.v.) denoting the number of claims with a probability function (p.f.)
pn, n ∈ N; Xi, i = 1, 2, . . . , are independent and identically distributed (i.i.d.) integer-valued random variables
(r.v.’s) following a common p.f. f(x), x ∈ N; Y1 is a discrete r.v. which has a p.f. g1(y), y ∈ A where A is a discrete
set of values in R+. When N = 0, S1 = 0.

Assume that N, {Xi}i∈N+ and Y1 are all independent of each other. For the purpose of convenience, we denote
X a generic r.v. of {Xi}. Further, we define f̂(z) =

∑∞
x=0 z

xf(x) to be the probability generating function (p.g.f.)
of X . Similarly, p̂(z) is the p.g.f. of N .

The model (1) is motivated by an insurance portfolio that pays indexed insurance benefits. When the individual
indexed benefits XiY1, i = 1, 2, . . ., are linked to the same random index Y1, then the type of dependence emerged
has the form of (1). In this context, S1 denotes the aggregate indexed claims amount and one can easily see that
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it can be rewritten as S1 = Y1Z where Z :=
∑N

i=1 Xi is the original (non index-linked) aggregate claims amount
with i.i.d. individual claims Xi, i = 1, 2, . . .. Here Y1 and Z are independent of each other.

Let S1 and Z have p.f.’s h1(s) and hZ(x), x ∈ N, s ∈ B, respectively, where

B = {s = y × x : y ∈ A, x ∈ N}.

Then we have:

E[S1] = E[Y1]E[Z] = E[N ]E[X]E[Y1],

V [S1] = E[Y 2
1 ]E[Z2]− E[Y1]

2E[Z]2

= E[Y 2
1 ]V [Z] + V [Y1]E[Z]2

= E[Y 2
1 ]
(
E[N ]V [X] + V [N ]E[X]2

)
+ V [Y1]E[N ]2E[X]2. (2)

Regarding the level of dependence among the individual indexed claim amounts XiY1, i = 1, 2, . . ., measured by
their covariances and correlation coefficients, we have, for i, j ∈ N+ and i ̸= j,

COV [XiY1, XjY1] = E[XiXjY
2
1 ]− E[X]2E[Y1]

2 = E[X]2V [Y1],

ρ1 =
COV [XiY1, XjY1]

V [XY1]
=

E[X]2V [Y1]

V [X]E[Y 2
1 ] + E[X]2V [Y1]

=
V [Y1]

V [X]
E[Y 2

1 ]

E[X]2 + V [Y1]
=

1

1 + CV 2
X(1 + CV −2

Y1
)
, (3)

where CVX (=
√

V [X]/E[X]) and CVY1 are the coefficients of variation of X and Y1 respectively and ρ1 is the
correlation coefficient of each pair of individual indexed claim amounts.

We propose a general method regarding h1(s), s ∈ B, that can be useful for calculating its values. For y ∈ A,
we define Ny = {0, y, 2y, . . .}. Clearly, Ny ⊆ B. Let 1fy(x), y ∈ A, x ∈ Ny, be the p.f. of the r.v. yX . Then for
x ∈ Ny,

1fy(x) = f(
x

y
). (4)

Let {1hZ(x; y)}x∈Ny,y∈A denote the p.f. of the compound distribution consisting of {pn} and {1fy(x)}, and

1hZ(s; y) ≡ 0 when s /∈ Ny. Further, 1hZ(s; y) = hZ

(
s
y

)
when s ∈ Ny. Then we have, for s ∈ B and s > 0,

h1(s) = Pr(Y1Z = s) = E
[
Pr(Z =

s

Y1
|Y1)

]
=

∑
y∈A

1hZ(s; y)g1(y) =
∑

y∈A;y≤s

1hZ(s; y)g1(y) (5)

=
∑

y∈A;y≤s

1{s∈Ny}hZ

(
s

y

)
g1(y) (6)

=
∑

y∈A;y≤s

1{⌊ s
y ⌋= s

y}hZ

(
s

y

)
g1(y) (7)

with h1(0) = hZ(0), where ⌊x⌋ is the floor function of x. The second equality in (5) holds because the largest value
of Y1 that does not void {Y1Z = s} is s. The result (7) specifies more clearly how to judge whether or not s ∈ Ny

when programming.

2.2. An Additive Dependence

The second dependence structure is built on a common additive factor:

S2 =

N∑
i=1

(Xi + Y2), (8)
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where N , {Xi} are the same as in model (1). Y2 is a r.v. independent of N and {Xi}, and has p.f. g2(y), y ∈ N.
Note that S2 = Z +NY2 but here Z and NY2 are dependent of each other.

Different from the model (1), (8) is motivated by an insurance portfolio with fixed costs (like paperwork, admin
or transaction costs etc) on claim settlements. In a general setting, one could use a r.v. to denote this fixed cost
when settling a claim that varies year by year. As settling each individual claim will incur the same fixed costs in
the same time period, a dependence arises as in model (8). This is also why we assume Y2 only takes non-negative
integer values.

Similarly, we can obtain the following results based on model (8):

E[S2] = E[Z] + E[N ]E[Y2] = E[N ](E[X] + E[Y2]), (9)
V [S2] = E

[
V [S2|N ]

]
+ V

[
E[S2|N ]

]
= E

[
NV [X] +N2V [Y2]

]
+ V

[
N(E[X] + E[Y2])

]
=

(
E[X] + E[Y2]

)2
V [N ] + E[N ]V [X] + E[N2]V [Y2]. (10)

Again, we consider the level of dependence among the individual claim sizes with fixed costs, for i, j ∈ N+ and
i ̸= j,

COV [Xi + Y2, Xj + Y2] = V [Y2],

ρ2 =
COV [Xi + Y2, Xj + Y2]

V [X + Y2]
=

V [Y2]

V [X] + V [Y2]
. (11)

Let h2(s) be the p.f. of S2. To calculate h2(s), we shall derive a general result based on model (8). Similar to
1fy(x), we define g2(n; y) as the p.f. of the r.v. nY2, n ∈ N+. One can see that

g2(n; y) =

{
g2(k) if y = kn, k ∈ N,
0 otherwise. (12)

In particular, g2(0; y) is a degenerate p.f. at the value 0. Then we have the following result, for s ∈ N+:

h2(s) =

∞∑
n=1

f∗n ∗ g2(n; s)pn, (13)

where f∗n(x) is the n-fold convolution of f(x) and f∗n ∗ g2(n;x) is the convolution of f∗n(x) and g2(n;x). Also,
h2(0) = p0 + g2(0)

∑∞
n=1 f

n(0)pn.
Alternatively, let 2fy(x) be the p.f. of X + y. Define set Ny+ = {y, y + 1, y + 2, . . .}, y ∈ N, then we have

2fy(x) =

{
f(x− y) x ∈ Ny+,
0 otherwise.

Clearly, 2f0(x) = f(x). Let {2hZ(x; y)}x,y∈N denote the p.f. of the compound distribution consisting of {pn} and
{2fy(x)}, and clearly 2hZ(x; y) = 0 for all 0 < x < y. Then we have the second result regarding h2(s), for s ∈ N+,

h2(s) =
∑
y∈N

2hZ(s; y)g2(y) =

s∑
y=0

2hZ(s; y)g2(y). (14)

Obviously, result (14) is of higher computational importance than (13) due to its finite summation.

2.3. A Two-way Dependence

When both the random index and random fixed costs are in place, we propose the third dependence structure as
follows:

S3 =

N∑
i=1

(Y1Xi + Y2), (15)

Stat., Optim. Inf. Comput. Vol. 6, September 2018



472 AGGREGATE CLAIM MODELS WITH ONE-WAY AND TWO-WAY DEPENDENCE

where N , {Xi}i∈N+ and Yj , j = 1, 2, have been defined in the above two models, and here they are all independent
of each other. Under model (15), the individual claim sizes Xi, i ∈ N+, are affected not only by the common
multiplicative factor Y1, but also by the common additive factor Y2, so it forms a two-way dependence structure.
Obviously, S3 has a relationship with Z in the form of S3 = Y1Z +NY2 where (1) and (8) are two special cases
when we take Y2 ≡ 0 and Y1 ≡ 1 respectively.

Firstly, we show some basic results:

E[S3] = E[Y1]E[Z] + E[N ]E[Y2] = E[N ](E[X]E[Y1] + E[Y2]), (16)
V [S3] = E[V [Y1Z +NY2|N ]] + V [E[Y1Z +NY2|N ]]

= E[V [Y1Z|N ]] + E[V [NY2|N ]] + V [N(E[Y1]E[X] + E[Y2])]

= E[E[Y 2
1 ]V [Z|N ] + V [Y1]E[Z|N ]2] + E[N2]V [Y2]

+V [N ](E[Y1]E[X] + E[Y2])
2

= E[Y 2
1 ]E[N ]V [X] + V [Y1]E[N2]E[X]2 + E[N2]V [Y2]

+V [N ](E[Y1]E[X] + E[Y2])
2. (17)

For i, j ∈ N+ and i ̸= j, we have

COV [Y1Xi + Y2, Y1Xj + Y2] = COV [XiY1, XjY1] + V [Y2]

= E2[X]V [Y1] + V [Y2],

ρ3 =
COV [Y1Xi + Y2, Y1Xj + Y2]

V [XY1 + Y2]
=

E[X]2V [Y1] + V [Y2]

E[Y 2
1 ]V [X] + E[X]2V [Y1] + V [Y2]

=
1

1 +
1+CV −2

Y1

β+CV −2
X

, (18)

where β = V [Y2]
V [X]V [Y1]

.
Because of the two-way dependence existed in model (15), the valuation spaces of Y1 and Y2, i.e. the positive

real-valued discrete set A and the non-negative integer set N, are mixed together, which brings complications into
the computational aspect of the new model. The formulas provided in the previous two models, (6) and (14), can
not be employed directly and more assumptions are needed for the purpose of simplification.

To calculate the p.f. of S3, denoted by {h3(s)}s∈B∗ where B∗ is the domain of S3 and yet to determine, we shall
restrict the domain of Y1 to a set of positive rational numbers, denoted by Ar ⊆ Q+ and Q+ denotes the whole set
of positive rational numbers. In addition, we assume that Ar only has a finite number of elements, denoted by M .
Then we can express all its elements in terms of fractions in simplest form, i.e. Ar = { δi

ηi
, i = 1, . . . ,M} where δi,

ηi ∈ N+.
Conditional on Y1 = δi

ηi
and Y2 = y, y ∈ N, i = 1, . . . ,M , our model (15) becomes

S3 =

N∑
j=1

(
δi
ηi
Xj + y) =

1

ηi

N∑
j=1

(δiXj + yηi). (19)

In the above new expression of S3,
∑N

j=1(δiXj + yηi) is an integer-valued random variable and so the domain of
S3, B∗, can be defined as

B∗ =

M∪
i=1

{
s =

x

ηi
: x ∈ N

}
.

Note that the real domain of S3 is a subset in the above defined set B∗ that contains a number of elements with
zero probability mass. However, these unnecessary elements can be easily eliminated when conducting numerical
calculations.
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For x ∈ N, we define the p.f. of δiXj + yηi by

3fδi,ηi,y(x) =

{
f(x−yηi

δi
) x−yηi

δi
∈ N,

0 otherwise.
(20)

Clearly, 3f1,1,y(x) = 2fy(x) and 3fδ,η,0(x) = 1fδ(x). Let {3hZ(x; δi, ηi, y)}, x ∈ N, denote the p.f. of the
compound distribution consisting of {pn} and {3fδi,ηi,y(x)}, then we have, for s ∈ B∗ and s > 0,

h3(s) =
∑
y∈N

g2(y)

M∑
i=1

1{sηi∈N} 3hZ(sηi; δi, ηi, y)g1
( δi
ηi

)
=

s∑
y=0

g2(y)

M∑
i=1

1{sηi∈N} 3hZ(sηi; δi, ηi, y)g1
( δi
ηi

)
(21)

with h3(0) = p0 + g2(0)
∑∞

n=1 f
n(0)pn.

Remark. An alternative structure of the two-way dependence can be defined as

S′
3 =

N∑
i=1

Y1(Xi + Y2) = Y1(Z +NY2),

which allows the interaction between factors Y1 and Y2. One interpretation of this slightly different dependence
structure is that, in practice, the fixed costs normally are affected by inflation as well. However, this version is easier
to compute than (15), as one can deal with Z +NY2 first and then incorporate Y1 in the second step. Therefore,
we shall only discuss the version given in (15) within the rest of this paper.

3. Computational Aspects of the Models

From the key results (6), (14) and (21) obtained in Section 2 we can see that to calculate the aggregate claim
distributions hi(s), i = 1, 2, 3, we need to calculate the aggregate claim distributions hZ(x), 2hZ(x; y) and
3hZ(x; δi, ηi, y) first, which are all compound distributions under independence setting. In the actuarial literature,
there have been many papers discussing how to compute the aggregate claim distributions under independence
setting and recursive calculation is one typical approach. Based on the well-known Panjer’s recursion, researchers
have developed a number of generalized recursive methods for various types of claim number distributions, to
name a few, the (a, b, 0) class, the (a, b, 1) class and the (A,B, 0) class, etc. Useful references include [15], [17],
[21] and the references therein.

In the following, we shall discuss how to calculate the distributions hi(s), i = 1, 2, 3, using the (a, b, 0) class as
an example, where

pn =

(
a+

b

n

)
pn−1, n ∈ N+.

The only non-trivial distributions in this class are Poisson, binomial and negative binomial.

3.1. The Calculation of h1(s)

According to the Panjer’s Recursion, hZ(x) satisfies

hZ(x) =
1

1− af(0)

x∑
k=1

(
a+

bk

x

)
f(k)hZ(x− k), x ∈ N+, (22)

with hZ(0) = p̂(f(0)). Bear in mind that when dealing with an infinite series, we often omit the tail piece according
to certain accuracy requirements. This argument applies within the rest of this paper.
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To calculate h1(s), s ∈ B, from (6) we can see that, for any given y ∈ A, y ≤ s, we need to check whether s
is a multiple of y, i.e. s ∈ Ny. If the answer is yes, then the probability hZ(

s
y ) associated with the y value is

involved in h1(s) and can be determined using the Panjer’s recursion. Quite often, the number of relevant y values
for each s ∈ B is very small, so the additional computations from hZ to h1 is very reasonable. For example, if
A = {1.05, 1.1, 1.15}, for s = 10.5 and s = 23.1 we have

• h1(10.5) = hZ(10)g1(1.05); and

• h1(23.1) = hZ(22)g1(1.05) + hZ(21)g1(1.1).

More importantly, the computation of h1(s) does not require values of hZ(k) for k > s
y∗ where y∗ is the minimum

realization of Y1. Also, when Y1 ≡ 1, h1(s) = hZ(s) for s ∈ N. A suggested algorithm to calculate h1(s) is given
below:

Step 1. Using N and the given domain A to generate domain B. There should be no duplicate values in B.

Step 2. Calculate and store hZ(x), x ∈ N using appropriate methods. In this case, the Panjer’s recursion is an
obvious choice.

Step 3. For each s ∈ B and s > 0, calculate h1(s) using formula (7).

Note that to obtain H1(s), s ∈ N, we need to calculate H1(s) =
∑

x∈B;x≤s h1(x).

3.2. The Calculation of h2(s)

The calculation of h2(s) is based on 2hZ(x; y) that involves a modified individual claim amount distribution 2fy(x).
It is actually a type of truncation by letting 2fy(x) = f(x− y) for x ∈ Ny+. When {pn} belongs to the (a, b, 0)
class and y ∈ N+, 2hZ(x; y) satisfies

2hZ(x; y) =

x∑
k=y

(
a+

bk

x

)
f(k − y)2hZ(x− k; y), x ≥ y, (23)

with 2hZ(0; y) = p0 and 2hZ(x; y) = 0 for x = 1, . . . , y − 1. Further, when Y2 ≡ 0, h2(x) = hZ(x) for x ∈ N.
Assume that Y2 takes values in D ⊆ N. When D has only limited number of elements, a reasonable algorithm is
given below:

Step 1. For each y ∈ D, generate 2fy(x), x ∈ N.

Step 2. Calculate and store 2hZ(x; y), x ∈ N using the Panjer’s recursion. Note that we need to store
2hZ(x; y), x ∈ N, for every y ∈ D.

Step 3. For each s ∈ B, calculate
h2(s) =

∑
y∈D;y≤s

2hZ(s; y)g2(y).

3.3. The Calculation of h3(s)

The calculation of h3(x) is much more complicated, which is a combination of the above two cases. Similar to
Model 2, we assume that Y2 takes values in D ⊆ N where D has only limited number of elements. According to
(20) and (21) we propose an algorithm as follows:

Step 1. For the given domain of Y1, Ar, determine δi and ηi for all i = 1, . . . ,M .

Step 2. Given Y2 = y ∈ D, for each i = 1, . . . ,M , generate 3fδi,ηi,y(x), x ∈ N.
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Step 3. Calculate and store 3hZ(x; δi, ηi, y), i = 1, . . . ,M, x ∈ N+, using the formula

3hZ(x; δi, ηi, y) =

∑x
k=1

(
a+ bk

x

)
× 3fδi,ηi,y(k)× 3hZ(x− k; δi, ηi, y)

1− a× 3fδi,ηi,y(0)

with 3hZ(0; δi, ηi, y) = p̂(3fδi,ηi,y(0)). Note that we need to store 3hZ(x; δi, ηi, y), x ∈ N, for all
y ∈ D and i = 1, . . . ,M .

Step 4. For s ∈ B∗, calculate

h3(s) =

s∑
y=0

g2(y)

M∑
i=1

1{sηi∈N} 3hZ(sηi; δi, ηi, y)g1
( δi
ηi

)
.

4. Numerical Studies

In this section, we shall provide some numerical examples to demonstrate the impact of the three dependence
structures proposed in Section 2 on the aggregate claim distributions. To make the following numerical discussions
more reasonable, we shall propose a condition of fairness, i.e. the aggregate claim models under discussion all have
equal means.

Figure 1. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 1

In the following, we shall consider four aggregate claim models, Si, i = 0, 1, 2, 3, where S1, S2, S3 have been
defined in Section 2 and S0 = Z, which is the aggregate claims amount with i.i.d. individual claims. We first make
the following assumptions:

• E[N ] = 10;

• the i.i.d. random variables {Xi} in all models follow the geometric distribution with p.f.

f(x) = (1− q)qx−1, x ∈ N+.
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Figure 2. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 2

Figure 3. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 3

Let qi be the geometric parameter in model Si, i = 0, 1, 2, 3, and let q0 = 109
110 , q1 = q2 = 0.99,

q3 = 0.989;

• E[Y1] = 1.1 and E[Y2] = 10.

Under the above assumptions one can easily verify that E[Si] = 1100, i = 0, 1, 2, 3.
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Figure 4. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 4

Figure 5. The detailed c.d.f. of S0, S1, S2 and S3 in Case 1

As mentioned in Section 2.1, Y1 is likely to be some real-life index when considering the indexed insurance
benefits, so we suggest a distribution with a finite support for Y1. Bear in mind that here we are considering the
aggregate claims amount for a given time period, so the distribution of the index may change over time. Also,
Section 2.2 gave one motivation for Y2, i.e. the random fixed cost on claim settlements for an insurance portfolio.
Again, a distribution with a finite support should be a reasonable assumption. To better demonstrate the impact of
different level of dependence on the aggregate claim distributions, we consider the following four cases:
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Figure 6. The detailed c.d.f. of S0, S1, S2 and S3 in Case 4

Case 1. A = {1.05, 1.1, 1.15}, {g1(1.05) = 1
3 , g1(1.1) =

1
3 , g1(1.15) =

1
3};

D = {5, 10, 15}, {g2(5) = 1
3 , g2(10) =

1
3 , g2(15) =

1
3};

Case 2. A = {1.05, 1.1, 1.15}, {g1(1.05) = 1
3 , g1(1.1) =

1
3 , g1(1.15) =

1
3};

D = {5, 10, 25}, {g2(5) = 1
2 , g2(10) =

1
3 , g2(25) =

1
6};

Case 3. A = {1.05, 1.1, 1.25}, {g1(1.05) = 1
2 , g1(1.1) =

1
3 , g1(1.25) =

1
6};

D = {5, 10, 15}, {g2(5) = 1
3 , g2(10) =

1
3 , g2(15) =

1
3};

Case 4. A = {1.05, 1.1, 1.25}, {g1(1.05) = 1
2 , g1(1.1) =

1
3 , g1(1.25) =

1
6};

D = {5, 10, 25}, {g2(5) = 1
2 , g2(10) =

1
3 , g2(25) =

1
6}.

Example 1. In the first example, we assume that N follows a Poisson(10) distribution. Table 1 summarises some
empirical results regarding the aggregate claim amounts Si, i = 0, . . . , 3, under the above four cases. In Table 1,
there is one italic correlation coefficient in each case which emphasizes the dependence model that is significantly
different from the other two in respect of the degree of dependence. Also, tripling the variance of Y1 or Y2 roughly
doubled ρ3 while tripling the variance of both Y1 and Y2 tripled ρ3 overall. Further, under the above assumptions,
the degree of dependence in the two-way dependence model S3 is always the largest in all four cases which is
consistent with the fact that it has two sources of correlation embedded in the model.

To better explain the computation procedure of hi(s), i = 1, 2, 3, we further specify the domains involved in the
calculations as follows:

Case 1&2. B = {0, 1.05, 1.10, 1.15, 2.10, 2.20, 2.30, . . .}; Ar = { 21
20 ,

11
10 ,

23
20};

B∗ = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, . . .};

Case 3&4. B = {0, 1.05, 1.10, 1.25, 2.10, 2.20, 2.50, . . .}; Ar = { 21
20 ,

11
10 ,

5
4};

B∗ = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, . . .}.

Having all parameters assumed and making use of the algorithms given in Section 3, we calculate the p.f. of Si,
i = 0, . . . , 3, i.e. hZ and hi, i = 1, 2, 3, in R. It can be seen that the Panjer’s recursion with a = 0 and b = 10 is
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Table 1. Some preliminary results

Case 1 Case 2 Case 3 Case 4
V [Y1] 0.00167 0.00167 0.00500 0.00500
CVY1 0.03711 0.03711 0.06428 0.06428
V [Y2] 16.66667 50.00000 16.66667 50.00000
CVY2 0.40825 0.70711 0.40825 0.70711
V [S1] 242,788 242,788 246,785 246,785
ρ1 0.00139 0.00139 0.00414 0.00414

V [S2] 221,833 225,500 221,833 225,500
ρ2 0.00168 0.00503 0.00168 0.00503

V [S3] 223,385 227,051 226,688 230,354
ρ3 0.00306 0.00640 0.00581 0.00911

the core in all calculations. The details of how to conduct the computational tasks have been given in Section
3, so we need not repeat here. Based on the calculated results, we draw the following Figures 1-6 that visually
present the p.f. and cumulative distribution function (c.d.f.) of Si, i = 0, . . . , 3, under the above presumed four
cases. According to the descriptive statistics summarised in Table 1, one can see that the multiplicative factor Y1 in
Case 3 and 4 have higher variations and the additive factor Y2 in Case 2 and 4 have higher variations. Overall, the
variances of Si, i = 1, 2, 3, in Case 1 are the lowest and the variances of Si in Case 4 are the highest. One can see
from the figures that:

• First of all, the non-smooth graphs of h1 and h3 look strange comparing with those of h2. It is
the consequence of the multiplicative factor Y1, as different combinations of Z and Y1 values
could obtain the same value for S1. An example has been given in Section 3.1. Therefore, the
probability masses of Z have been reallocated under the framework of S1 or S3 and resulted
in the non-smooth dot plots of h1 and h3. On the contrary, Y2 has only a shifting effect on the
aggregate claim distributions, so it did not affect the smoothness in the graphs of h2.

• The impact of the multiplicative factor Y1 on the shape of p.f.’s is vertical. For Case 3 and 4 which
have more variable Y1 values, the p.f.’s of S1 and S3 change a lot vertically comparing with the
other two cases. Also, together with the additive factor Y2, the p.f. of S3 fluctuate a lot such that
the probability masses of h3 almost fill in certain regions. The number of values that S3 can take
given S3 ≤ s is much bigger than the maximum value s.

• No matter how fluctuating the p.f. curves are, the c.d.f.’s are all smooth functions. Under the
presumed numerical cases and the scale of the figures, the differences among the four c.d.f.’s are
not significant in Figure 1-4.

• To better show the relationships among the four c.d.f.’s we show some detailed graphs for Case 1
and Case 4, which are the cases with the biggest difference, in Figure 5 and 6 respectively. One
can see that for smaller aggregate claims amount, under our model assumptions, the independent
model S0 tends to underestimate their associated probabilities if the multiplicative dependence
exists; it tends to overestimate the associated probabilities if either the additive or the two-way
dependence exists. Figure 5 and 6 also show that the impact of the additive factor Y2 is more
obvious when the multiplicative factor Y1 has a small variance, as the curves for S0 and S1

(without additive factor) are more separated from S2 and S3 (with additive factor) in Case 1
than in Case 4.

• Figure 6 shows the same trends as the ones shown by Figure 5. Due to the increased variance of
Y1, its impact on the c.d.f’s is more easily seen.
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Figure 7. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 1

Example 2. To further our findings in the previous compound Poisson case, we explore the compound negative
binomial case in the following. Assume that N follows a negative binomial distribution with size 2 and probability
1
6 . It can be verified that E[N ] = 10 and V [N ] = 60. Table 2 summarises the empirical results regarding the
aggregate claim amounts Si, i = 0, . . . , 3, under the four cases specified in Example 1. One can see that the
aggregate claims amounts Si, i = 1, 2, 3, have much higher variances under the compound negative binomial
assumption than under the compound Poisson assumption, but the correlation among claim sizes is not affected by
the number of claims assumption due to the independence between number of claims and individual claim sizes.

Table 2. Some preliminary results

Case 1 Case 2 Case 3 Case 4
V [Y1] 0.00167 0.00167 0.00500 0.00500
CVY1 0.03711 0.03711 0.06428 0.06428
V [Y2] 16.66667 50.00000 16.66667 50.00000
CVY2 0.40825 0.70711 0.40825 0.70711
V [S1] 848,622 848,622 854,285 854,285
ρ1 0.00139 0.00139 0.00414 0.00414

V [S2] 827,667 833,000 827,667 833,000
ρ2 0.00168 0.00503 0.00168 0.00503

V [S3] 829,907 835,240 834,587 839,920
ρ3 0.00306 0.00640 0.00581 0.00911

For the purpose of illustration, we present some graphs for Case 1 and 4 only. Based on the given algorithms
in Section 3 we calculate the p.f. of Si, i = 0, . . . , 3, i.e. hZ and hi, i = 1, 2, 3, in R. The Panjer’s recursion with
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Figure 8. The graph of hi, i = 1, 2, 3, and Hi, i = 0, 1, 2, 3, in Case 4

a = b = 5
6 is the core in all calculations. Figure 7 and 8 summarize the numerical results obtained under the above

assumptions. And it can be seen from Figure 7 and 8 that under the compound negative binomial assumption, the
impact of the multiplicative factor Y1 and the additive factor Y2 on the distribution of aggregate claims amount Si,
i = 1, 2, 3, are similar to what we observed in Example 1. Also, the impact of Y2 on the c.d.f.’s Hi, i = 0, 1, 2, 3, is
clearer than the compound Poisson case.
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8. M. Boudreault, H. Cossette, D. Landriault, and É. Marceau, On a risk model with dependence between interclaim arrivals and claim

sizes, Scandinavian Actuarial Journal, vol. 2006, pp. 265-285, 2006.
9. Y. Chen, and K.C. Yuen, Precise large deviations of aggregate claims in a size-dependent renewal risk model, Insurance:

Mathematics and Economics, vol. 51, pp. 457-461, 2012.
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