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Abstract This paper compares the performance characteristics of penalty estimators, namely, LASSO and ridge regression
(RR), with the least squares estimator (LSE), restricted estimator (RE), preliminary test estimator (PTE) and the Stein-type
estimators. Under the assumption of orthonormal design matrix of a given regression model, we find that the RR estimator
dominates the LSE, RE, PTE, Stein-type estimators and LASSO estimator uniformly, while, similar to [17], neither LASSO
nor LSE, PTE and Stein-Type estimators dominates the other. Our conclusions are based on the analysis of L2-risks and
relative risk efficiencies (RRE) together with the RRE related tables and graphs.
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1. Introduction

It is well-known that the “least squares estimators (LSE)” in linear models, are unbiased with minimum variance
characteristics. But data analysts point out some deficiency of LSE with regards to “prediction accuracy” and
“interpretation”. To overcome these two important concerns, [32] proposed a new popular and exciting penalty
estimator, called, least absolute shrinkage and selection operator (LASSO). It defines a continuous shrinking
operation that can produce coefficients that are exactly 0 and competitive with “subset selection” and “ridge
regression” retaining the good features of both of them. LASSO simultaneously estimates and selects the
coefficients of a given model.

However, there are many shrinkage estimators such as “preliminary test (PT)” and Stein-type estimators (SE) in
the literature. They do not select coefficients but only shrinks towards a target value.

There is an extensive literature of the preliminary test and Stein-type estimators. Most recent one is documented
in [25]. Due to the immense impact of Stein’s approach on “point estimation”, scores of technical papers appears
in the literature in various areas of applications.

In 1970, Hoerl and Kennard introduced the “ridge regression” estimator which opened the door for “penalty
estimators” based on the [33]. Ridge regression combats the problem of multicollinearity in the linear models and
is the precursor of the problem of estimation and selection of variables. Ridge regression (RR) methodology is
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a minimization of the least squares criterion subjects to L2-penalty. Thus, the estimation subject to the penalty
function was born.

LASSO is related to the estimators, such as, non-negative garotte by [8], smoothly clipped absolute derivation
(SCAD) estimator by [11] and [13], elastic net by [36], adaptive LASSO by [35], hard threshold LASSO by [6]
and many other versions. A general form of extension of LASSO type estimation called the bridge estimation by
[14] is worth pursuing.

This paper is devoted to the comparative study of the finite sample performance of the primary penalty estimators,
namely, LASSO and the ridge regression estimators relative to the LSE, RE, preliminary test (PTE), James-Stein
estimator (JSE) and positive rule estimator (PRE). The question of comparison between the ridge regression (first
discovery of penalty estimator) and Stein-Type estimator is well known and was initiated by [10] among others
yet incomplete. So far in the literature, we find scattered and partial simulated comparisons giving unfinished
informations. Thus, we decided to peruse this comparison a fresh as new in terms of the L2-risk to find their special
characteristics relative to the preliminary test and Stein-Type estimators analytically to verify the conclusions by
[32] and [17], who compares LASSO and Stein-Type estimators among others.

For details on preliminary test and Stein-type estimators we refer our readers to [25], [29],[30], [15], [1],[2][3],
[26], [21] [21], [24], [12], [27] and very recently [28] among others. An important characteristic of LASSO is that
it provides simultaneous estimation and selection of coefficients in a linear models and can be applied when the
dimension of the parameters space exceeds the dimension of the sample space, while the Stein-type estimation
restricts the dimension of the parameters space below the dimension of the sample space. This paper points
the useful aspects of LASSO and ridge regression estimators as well as limitations as found in other papers.
Conclusions are obtained based on the lower bound of the L2-risk of the LASSO estimator provided by [9].
The comparison of seven estimators discussed here are not based on simulation experiments but based on the
mathematical analysis.

Since, we are comparing several estimators where some are linear and some are non-linear, we create a level
playing field by assuming orthonormal design matrix which is generally relevant for empirical practices. The main
objective of this paper is to compare analytically the performance of LASSO and ridge regression estimators with
LSE, RE, PTE, SE and PRSE in the sense of smaller L2-risk.

The organization of the paper is as follows: Section 2 discusses various estimators and their risk expressions in
the canonical regression models. Section 3 contains details of analysis of the relative efficiencies of the estimators
with tables and graphs of the findings. Conclusions are provided in section 4.

2. Linear Model and the Estimators

Consider the multiple linear regression model in two forms

Y = Xβ + e, and Y = X1β1 +X2β2 + e, (1)

whereX ′X = Ip is an identity matrix, x̄ = (x̄1, x̄2, . . . , x̄p) = 0, Y = (y1, y2, . . . , yn)′ is an n- vector of responses,
X is an n× p design matrix, β = (β1, β2, . . . , βp)

′ is an p-vector of regression coefficients and e = (e1, e2, . . . , en)′

is an n- vector of errors following the N(0, σ2In) distribution with known σ2. The second form of the model (1),
arises by partitioning β = (βT1 , β

T
2 )T and X = (X1, X2), (p = p1 + p2) where β1 may stand for the main effects

and β2 for the interactions which may be insignificant and one is interested in the estimation main effect when β2

is suspected to be zero (sparsity condition). It is well known that the least squares estimator (LSE) of β under the
assumed conditions is given by

β̃n = X ′Y = (β̃T1n, β̃
T
2n)T . (2)

The LSE is the best linear unbiased estimator (BLUE) of β. Under normal theory β̃n ∼ Np(β, σ2Ip). Equivalently

(β̃T1n, β̃
T
2n)T ∼ Np

((
β1

β2

)
, σ2

(
Ip1 0
0 Ip2

))
. We made the above simplified assumptions in order to create

level playing field to compare a diverse set of shrinkage estimators of β = (β1, β2, . . . , βp)
′. These assumptions also
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produces insight about the nature of the shrinkage that can be gleaned from the orthonormality of the design matrix.
From now on we shall designate the LSE, β̃n = (β̃T1 , β̃

T
2 )T as the unrestricted estimator (UE) of β = (βT1 , β

T
2 )T and

β̂2n = 0 as the restricted estimator (RE) of β2 so that the restricted estimator of βR = (βT1 , 0
T )T is β̂n = (β̃T1n, 0

T )T

. We shall study the quantitative characteristics of the estimators based on the L2-risk defined by

R(β∗n : Ip) = E||β∗n − β||2, (3)

where β∗n is any estimator of β. Based on (2) and (3), we see at once that the bias and the risk of LSE and RE are
given respectively by,

b1(β̃jn) = 0 and R1(β̃jn : Ip1) = σ2pj , j = 1, 2,

b2(β̂2n) = −β2 and R2(β̂2n, Ip2) = σ2∆2, (4)

From equation (4), we easily find that

R1(β̃n : Ip) = σ2(p1 + p2)

R2(β̂n : Ip) = σ2(p1 + ∆2) (5)

where ∆2 =
β′
2β2

σ2 is the divergence parameter which measures the distance of ∆ = (∆21,∆22, .., . . . ,∆2p2)′ form
the origin in the Rp2-space given by

∆2 = ∆2
21 + ∆2

22 + . . .+ ∆2
2p2 , ∆2j =

β2j

σ
, j = 1, 2, . . . , p2 (6)

All our analysis will be based on ∆2 ∈ R+ specifying the parameter space instead of ∆ =
(∆21,∆22, .., . . . ,∆2p2)′ ∈ Rp2 . Our basic interest is to consider several shrinkage estimators which shrink
towards the origin, 0. Accordingly we first, consider the preliminary test estimator (PTE) as

β̂PTn =
(
β̃T1n, β̃

T
2nI(Ln > cα)

)
, (7)

where I(A) is the indicator function of the set A, Ln =
β̃′
2nβ̃2n

σ2 is the test statistic for testing H0 : β2 = 0 and
cα = χ2

p(α) is the upper αth percentile of the null distribution of Ln. It is known that Ln follows a non-central
chi-square distribution with p2 degrees of freedom (D.F.) and non-centrality parameter, ∆2, which we defined as
the divergence parameter. PTE is a discrete process and “keeps” or “kills” the estimators β̃n or β̂n. The bias-vector
and L2-risk of the PTE are respectively given by

b3(β̂PTn ) =
(
0T ,−βT2 Hp2+2

(
cα; ∆2

))
and R3(β̂PTn ; Ip) = σ2p1 + σ2

[
p2 − p2Hp2+2

(
cα; ∆2

)
+ ∆2

{
2Hp2+2

(
cα; ∆2

)
−Hp2+4

(
c∗α; ∆2

)}]
(8)

where Hν-functions represent the CDF of the non-central chi-square distribution with DF ν and noncentrality
parameter ∆2 and cα is the upper αth percentile of the central chi-square distribution with ν degrees of freedom.
A continuous version of PTE is the James-Stein type estimator (JSE) is defined by

β̂JSn =
(
β̃T1n, β̃

T
2n(1− (p2 − 2)L−1

n ), (p2 ≥ 3)
)
. (9)

The bias and L2-risk function of the JSE are given respectively by

b4(β̂JSn ) =
(
0,−βT2 (p2 − 2)E

[
χ−2
p2+2(∆2)

])
and R4(β̂JSn ; Ip) = σ2p1 + σ2

[
p2 − (p2 − 2)2E

[
χ−2
p2 (∆2)

]]
, (10)

where χ2
ν(∆2) is the standard non-central chi-square variable with ν DF and noncentrality parameter ∆2. The main

characteristic of the JSE is the reduction of L2-risk. We obtain the JSE as a simple modification of PTE and depends
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on the test-statistic, Ln. See [25] for details. The JSE has the property of “over-shrinkage” beyond the target vector
resulting in changes of sign. This is due to factor (1− (p2 − 2)L−1

n ) whose absolute value may exceed unity. This
change of value effects the interpretation. Hence, we consider the Positive-Rule Stein type shrinkage estimator
(PRSE), β̂S+

n defined by

β̂S+
n =

(
β̃T1n, β̃

T
2n(1− (p2 − 2)L−1

n )I(Ln > (p2 − 2))
)
. (11)

The bias and L2-risk function of PRSE are respectively given by

b5(β̂S+
n ) =

(
0T ,−βT2

{
E
[
1− (p2 − 2)χ−2

p2+2(∆2))I(χ2
p2+2(∆2) < p2 − 2)

]
− Hp2+2(p2 − 2; ∆2)

})
and R5(β̂S+

n ; Ip) = R4(β̂JSn ; Ip)− p2σ
2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)2
I
(
χ2
p2+2(∆2) < p2 − 2

)]
+ σ2∆2

{
2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)I(χ2

p2+2(∆2)) < p2 − 2)
)]

− E
[(

1− (p2 − 2)χ−2
p2+4(∆2)2I(χ2

p2+4(∆2)) < p2 − 2)
)]}

(12)

where
E
[
χ−2
p2+2(∆2))I(χ2

p2+2(∆2) < p2 − 2)
]

is the truncated expectation of the reciprocal of a noncentral χ2-distribution with p2 + 2 degrees of freedoms and
noncentrality parameter 1

2∆2.
Next, we consider the basic penalty estimator called the ridge regression (RR) estimator ([18]) and given by

β̂RRn =
1

1 + k
β̃n. (13)

This estimator is not scale invariant. If scales used to express the individual predictor variables are changed, then the
ridge coefficients do not change inversely proportional to the changes in the variable scales. This ridge regression
gives constant shrinkage, 1

1+k . The bias and L2-risk expression are given respectively by

b6(β̂RRn ) = − k

1 + k
β

and R6(β̂RRn ; Ip) =
σ2

(1 + k)2
[p+ k2∆2]. (14)

Notice that the estimator depends on the unknown tuning parameter, k. In general ridge regression estimator
combats the multicollinearity problem if the X-matrix is non-orthogonal. In this case, it is a scaled version of the
LSE. It tends to null vector (0), as k →∞ and for k = 0, it reduces to the LSE.

It can be shown that R6(β̂RRn ; Ip) ≤ R1(β̃n; Ip), whenever, k ∈ (0, k0] with k0 = pσ2

β′β = p∆−2. Thus
R6(β̂RRn ; Ip) in (13) at k = k0 becomes,

R6(β̂RRn ; Ip) = σ2 p∆2

(p+ ∆2)
.

However, we shall consider the ridge regression estimator as

β̃RRn (k) =

(
β̃1n

β̃2n(k)

)
where β̃2n(k) =

1

1 + k
β̃2n (15)

for our purpose to be consistent wuth the assumption of sparsity, ie. β2 = 0 (see Tibshirani, 1996).
Finally, we consider the LASSO (Least absolute shrinkage and selection operator) estimator due to [32] which

has gone viral in the statistical literature due to its applicability in data-analysis for linear models unlike other
estimators. It shrinks some coefficients and sets others to 0 and hence tries to retain good properties of subset

Stat., Optim. Inf. Comput. Vol. 7, December 2019



630 COMPARATIVE STUDY OF LASSO, RIDGE REGRESSION, PRELIMINARY TEST AND STEIN-TYPE ESTIMATORS

selection and ridge regression. The literature on LASSO related penalty estimator shows that mostly they have
been studies under “orthonormal” set-up of the design matrix X. See for example [32], [9], [11] and [35] among
many others. We use the orthonormality of the design matrix in our study too.

The LASSO estimator have been defined as given below,

β̂Ln (λ) = (β̂L1n(λ), β̂L2n(λ), . . . β̂Lpn(λ))′ (16)

where

β̂Ljn(λ) = sgn(β̃jn)
(
|β̃jn| − λσ

)
I
(
|β̃jn| > λσ

)
, j = 1, 2, . . . , p. (17)

Here, λ is the tuning parameter (threshold parameter) and according to [32], LASSO is obtained by minimizing

(Y −Xβ)′(Y −Xβ) + λσ1′p|β|; |β| = (|β1|, |β2|, . . . , |βp|)′ (18)

which provides simultaneously estimation and selection of the components of β-vector.
Our aim is the estimation of β under L2-risk given by (3). For this, we consider the family of diagonal linear

projections (DP),

TDP (β̃n, τ)) = (τj β̂
L
jn(λ)|j = 1, 2, . . . , p)T , τj ∈ (0, 1) (19)

This estimator ‘keeps’ or ‘kills’ a parameter, β̃jn, ie, it does subset selection. Now, we incur a risk σ2 if we use
β̃jn, and a risk β2

j if we sue the estimator 0 instead. Hence, our ideal choice is I(|βj | > σ) for τj , that is keep all
those predictors whose true value is more than the noise level, σ2. These yield the ideal risk, Rσ(DP ) given by

Rσ(DP ) =

p∑
i=1

min(β2
j , σ

2) (20)

This expression is a lower bound of the risk that we can hope for. If we assume that p1 of β2
j ’s are greater than σ2

and rest p2 are zero, then we obtain Rσ(DP ) = σ2(p1 + ∆2). In this case, the lower bound of the risk of LASSO
is given by

R7(λp, Ip) ≥ σ2(p1 + ∆2), λp =
√

2ln(p). (21)

We shall use this lower bound to compare LASSO with other estimators. Finally, based on the Theorem 1 of [9]and
equation (20), we have the following inequality:

p∑
i=1

min(β2
j , σ

2) ≤ R7(β̂Ln (λp) : Ip) ≤ (1 + 2ln(p))

{
σ2 +

p∑
i=1

min(β2
j , σ

2)

}
. (22)

Next, we consider the hard threshold estimator (HTE) given by

β̂HTn (λ) = {β̃jnI(|β̃jn| > λσ)|j = 1, . . . , p}. (23)

[9]shows that asymptotically LASSO comes as close as HTE to the performance of an ideal subset selector-one
that uses information about the actual parameter. As such the result (22) holds for β̂HTn (λp) as well.

Finally, by Theorem 4 of Donoho and Johnstone (1994), the upper bound of (22) for a sequence of {λ∗n} of
thresholds close to λp =

√
2ln(p) is given by

R8(β̂HTn (λ) : Ip) ≤ (1 + 2ln(p)){σ2 +

p∑
i=1

min(β2
j , σ

2)}, β ∈ Rp (24)

(See Tibshirani (1996), Eqn 16).
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Thus, we see that

σ2

p∑
j=1

min(∆2
j , 1) ≤ R7(β̂Ln (λp) : Ip) ≤ σ2(1 + 2ln(p)){1 +

p∑
j=1

min(∆2
j , 1)}. (25)

Same result holds for β̂HTn (λp). One may notice that the choice λp =
√

2ln(p) gives smallest asymptotic L2-risk
for both subset selection estimator as well as LASSO estimator when we consider competing estimators.

3. Analysis of Dominance Properties of the Estimators

In this section, we compare and contrast the L2-risks of the seven estimators discussed in section 2.
First, we note that LASSO have been proposed by [32]for shrinkage and selection of coefficients for linear and

generalized regression models. The LASSO does not focus on subsets but rather defines a continuous shrinkage
operation that can produce coefficients that are exactly 0 and competitive with subset selection and ridge regression
in terms of prediction accuracy.

Secondly, LASSO performs best at a pont (see [7]. In our case for ∆2 = 0, it performs best among all estimators
except ridge regression.

Thirdly, LASSO enjoys the “Oracle Properties: (see [35] since the design matrix is orthogonal.
In his pioneering paper,[32]examined the relative merits of the subset selection, ridge regression and the LASSO

in three different scenarios: (a) Small number of large coefficients -subset selection does the best here, the LASSO
not quite as well as ridge regression does quite poorly.
(b) Small to moderate numbers of moderate-size coefficients -LASSO does best followed by ridge regression and
then subset selection.
(c) Large number of small coefficients -ridge regression does best by a good margin, followed by LASSO and then
subset selection.

The above results refer to prediction accuracy. Recently, [17] considered the comparison of LASSO, Stein-type
estimators and subset selection based on L2-risk. His findings may be summarized as follows:
(i) Neither LASSO nor LSE or Stein-Type estimators uniformly dominate one other.
(ii) Via simulation studies, he concludes that LASSO estimation is particularly sensitive to coefficient
parameterization and for a significant portion of the parameter space, LASSO has higher L2-risk than the LSE.

[17]did not specify the regions where one estimator or the other has lower L2-risk. In his analysis, [17] used the
normalized L2-risk bounds (NRB) to arrive at his conclusion.

3.1. Comparison of LASSO and LSE

Consider the solution for LASSO. In particular, suppose that the p1(< p) coefficients satisfy the condition β2
j > σ2

and remaining p2 coefficients are 0 (zero). In this case, the L2-risk difference of LSE and LASSO is given by

R1(β̃n : Ip)−R7(β̂Ln : Ip) = σ2[(p1 + p2)− (p1 + ∆2)] = σ2(p2 −∆2) (26)

Hence, LASSO outperforms the LSE whenever

0 ≤ ∆2 ≤ p2 (27)

Otherwise, LSE outperforms LASSO in the interval (p2,∞). Hence, neither LSE nor LASSO outperform the other.
Thus, by (20), we have the relative risk efficiency (RRE)

p

(1 + 2ln(p)){1 +
∑p

j=1min(∆2
j , 1)}

≤ RRE[LASSO : LSE] ≤ p∑p
j=1min(∆2

j , 1)
.

(28)
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Table 3.1: Upper bounds of the efficiencies for some selected values of (p1, p2) and ∆2 = 0

p1

p
√

2ln(p) 1 2 3 4 5

10 2.145 10 5 3.3 2.5 2.0
20 2.448 20 10 6.6 5.0 4.0
30 2.608 30 15 10.0 7.5 6.0
40 2.716 40 20 13.3 10.0, 8.0
60 2.862 60 30 20.0, 15.0 12.0
128 3.115 128 64 42.6, 32.0 25.6
256 3.330 256 128 85.3 64.0 51.2
512 3.532 512 256 170.6 128.0 102.4

1024 3.723 1024 512 341.3 256.0 203.8

which is a function of ∆2. If ∆2 = 0, we get the lower bound p
(1+2ln(p)){1+p1)} and upper bound p

p1
= 1 + p2

p1
. In

this case, (28) becomes

p

(1 + 2ln(p))(1 + p1)
≤ RRE[LASSO : LSE] ≤ 1 +

p2

p1
(29)

We have displayed only the upper bounds of the RRE[LASSO : LSE] for ∆2 = 0 and for p1 = 1, 2, 3, 4, 5
and p = 10, 20, 30, 40, 60, 128, 256, 512, 1024 in Table 3.1. Some tabular values of (3.4) have been computed for
p1 = 2, 3, 5, 7 and p = 10, 20, 40, 60 and for selected value of ∆2 ∈ [0, 100] and presented them in Table 3.2.

From the Table 3.1, one can see that for fixed p1 as p increases the RRE[LASSO: LSE] increases significantly
and for fixed p, as p1 increases, LASSO loses its efficiency quickly.

Since, p = p1 + p2, then for fixed p1, p increases if p2 increases. Thus, we can say that for fixed p1, if p2 increases
the RRE[LASSO: LSE] increases and fixed p2 if p1 increases the RRE[LASSO: LSE] decreases quickly. In general,
one can say that RRE[LASSO : LSE] ≥ 1 depending on the size of p1 and p2 when ∆2 = 0.

On the other hand, if ∆2 = 0, the two bounds depend on ∆2 and bounds are decreasing function of ∆2. Hence,
RRE[LASSO : LSE] ≤≥ 1, depending on the size of (p1, p2,∆

2). Hence, neither LASSO nor LSE outperform
the other uniformly. See Figure 1.

3.2. Comparison of LASSO with RE

For the comparison of LASSO with RE, we consider the risk relative efficiency (RRE) of β̂n relative to LSE given
by

RRE[β̂n : β̃n] =
p

p1 + ∆2
(30)

which is a decreasing function of ∆2 and attains it maximum value
(

1 + p2
p1

)
at ∆2 = 0 and equals unity at

∆2 = p2. Thus, β̂n dominates β̃n in the range 0 ≤ ∆2 ≤ p2 and β̃n dominates β̂n when ∆2 > p2. Thus none of the
estimators dominate one another uniformly. The p2 sphere with radius less that p2 is the parameter space when β̂n
dominates β̃n and outside this sphere β̃n dominates β̂n.

Now, we know that both LASSO and RE perform better than the LSE in the interval [0, p2) and LSE performs
better than both LASSO and RE in the interval (p2,∞). It is evident that for a significant proportion of the parameter
space both LASSO and RE has higher L2-risk than the LSE. Thus, we observe the performance characteristics of
both LASSO and RE are the same indicating “oracle property” of LASSO under orthonormal design matrix.
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3.3. Comparison of LASSO with the PTE

In this section, we present the comparison of LASSO with the PTE. In this case, the L2-risk difference is given by

R3(β̂PTn : Ip)−R7(β̂Ln (λp) : Ik) = σ2p1 + σ2
[
p2(1−Hp2+2

(
cα; ∆2

(k)

)
)

+ ∆2
{

2Hp2+2

(
cα; ∆2

)
−Hp2+4

(
cα; ∆2

)}
− (p1 + ∆2)

]
= σ2

[
p2(1−Hp2+2

(
cα; ∆2

)
)−∆2(1− 2Hp2+2

(
cα; ∆2

)
−Hp2+4

(
cα; ∆2

)
)
]

(31)

Then, LASSO performs better than the PTE whenever,

0 ≤ ∆2 ≤
p2(1−Hp2+2

(
cα; ∆2

)
)

p2(1− 2Hp2+2 (cα; ∆2)−Hp2+2 (cα; ∆2))
= ∆2

PTE (32)

Otherwise, PTE is better than the LASSO for ∆2 > ∆2
PTE . Hence neither PTE nor LASSO dominate the other

uniformly for all α ∈ (0, 1). c

3.4. Comparison of LSE with JSE and PRSE

Now, we consider the comparison of JSE and LSE. It is easy to see that by simple L2-risk difference

R1(β̃n; Ip)−R4(β̂JSn ; Ip) = σ2(p2 − 2)2E
[
χ−2
p2 (∆2)

]
> 0 ∀∆2 ∈ (0,∞). (33)
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Hence β̂JSn dominates uniformly over β̃n.
Similarly, the L2-risk difference of β̂S+

n and β̃n is given by,

R4(β̂JSn ; Ip)−R5(β̂S+
n ; Ip)

= p2σ
2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)2
I
(
χ2
p2+2(∆2) < p2 − 2

)]
− β′β

{
E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)
I
(
χ2
p2+2(∆2) < p2 − 2

)]
− E

[(
1− (p2 − 2)χ−2

p2+4(∆2)
)2
I
(
χ2
p2+4(∆2) < p2 − 2

)]}
≤ 0 (34)

Thus we have the following identity

R5(β̂S+
n ; Ip) ≤ R4(β̂JSn ; Ip) ≤ R1(β̃n; Ip) ∀∆2 ∈ R+.

It is clear that JSE and PRSE gains are highest when the coefficients are small.

3.5. Comparison of LASSO with JSE and PRSE

How is the performance of LASSO compared to JSE? For this first we consider the L2RE differences of JSE and
the upper bound of L2-risk of LASSO (p2 ≥ 3) given by

R7(β̂Ln (λp) : Ip)−R4(β̂JSn : Ip) = σ2
[
(p1 + ∆2)− p+ (p2 − 2)2E

(
χ−2
p2 (∆2)

)]
= σ2

[
∆2 − p2 + (p2 − 2)2E

(
χ−2
p2 (∆2)

)]
(35)

Hence, LASSO outperform JSE, whenever,

Ω∆2 =
{

∆2 : 0 ≤ ∆2 ≤ p2 − (p2 − 2)2E
(
χ−2
p2 (∆2)

)}
(36)

Otherwise, JSE outperforms LASSO in Ω̄∆2 . Hence neither LASSO nor JSE dominate the others uniformly in
∆2. Now, we will demonstrate some properties of LASSO and JSE. First, we compare the RRE[JSE:LSE] and
RRE[LASSO: LSE]. They are given by

RRE[JSE : LSE] = p
{
p− (p2 − 2)2E

(
χ−2
p2 (∆2)

)}−1

RRE[LASSO : LSE] ≥ p

[(p1 + ∆2]
(37)

respectively. Under ∆2 = 0, the RRE[JSE : LSE] = 1 + p2−2
p1+2 . Thus for,

For p1 = p2 = 5, RRE[JSE : LSE] = 1.429
For p1 = p2 = 10, RRE[JSE : LSE] = 2.142
For p1 = p2 = 15, RRE[JSE : LSE] = 2.857

We can see that under ∆2 = 0 as p2 increase for fixed p1, the RRE[JSE:LSE] increases too. As a function
of ∆2, RRE[JSE:LSE] decrees from

(
1 + p2−2

p1+2

)
towards unity as ∆2 →∞. For any fixed value of ∆2 (say,

∆2
0), RRE[JSE:LSE] increases with p2 for fixed p1. Now we observe that the RRE difference, RRE[LASSO :

LSE]−RRE[JSE : LSE] ≥ 1, whenever Ω∆2 holds.
This means that the region in which LASSO performs better than the JSE is given by (36), otherwise JSE

performs better than the LASSO.
Now, we consider the comparison of LASSO and positive-rule Stein estimator and consider the L2-risk-

difference given by

R7(β̂Ln (λp) : Ip)−R5(β̂S+
n : Ip) = σ2

[
(p1 + ∆2)− (p1 + p2) + (p2 − 2)2E

(
χ−2
p2 (∆2)

)]
+ p2σ

2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)2
I
(
χ2
p2+2(∆2) < p2 − 2

)]
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Table 3.2: Efficiency of LASSO & RE as a function of ∆2 for different (p1, p2)
p1 = 2 p1 = 3

∆2 LSE p=10 p=20 p=40 p=60 p=10 p=20 p=40 p=60
0.00 1.00 5.00 10.00 20.00 30.00 3.33 6.67 13.33 20.00
0.10 1.00 4.76 9.52 19.05 28.57 3.23 6.45 12.90 19.35
0.20 1.00 4.55 9.09 18.18 27.27 3.12 6.25 12.50 18.75
0.30 1.00 4.35 8.70 17.39 26.09 3.03 6.06 12.12 18.18
0.50 1.00 4.00 8.00 16.00 24.00 2.86 5.71 11.43 17.14
0.70 1.00 3.70 7.41 14.81 22.22 2.70 5.41 10.81 16.22
0.90 1.00 3.45 6.90 13.79 20.69 2.56 5.13 10.26 15.38
1.00 1.00 3.33 6.67 13.33 20.00 2.50 5.00 10.00 15.00
1.50 1.00 2.86 5.71 11.43 17.14 2.22 4.44 8.89 13.33
2.00 1.00 2.50 5.00 10.00 15.00 2.00 4.00 8.00 12.00
3.00 1.00 2.00 4.00 8.00 12.00 1.67 3.33 6.67 10.00
5.00 1.00 1.43 2.86 5.71 8.57 1.25 2.50 5.00 7.50
7.00 1.00 1.11 2.22 4.44 6.67 1.00 2.00 4.00 6.00
8.00 1.00 1.00 2.00 4.00 6.00 0.91 1.82 3.64 5.45

10.00 1.00 0.83 1.67 3.33 5.00 0.77 1.54 3.08 4.62
13.00 1.00 0.67 1.33 2.67 4.00 0.62 1.25 2.50 3.75
15.00 1.00 0.59 1.18 2.35 3.53 0.56 1.11 2.22 3.33
17.00 1.00 0.53 1.05 2.11 3.16 0.50 1.00 2.00 3.00
18.00 1.00 0.50 1.00 2.00 3.00 0.48 0.95 1.90 2.86
20.00 1.00 0.45 0.91 1.82 2.73 0.43 0.87 1.74 2.61
25.00 1.00 0.37 0.74 1.48 2.22 0.36 0.71 1.43 2.14
30.00 1.00 0.31 0.62 1.25 1.88 0.30 0.61 1.21 1.82
33.00 1.00 0.29 0.57 1.14 1.71 0.28 0.56 1.11 1.67
35.00 1.00 0.27 0.54 1.08 1.62 0.26 0.53 1.05 1.58
37.00 1.00 0.26 0.51 1.03 1.54 0.25 0.50 1.00 1.50
38.00 1.00 0.25 0.50 1.00 1.50 0.24 0.49 0.98 1.46
40.00 1.00 0.24 0.48 0.95 1.43 0.23 0.47 0.93 1.40
50.00 1.00 0.19 0.38 0.77 1.15 0.19 0.38 0.75 1.13
53.00 1.00 0.18 0.36 0.73 1.09 0.18 0.36 0.71 1.07
55.00 1.00 0.18 0.35 0.70 1.05 0.17 0.34 0.69 1.03
57.00 1.00 0.17 0.34 0.68 1.02 0.17 0.33 0.67 1.00
58.00 1.00 0.17 0.33 0.67 1.00 0.16 0.33 0.66 0.98
60.00 1.00 0.16 0.32 0.65 0.97 0.16 0.32 0.63 0.95

100.00 1.00 0.10 0.20 0.39 0.59 0.10 0.19 0.39 0.58
∆2 p1 = 5 p1 = 7

0.00 1.00 2.00 4.00 8.00 12.00 1.43 2.86 5.71 8.57
0.10 1.00 1.96 3.92 7.84 11.76 1.41 2.82 5.63 8.45
0.20 1.00 1.92 3.85 7.69 11.54 1.39 2.78 5.56 8.33
0.30 1.00 1.89 3.77 7.55 11.32 1.37 2.74 5.48 8.22
0.50 1.00 1.82 3.64 7.27 10.91 1.33 2.67 5.33 8.00
0.70 1.00 1.75 3.51 7.02 10.53 1.30 2.60 5.19 7.79
0.90 1.00 1.69 3.39 6.78 10.17 1.27 2.53 5.06 7.59
1.00 1.00 1.67 3.33 6.67 10.00 1.25 2.50 5.00 7.50
1.50 1.00 1.54 3.08 6.15 9.23 1.18 2.35 4.71 7.06
2.00 1.00 1.43 2.86 5.71 8.57 1.11 2.22 4.44 6.67
3.00 1.00 1.25 2.50 5.00 7.50 1.00 2.00 4.00 6.00
5.00 1.00 1.00 2.00 4.00 6.00 0.83 1.67 3.33 5.00
7.00 1.00 0.83 1.67 3.33 5.00 0.71 1.43 2.86 4.29
8.00 1.00 0.77 1.54 3.08 4.62 0.67 1.33 2.67 4.00

10.00 1.00 0.67 1.33 2.67 4.00 0.59 1.18 2.35 3.53
13.00 1.00 0.56 1.11 2.22 3.33 0.50 1.00 2.00 3.00
15.00 1.00 0.50 1.00 2.00 3.00 0.45 0.91 1.82 2.73
17.00 1.00 0.45 0.91 1.82 2.73 0.42 0.83 1.67 2.50
18.00 1.00 0.43 0.87 1.74 2.61 0.40 0.80 1.60 2.40
20.00 1.00 0.40 0.80 1.60 2.40 0.37 0.74 1.48 2.22
25.00 1.00 0.33 0.67 1.33 2.00 0.31 0.62 1.25 1.88
30.00 1.00 0.29 0.57 1.14 1.71 0.27 0.54 1.08 1.62
33.00 1.00 0.26 0.53 1.05 1.58 0.25 0.50 1.00 1.50
35.00 1.00 0.25 0.50 1.00 1.50 0.24 0.48 0.95 1.43
37.00 1.00 0.24 0.48 0.95 1.43 0.23 0.45 0.91 1.36
38.00 1.00 0.23 0.47 0.93 1.40 0.22 0.44 0.89 1.33
40.00 1.00 0.22 0.44 0.89 1.33 0.21 0.43 0.85 1.28
50.00 1.00 0.18 0.36 0.73 1.09 0.18 0.35 0.70 1.05
53.00 1.00 0.17 0.34 0.69 1.03 0.17 0.33 0.67 1.00
55.00 1.00 0.17 0.33 0.67 1.00 0.16 0.32 0.65 0.97
57.00 1.00 0.16 0.32 0.65 0.97 0.16 0.31 0.62 0.94
58.00 1.00 0.16 0.32 0.63 0.95 0.15 0.31 0.62 0.92
60.00 1.00 0.15 0.31 0.62 0.92 0.15 0.30 0.60 0.90

100.00 1.00 0.10 0.19 0.38 0.57 0.09 0.19 0.37 0.56
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− σ2∆2
{

2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)I(χ2

p2+2(∆2)) < p2 − 2)
)]

− E
[(

1− (p2 − 2)χ−2
p2+4(∆2)2I(χ2

p2+4(∆2)) < p2 − 2)
)]}

= σ2(∆2A−B) (38)

where

A = 1−
{

2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)I(χ2

p2+2(∆2)) < p2 − 2)
)]

− E
[(

1− (p2 − 2)χ−2
p2+4(∆2)2I(χ2

p2+4(∆2)) < p2 − 2)
)]}

B = σ2
{
p2 − (p2 − 2)2E

(
χ−2
p2 (∆2)

)
− p2E

[(
1− (p2 − 2)χ−2

p2+2(∆2)
)2
I
(
χ2
p2+2(∆2) < p2 − 2

)]}
(39)

Now, LASSO outperforms PRSE whenever Ω∗∆2 holds, where

Ω∗∆2 =

{
∆2 : 0 ≤ ∆2 ≤ B

A

}
(40)

otherwise, PRSE outperform LASSO on the complementary set Ω̄∗∆2 . Hence neither LASSO nor PRSE uniformly
dominates the other in ∆2. See Tables 3.3-3.4 for numerical efficiency of LASSO, JSE and PRSE.

3.6. Comparison of Ridge Regression vs LSE and RE estimators

First, recall that the bias and L2-risk expression of ridge regression estimator are given respectively by

b6(β̂RRn ) =

(
0

− k
1+kβ2

)
and R6(β̂RRn ; Ip) = σ2p1 +

σ2

(1 + k)2
[p2 + k2∆2], (41)

where k is the tuning parameter and ∆2 =
β′
2β2

σ2 . We first prove the following theorem on the dominance of the
ridge estimator over the LSE given by.
Theorem 3.2.1 There exist always a k > 0 in the range 0 < k < k∗ = σ2

β′β such that the ridge regression estimator
β̂RRn has smaller risk than the LSE.
Proof: It is obvious that for k = 0, R6(β̂RRn ; Ip) = pσ2, which is the risk of the LSE. Now, consider the two terms
of R6(β̂RR2n ; Ip2) = p2σ

2

(1+k)2 + σ2k2∆2

(1+k)2 . The first term is continuous and monotonically decreasing function of k and
its derivative w.r.t k approaches∞ as k → 0+. The second term is also continuous and monotonically increasing
function of k and its derivative tends to zero as k → 0+. Note that the σ2k2∆2

(1+k)2 converges to 0 as k → 0+. Note that
σ2k2∆2

(1+k)2 converges to ∆2 as k →∞. Differentiating w.r.t. k

∂R6(β̂RR2n ; Ip2)

∂k
=

2

(1 + k)3
(kβ′2β2 + p2σ

2) (42)

Thus, a sufficient condition for (42) to be negative is that there exist a value of k in the interval 0 < k < k∗ such
that

k∗ = p2
σ2

β′2β2
= p2∆−2 (43)

Substituting k∗ in R6(β̂RR2n ; Ip2) we obtain

R6(β̂RR2n ; Ip2) =
σ2p2∆2

p2 + ∆2
. (44)
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Table 3.3 Relative Efficiency of the estimators for p = 10, 20 and different ∆2-value
for varying p2 with fixed p1

p=10
∆2 = 0 ∆2 = 1.00

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 5.00 3.33 2.00 1.43 3.33 2.50 1.67 1.25

PTE.15 3.12 2.47 1.74 1.34 2.23 1.89 1.45 1.18
PTE.20 2.78 2.27 1.67 1.32 2.05 1.77 1.40 1.16
PTE.25 2.50 2.11 1.60 1.29 1.89 1.67 1.36 1.15

JSE 2.50 2.00 1.43 1.11 2.14 1.77 1.33 1.08
PR 3.04 2.31 1.56 1.16 2.46 1.98 1.42 1.11

Ridge Inf Inf Inf Inf 11.25 11.43 12.00 13.33
∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 1.43 1.25 1.00 0.83 0.83 0.77 0.67 0.59

PTE.15 1.20 1.13 1.02 0.94 0.98 0.96 0.94 0.94
PTE.20 1.17 1.11 1.02 0.95 0.99 0.97 0.95 0.95
PTE.25 1.15 1.10 1.02 0.96 0.99 0.98 0.96 0.96

JSE 1.55 1.38 1.15 1.03 1.32 1.23 1.09 1.01
PR 1.63 1.43 1.18 1.03 1.34 1.24 1.09 1.01

Ridge 3.25 3.43 4.00 5.33 2.25 2.43 3.00 4.33
∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 0.45 0.43 0.40 0.37 0.16 0.16 0.15 0.15

PTE.15 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00
PTE.20 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00
PTE.25 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00

JSE 1.17 1.12 1.04 1.01 1.06 1.04 1.01 1.00
PR 1.17 1.12 1.05 1.01 1.06 1.04 1.01 1.00

Ridge 1.75 1.93 2.50 3.83 1.42 1.60 2.17 3.50
p=20

∆2 = 0 ∆2 = 1.00

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 10.00 6.67 4.00 2.86 6.67 5.00 3.33 2.50

PTE.15 4.26 3.60 2.76 2.23 3.19 2.82 2.29 1.92
PTE.20 3.57 3.13 2.50 2.08 2.77 2.50 2.10 1.80
PTE.25 3.08 2.76 2.29 1.95 2.45 2.25 1.94 1.70

JSE 5.00 4.00 2.86 2.22 4.13 3.43 2.56 2.04
PR 6.28 4.77 3.22 2.43 4.90 3.93 2.82 2.20

Ridge Inf Inf Inf Inf 21.11 21.18 21.33 21.54
∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 2.86 2.50 2.00 1.67 1.67 1.54 1.33 1.18

PTE.15 1.67 1.58 1.43 1.31 1.19 1.16 1.11 1.06
PTE.20 1.55 1.48 1.36 1.26 1.15 1.13 1.09 1.05
PTE.25 1.46 1.40 1.30 1.22 1.13 1.11 1.07 1.04

JSE 2.65 2.36 1.94 1.65 2.03 1.87 1.62 1.43
PR 2.84 2.50 2.02 1.70 2.08 1.91 1.64 1.45

Ridge 5.11 5.18 5.33 5.54 3.11 3.18 3.33 3.54
∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 0.91 0.87 0.80 0.74 0.32 0.32 0.31 0.30

PTE.15 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00
PTE.20 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00
PTE.25 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

JSE 1.58 1.50 1.36 1.26 1.21 1.18 1.13 1.10
PR 1.59 1.50 1.37 1.26 1.21 1.18 1.13 1.10

Ridge 2.11 2.18 2.33 2.54 1.44 1.51 1.67 1.87
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Table 3.4 Relative Efficiency of the estimators for p = 40, 60 and different ∆2-value
for varying p2 with fixed p1

p=40
∆2 = 0 ∆2 = 1.00

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 20.00 13.33 8.00 5.71 13.33 10.00 6.67 5.00

PTE.15 5.19 4.68 3.90 3.35 4.16 3.82 3.30 2.90
PTE.20 4.17 3.85 3.33 2.94 3.43 3.22 2.86 2.57
PTE.25 3.48 3.27 2.91 2.62 2.93 2.78 2.53 2.31

JSE 10.00 8.00 5.71 4.44 8.12 6.75 5.05 4.03
PR 12.80 9.69 6.53 4.92 9.81 7.88 5.65 4.41

Ridge Inf Inf Inf Inf 41.05 41.08 41.14 41.21
∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 5.71 5.00 4.00 3.33 3.33 3.08 2.67 2.35

PTE.15 2.31 2.21 2.04 1.89 1.54 1.51 1.44 1.38
PTE.20 2.04 1.97 1.84 1.73 1.43 1.40 1.35 1.31
PTE.25 1.84 1.79 1.70 1.61 1.35 1.33 1.29 1.25

JSE 4.87 4.35 3.59 3.05 3.46 3.20 2.78 2.46
PR 5.30 4.69 3.81 3.21 3.58 3.30 2.85 2.51

Ridge 9.05 9.08 9.14 9.21 5.05 5.08 5.14 5.21
∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 1.82 1.74 1.60 1.48 0.65 0.63 0.62 0.60

PTE.15 1.11 1.10 1.08 1.07 1.00 1.00 1.00 1.00
PTE.20 1.08 1.07 1.06 1.05 1.00 1.00 1.00 1.00
PTE.25 1.06 1.06 1.05 1.04 1.00 1.00 1.00 1.00

JSE 2.42 2.29 2.09 1.92 1.52 1.49 1.42 1.37
PR 2.43 2.31 2.10 1.93 1.52 1.49 1.42 1.37

Ridge 3.05 3.08 3.14 3.21 1.72 1.75 1.81 1.88
p=60

∆2 = 0 ∆2 = 1.00

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO/ RE 30.00 20.00 12.00 8.57 20.00 15.00 10.00 7.50

PTE.15 5.61 5.19 4.53 4.01 4.66 4.37 3.90 3.51
PTE.20 4.41 4.17 3.75 3.41 3.76 3.58 3.27 3.02
PTE.25 3.64 3.48 3.20 2.96 3.16 3.04 2.83 2.65

JSE 15.00 12.00 8.57 6.67 12.12 10.09 7.55 6.03
PR 19.35 14.63 9.83 7.40 14.74 11.83 8.49 6.61

Ridge Inf Inf Inf Inf 61.03 61.05 61.09 61.13
∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO / RE 8.57 7.50 6.00 5.00 5.00 4.62 4.00 3.53

PTE.15 2.74 2.65 2.48 2.33 1.83 1.79 1.72 1.66
PTE.20 2.36 2.29 2.17 2.07 1.65 1.62 1.57 1.52
PTE.25 2.09 2.04 1.95 1.87 1.52 1.50 1.46 1.42

JSE 7.10 6.35 5.25 4.47 4.89 4.53 3.95 3.50
PR 7.77 6.88 5.61 4.73 5.10 4.71 4.08 3.60

Ridge 13.03 13.05 13.09 13.13 7.03 7.05 7.09 7.13
∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO/ RE 2.73 2.61 2.40 2.22 0.97 0.95 0.92 0.90

PTE.15 1.22 1.21 1.19 1.17 1.00 1.00 1.00 1.00
PTE.20 1.17 1.16 1.15 1.13 1.00 1.00 1.00 1.00
PTE.25 1.13 1.12 1.11 1.10 1.00 1.00 1.00 1.00

JSE 3.25 3.10 2.83 2.60 1.83 1.79 1.72 1.65
PR 3.28 3.12 2.85 2.62 1.83 1.79 1.72 1.65

Ridge 4.03 4.05 4.09 4.13 2.03 2.05 2.09 2.13
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For the comparison of RR and LSE, the L2-risk difference is

R1(β̃n : Ip)−R6(β̂RR2n : Ip2) = pσ2 − σ2p2∆2

p2 + ∆2
= σ2

(
p1 +

p2
2

p2 + ∆2

)
> 0. (45)

Hence, R6(β̂RR2n : Ip2) < R1(β̃n : Ip) ∀∆2. Thus RR estimator uniformly dominate LSE for all ∆2 ∈ (0,∞).

As for the RR estimator versus RE, we consider L2-risk difference as

σ2

[
p1 + ∆2 − p2∆2

p2 + ∆2

]
= σ2

(
p1 +

∆4

p2 + ∆2

)
> 0. (46)

The R.H.S. of the above equation is σ2p1 for ∆2 = 0 and positive when ∆2 > 0. Hence, RR uniformly dominates
both LSE and RE for all ∆2.

3.7. Comparison of Ridge Regression vs. PTE and Stein-Type Estimators

First we compare the RR estimator and PTE. The L2-risk difference of PTE and RR is

σ2
[
p2 − p2Hp2+2

(
χ2
p2(α); ∆2

)
+ ∆2

{
2Hp2+2

(
χ2
p2)α); ∆2

)
−Hp2+4

(
χ2
p(α); ∆2

)}]
− σ2p2∆2

p2 + ∆2
+ σ2p1

= σ2

[
p2

2

p2 + ∆2
−
{
p2Hp2+2

(
χ2
p2(α); ∆2

)
−∆2

(
2Hp2+2

(
χ2
p2(α); ∆2

)
−Hp2+4

(
χ2
p2(α); ∆2

))}]
(47)

For ∆2 = 0, we get for all α in (0, 1)

σ2p1 + σ2p2

[
1−Hp2+2

(
χ2
p2(α); ∆2

)]
≥ 0

Then the RR performs better than that of PTE for ∆2 = 0. Now, consider the case, ∆2 6= 0 and α ∈ (0, 1). In
this case the risk of PTE has minimum value p− p2Hp2+2

(
χ2
p2(α); ∆2

)
at ∆2 = 0, then increases and crossing

the p-line and reaches a maximum then tapers off towards the p-line. On the other hand, the optimum risk of
RR has the minimum value 0, and increases monotonically towards the p-line. Hence (47) is non-negative for all
(α,∆2) ∈ (0, 1)×R+. Thus, RR uniformly performs better than the PTE i.e.

R6(β̂RR2n : Ip2) ≤ R3(β̂PTn : Ip)∀ ∆2 ∈ R+.

Now, consider the comparison of RR with JSE. In this case the L2-risk difference is given by

σ2p1 + σ2
[
p2 − (p2 − 2)2E

(
χ−2
p2 (∆2)

)]
− p2σ

2∆2

(p2 + ∆2)

= σ2

[
p1 +

p2
2

p2 + ∆2
− (p2 − 2)2E

(
χ−2
p2 (∆2)

)]
. (48)

Now, p1 + p2

p+∆2 is a decreasing function of ∆2 with maximum value of p = (p1 + p2) and minimum value “p1”
while, (p2 − 2)2E

(
χ−2
p2 (∆2)

)
is also a decreasing function of ∆2 with the maximum value (p2 − 2) at ∆2 = 0 and

minimum value “zero” when ∆→∞. Hence (48) is a non-negative and RR dominate JSE uniformly in ∆2. i.e.,

R6(β̂RR2n : Ip2) ≤ R4(β̂Sn : Ip) ∀ ∆2 ∈ R+.

Similarly, consider the L2-risk difference of RR and PRSE as

R5(β̂S+
n : Ip)−R6(β̂RRn : Ip) = σ2

(
p1 +

p2
2

(p2 + ∆2)

)
− (p2 − 2)2E

[
χ−2
p2 (∆2)

]
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− p2σ
2E
[(

1− (p− 2)χ−2
p+2(∆2)

)2
I
(
χ2
p(∆

2) < (p− 2)
)]

− σ2∆2
{

2E
[(

1− (p2 − 2)χ−2
p2 (∆2)

)
I
(
χ2
p2+2(∆2) < p2 − 2

)]
− E

[(
1− (p2 − 2)χ−2

p2+4(∆2)
)2
I
(
χ−2
p2+4(∆2) < p2 − 2

)]}
(49)

As ∆2 →∞, the above expression equals p1 and at ∆2 = 0, it is

2 + p1 − p2E
[(

1− (p− 2)χ−2
p+2

)2
I
(
χ2
p < (p− 2)

)]
≤ (2 + p1)

Further, the risk of PRSE is monotonically increases towards the p-line while risk of RR is monotonically increasing
below the graph of the risk of PRSE. Hence,

R6(β̂RRn : Ip) ≤ R5(β̂S+
n : Ip) ≤ R4(β̂Sn : Ip) ≤ R1(β̃n : Ip) ∀ ∆2 ∈ R+.

3.8. Comparison of Ridge Regression and LASSO

The L2-risk difference of sparse LASSO and ridge regression is given by

σ2

[
p1 + ∆2 − p2∆2

p2 + ∆2

]
= σ2

(
p1 +

∆4

p2 + ∆2

)
> 0. (50)

Hence,
R6(β̂RR2n : Ip2) ≤ R7(β̂Ln : Ik) ∀∆2

(k) ∈ R
+

See Tables 3.3-3.4 for numerical efficiency of of all proposed estimators.

4. Summary and Concluding Remarks

In this paper we studied the performance of LASSO and ridge regression (RR) estimators compared to LSE,
restricted, preliminary test and Stein-type estimators when the dimension of the parameters space is less than that
of sample space. Based on the analyzes of the relative efficiencies (RRE) and risks, we found that:
(i) The RR estimator uniformly dominates LSE, RE, PTE, Stein-Type estimators and LASSO;
(ii) Both RE and LASSO outperform LSE when ∆2 ∈ [0, p2] and outside this interval LSE outperforms both RE
and LASSO;
(iii) LASSO outperforms the PTE when ∆2 ∈ [0,∆2

PTE ], otherwise, PTE outperforms when ∆2 ∈ (∆2
PTE ,∞),

where ∆2
PTE is defined by (3.7);

(iv) LASSO outperforms JSE when ∆2 ∈
[
0, p2 − (p2 − 2)2E[χ−2

p2 (∆2)]
)

otherwise JSE outperforms LASSO for
∆2 ∈

[
p2 − (p2 − 2)2E[χ−2

p2 (∆2),∞
)
;

(v) Similarly, LASSO outperforms PRSE when ∆2 ∈ [0, BA ) and PRSE outperforms for ∆2 ∈ (BA ,∞), where A
and B are defined by (3.14).

All of the above table analysis is consistent with the theoretical comparisons of the proposed estimators that are
presented in section 3.
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