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Abstract A new family of regularized Jacobi wavelets is constructed. Based on this Jacobi wavelets, a new kernel for
support vector machines is presented. Using kernel and frame theory, the Reproducing Kernel Hilbert Space of this kernel
is identified. We show that without being a universal kernel, the proposed one possesses a good separation property and
a big ability to extract more discriminative features. These theoretical results are confirmed and supported by numerical
experiments.
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1. Introduction

Support vector machines (SVMs) have become a very dominant tool in machine learning used for both data
classification and regression ([20]). They have been extensively applied in many fields as pattern recognition,
biology, medical diagnosis, chemistry and bioinformatics ([8, 16, 21]). The classification problem can be limited
to consideration of the two-class problem namely binary classification. The principle of SVMs is to bring back
this binary classification problem in search of a separating hyperplane. SVM’s theory is based on using three main
concepts :

• The Structural Risk Minimization principle ([20]), which has been shown to be superior, to traditional
Empirical Risk Minimization principle ([3]).

• The use of a convex quadratic optimization problem to solve the problem of maximum margin, efficient
solvers are available now that can solve such problem even with large size and dense data ([18]).

• When data are nonlinearly separable, SVMs use a kernel function that maps the data into high-dimensional
feature space in which the problem becomes linearly separable.

The first kernels investigated for SVM problems were polynomial, Sigmoid and the radial basis kernel ([20]).
Since several kernels were introduced and studied in literature and it is well known, that the major task of the SVM
approach lies in the selection of its kernel. Recently, special attention has been given to the construction based on
the concepts of orthogonal polynomials ( [1, 9, 10, 11, 22, 25]), which have found widespread use in several areas of
science and engineering. The fundamental reason for the success of this kernels type is its orthogonality properties,
that reduce the redundancy of the original data and make it able to extract more discriminative features, so that
SVM can classify the data better and easier ([6]). Inheriting also this property, kernels based on wavelets have
given great satisfaction in practice ([12, 24]). The idea of combining orthogonal polynomial and wavelet theories
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gave rise to new wavelets, such as the wavelets of Legendre, Chebyshev, Hermite, etc, which was a powerful
technique for signal processing, solving differential equations, optimal control, and calculus variations problems
([2, 7, 14]). Suffering from a continuity problem, kernels based on this type of wavelet have never been introduced
before, more in the context of SVMs. In this paper, we built a new kernel based on Jacobi wavelets. Legendre
and Chebyshev wavelets represents a particular case of Jacobi wavelets of indices (α, β) when (α = 0, β = 0)
and (α = β = − 1

2 ) respectively, this shows the general framework of our kernel. Using frame theory ([13]), we
identify the Reproducing Kernel Hilbert Space (RKHS) of this kernel and we confirm that this new kernel has the
separation properties. These theoretical results are confirmed and supported by numerical experiments. The paper
is structured as follows: section 2 is devoted to kernel and frame theories. In Section 3, we present the main results
of this work, we describe the method of constructing the regularized Jacobi wavelets kernel and its RKHS using
frame theory. Numerical experiments are given in Section 4, the Jacobi wavelets kernel performance has been
evaluated on two-dimensional illustrative examples in order to give also a graphical comparison with other kernels.
Finally, we conclude the paper in section 5.

2. Backgrounds

Given a finite training samples set {(xi, yi)}li=1 where X = {xi}li=1 are l points in Rd and the corresponding
labels yi in {−1, 1}, the goal is to find an hyperplane in the space Rd that is inserted between the two classes
: class 1 and class −1. In linear classification, the aim is to construct a classifier f (a decision function) that
distinguishes between the two sets. However, in general data are not linearly separable in practice. Then, a non-
linear classification is proposed that maps the data into a high- dimensional feature space H via a transformation
ϕ called feature map (ϕ : X → H), such that the transformed data are linearly separable. When this hyperplane is
back into the original space it describes a surface.

2.1. The optimization problem

The classic soft margin SVM formulation ([5]) is defined by
min
α

− 1
2

l∑
i=1

l∑
j=1

αiαjyiyjϕ(xi)
Tϕ(xj) +

l∑
i=1

αi

s. t.
l∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , l

, (1)

where the parameter C is the penalty which trade-off balancing the merit of model complexity and misclassified
points. It is not necessary to know the explicit form of the mapping ϕ since we can replace the inner product
ϕ(xi)

Tϕ(xj) by the kernel function K such that

K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H = Kij ,

where ⟨., .⟩H denotes the inner product of H and (Kij) i = 1, ..., l
j = 1, ..., l

is called the Gram matrix of the kernel K.

The problem (1) becomes 
min
α

− 1
2

l∑
i=1

l∑
j=1

αiαjyiyjKij +
l∑

i=1

αi

s. t.
l∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , l

. (2)
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The solution α=(α1, . . . , αl) of the optimization problem (2) and the bias b, which can be recovered from the
Lagrangian multiplier associated to the equality contraint of (2) ([3]), gives the classifier function

f(x) =

sv∑
i=1

αiyiK(xi, x) + b,

which is fundamental for the learning task. The integer sv corresponds to the number of support vectors, which are
the points xi whose associated Lagrangian multipliers are not zeros (αi ̸= 0). Thus, the decision function can be
represented by only a few numbers of data points ( the so-called support vectors). SVM classifier that yields fewer
support vectors for a given kernel is desirable.

2.2. Kernels for SVMs

In the sequel, we present the basic definition and some important properties of kernels for SVMs.

Definition 1
[17] LetX be a non-empty set. Then a functionK : X ×X → R is called a kernel onX if there exists an R-Hilbert
space H and a map ϕ : X → H such that

K(x, y) = ⟨ϕ(y), ϕ(x)⟩H , ∀x, y ∈ X.

ϕ is called feature map and H a feature space of K.

The most used kernels are the radial basis function RBF or Gaussian defined for some positive parameter γ by

K(x, y) = exp

(
−∥x− y∥2

γ2

)
,

and the polynomial kernel defined for some positive integer p by

K(x, y) = (x× y + 1)
p
.

One can construct new kernels from scratch using kernel’s properties. A good study on kernels theory is given
in reference ([17]).

A characterization of kernels for SVMs is given by the following theorem ([17]) :

Theorem 1
(Mercer) Let X be a non-empty set and let a function K : X ×X → R. K is a kernel if and only if it is symmetric
and its Gram matrix is positive semidefinite.

It’s known that every kernel admits several feature space, the next definition introduces the RKHS, which is in a
certain sense, the smallest feature space of this kernel and consequently, it can serve as a canonical one.

Definition 2
[17] Let X ̸= ∅ and H be a R-Hilbert space. A function K : X ×X → R is called a reproducing kernel of H if

1. K(., x) ∈ H, ∀x ∈ X.
2. The reproducing property is verified

f(x) = ⟨f,K(., x)⟩H , ∀f ∈ H , ∀x ∈ X.

3. The space H is called a RKHS over X if the Dirac functional

δx : H → R
f → f(x)

is continuous for all x ∈ X.

Stat., Optim. Inf. Comput. Vol. 7, December 2019



672 REGULARIZED JACOBI WAVELETS KERNEL FOR SUPPORT VECTOR MACHINES

2.3. Frame for SVMs

One can construct kernels and its associated RKHS from frame’s theory ([13]). We give the definition of a frame
and then a characterization result necessary for the remainder.

Definition 3
[4] Let N ∈ N and {ψn}n=1,...,N be a set of non-zeros functions of an Hilbert space (H, ⟨., .⟩H) . The familly
{ψn}n=1,...,N is a frame for H if there exist constants B, G > 0 such that

B ∥f∥2H ≤
N∑

n=1

|⟨f, ψn⟩H |2 ≤ G ∥f∥2H .

The numbers B and G are called frame bounds.

The reconstruction of f from its frame coefficients needs the following definition of a dual frame.

Definition 4
[13] Let {ψn}n=1,...,N be a frame of H with frame bounds B and G. The dual frame

{
ψ̄n

}
n=1,...,N

is defined as

1

G
∥f∥2H ≤

N∑
n=1

∣∣⟨f, ψ̄n

⟩
H

∣∣2 ≤ 1

B
∥f∥2H ,

and f =
∑N

n=1

⟨
f, ψ̄n

⟩
H
ψn.

Theorem 2
Let N ∈ N and {ψn}n=1,...,N be a set of non-zeros functions of an Hilbert space (B, ⟨., .⟩B) such that ∃∆ >
0, ∀x ∈ X, ∀n 1 ≤ n ≤ N

|ψn(x)| ≤ ∆.

Let H be the set of functions so that

H =

{
f =

N∑
n=1

anψn, an ∈ R for n = 1, ..., N

}
.

The space (H, ⟨., .⟩B) is an RKHS and its reproducing kernel is

K(x, y) =

N∑
n=1

ψ̄n(x)ψn(y),

where
{
ψ̄n

}
n=1,...,N

is the dual frame of {ψn}n=1,...,N in H .

We will combine SVM and wavelet theories to built a new kernel based on Jacobi wavelets and we will
characterize the theoretical properties of this new kernel in the next section.

3. Main results

3.1. The Jacobi wavelets kernel

The Jacobi polynomials J (α,β)
m are defined by the following iterative formula for all α > −1, β > −1:

J (α,β)
m (x) =

(α+ β + 2m− 1)
[
α2 − β2 + x(α+ β + 2m)(α+ β + 2m− 2)

]
2m (α+ β + 2m− 2) (α+ β +m)

J
(α,β)
m−1 (x)

− (α+m− 1) (β +m− 1) (α+ β + 2m)

m (α+ β + 2m− 2) (α+ β +m)
J
(α,β)
m−2 (x),
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where
J
(α,β)
0 (x) = 1, J

(α,β)
1 (x) =

α+ β + 2

2
x+

α− β

2
.

These polynomials belong to the weight space L2
ω ([−1, 1])⟨

J (α,β)
m , J

(α,β)
m′

⟩
L2

ω

= h(α,β)m δm,m′ , ∀m,m′ ∈ N,

where

h(α,β)m =
∥∥∥J (α,β)

m

∥∥∥2 =
2α+β+1Γ (α+m+ 1)Γ (β +m+ 1)

(2m+ 1 + α+ β)m!Γ (α+ β +m+ 1)
,

and ω(x) = (1− x)
α
(1 + x)

β . δn,m represents the Kronecker function, Γ is the Euler gamma function and ⟨., .⟩L2
ω

denotes the inner product of L2
ω ([−1, 1]).

The family
{
J
(α,β)
m

}
m∈N

forms an orthogonal basis for L2
ω ([−1, 1]) ([19]).

The Jacobi wavelets are defined by ([23])

ψ(α,β)
n,m (x) =

{
2

k+1
2√

h
(α,β)
m

J
(α,β)
m

(
2k+1x− 2n+ 1

)
, n−1

2k
≤ x < n

2k
,

0, othetwise
(3)

where k ∈ N, n = 1, , ..., 2k represents the number of decomposition levels, m = 0, 1, ...,M is the degree of the

Jacobi polynomials (M ∈ N). The coefficient 2
k+1
2√

h
(α,β)
m

is for normality.

Theorem 3
The familly

{
ψ
(α,β)
n,m

}
n = 1, ..., 2k

m ≥ 0

forms an orthonormal basis of
(
L2
ω ([0, 1[) , ⟨., .⟩wav

)
, where

⟨f, g⟩wav =

2k∑
i=1

i

2k∫
i−1

2k

fi(x)gi (x)ωi(x)dx,

fi is the restriction of f on
[
i−1
2k
, i
2k

[
and ωi(x) = ω(2k+1x− 2i+ 1).

Proof
First, we have to prove that ⟨., .⟩wav is an inner product of L2

ω ([0, 1[) . Let f be a function of L2
ω ([0, 1[).The

symmetry and bilinearity of ⟨., .⟩wav are obvious, we only show that ⟨., .⟩wav is positive definite. We have

i ⟨f, f⟩wav =
∑2k

i=1

i

2k∫
i−1

2k

(fi(x))
2
ωi(x)dx ≥ 0,

since

i

2k∫
i−1

2k

(fi(x))
2
ωi(x)dx = ⟨fi, fi⟩L2

ω[
i−1

2k
, i

2k
[ ≥ 0.

ii

⟨f, f⟩wav = 0

⇐⇒

i

2k∫
i−1

2k

(fi(x))
2
ωi(x)dx = 0,∀i = 1, . . . , 2k

⇐⇒ fi = 0, ∀i = 1, . . . , 2k

⇐⇒ f = 0.
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Now, we show that the family
{
ψ
(α,β)
n,m

}
n = 1, ..., 2k

m ≥ 0

forms an orthonormal basis of L2
ω ([0, 1[)

⟨
ψ(α,β)
n,m , ψ

(α,β)
j,l

⟩
wav

=

2k∑
i=1

i

2k∫
i−1

2k

(
ψ(α,β)
n,m

)
i
(x)
(
ψ
(α,β)
j,l

)
i
(x)ωi(x)dx

= δn,j

n

2k∫
n−1

2k

ψ(α,β)
n,m (x)ψ

(α,β)
n,l (x)ωn(x)dx.

By using the change of variable t = 2k+1x− 2n+ 1 and the fact that the familly
{

J(α,β)
m∥∥∥J(α,β)
m

∥∥∥
}

m≥0

is an orthonormal

basis for L2
ω ([−1, 1]), we obtain

⟨
ψ(α,β)
n,m , ψ

(α,β)
j,l

⟩
wav

= δn,j
2k+1∥∥∥J (α,β)

m

∥∥∥∥∥∥J (α,β)
l

∥∥∥
n

2k∫
n−1

2k

J (α,β)
m (t)J

(α,β)
l (t)ω(t)

dt

2k+1

= δn,jδm,l.

We will use the same approach of constructing RKHS by frame theory given in Theorem 2. One can affirm the
existence of a positive constant ∆ for a fixed M,k ∈ N such that∣∣∣ψ(α,β)

n,m (x)
∣∣∣ ≤ ∆, for x ∈ [0, 1[ , n = 1, ..., 2k and m = 0, ...,M. (4)

Let k,M ∈ N and
{
ψ
(α,β)
n,m

}
n=1,...,2k

m=0,...,M

defined as (3). The space of functions (Hwav, ⟨., .⟩wav) is defined by

Hwav =

f =

2k∑
n=1

M∑
m=0

an,mψ
(α,β)
n,m , an,m ∈ R for n = 1, ..., 2k, m = 0, ...,M

 .

From (4) and the fact that orthogonal basis is frame ([4]), we deduce from Theorem 2. that Hwav is a RKHS and
its reproducing kernel is given by

kwav : [0, 1]× [0, 1] → R :

(x, y) 7→ kwav(x, y) =

2k∑
n=1

M∑
m=0

ψ(α,β)
n,m (x)ψ(α,β)

n,m (y). (5)

In general, functions belonging to Hwav are not all continuous.
In fact, for k = 1 and M = 1, we have

f(x) = a1,0ψ
(α,β)
1,0 (x) + a1,1ψ

(α,β)
1,1 (x) + a2,0ψ

(α,β)
2,0 (x) + a2,1ψ

(α,β)
2,1 (x)

=


2a1,0√
h
(α,β)
0

+
2a1,1√
h
(α,β)
1

J
(α,β)
1 (4x− 1) , x ∈

[
0, 12
[

2a2,0√
h
(α,β)
0

+
2a2,1√
h
(α,β)
1

J
(α,β)
1 (4x− 3) , x ∈

[
1
2 , 1
[ .
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It is clear that f is continuous on
[
0, 12
[

and on
[
1
2 , 1
[
. We will study the continuity of f at 1

2 .

lim
x

<→ 1
2

f(x) = lim
x

<→ 1
2

2a1,0√
h
(α,β)
0

+
2a1,1√
h
(α,β)
1

J
(α,β)
1 (4x− 1)

=
2a1,0√
h
(α,β)
0

+
2a1,1√
h
(α,β)
1

J
(α,β)
1 (1) .

f(
1

2
) =

2a2,0√
h
(α,β)
0

+
2a2,1√
h
(α,β)
1

J
(α,β)
1 (−1) .

We take an,m = an′,m = am for n, n′ = 1, ..., 2k, we obtain

lim
x

<→ 1
2

f(x) =
2a0√
h
(α,β)
0

+
2a1√
h
(α,β)
1

J
(α,β)
1 (1) ,

f(
1

2
) =

2a0√
h
(α,β)
0

+
2a1√
h
(α,β)
1

J
(α,β)
1 (−1),

but J (α,β)
1 (1) ̸= J

(α,β)
1 (−1) .

Kernel of type (5) has never been used for SVM since continuity is necessary to have a high- performance RKHS
([6]). This continuity problem is addressed in the following subsection.

3.2. The regularized Jacobi wavelets

Now, we consider the regularized Jacobi wavelets

ψ̂(α,β)
n,m (x) =


2

k+1
2√

h
(α,β)
m

(
J
(α,β)
m

(
2k+1x− 2n+ 1

))
+ 2

k+1
2√

h
(α,β)
m

(n− 1)
(
J
(α,β)
m (1)− J

(α,β)
m (−1)

)
, n−1

2k
≤ x < n

2k
,

0. otherwise

(6)

Let Ĥ be the space of functions defined by

Ĥ =

f =

2k∑
n=1

M∑
m=0

amψ̂
(α,β)
n,m , am ∈ R for m = 0, ...,M

 .

One can claim that :

Theorem 4
All functions belonging to the space Ĥ are continuous.

Proof
We know that the function f is continuous on each subinterval

[
n−1
2k
, n
2k

[
, then it only remains to study the

continuity at the points n
2k
, n = 1, ..., 2k − 1. We just need to compare between lim

x
<→ n

2k

f(x) and f( n
2k
) :

f(
n

2k
) =

M∑
m=0

amψ̂
(α,β)
n+1,m(

n

2k
)

=

M∑
m=0

am
2

k+1
2√

h
(α,β)
m

(
nJ (α,β)

m (1)− (n− 1)
(
J (α,β)
m (−1)

))
.
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lim
x

<→ n

2k

f(x) = lim
x

<→ n

2k

M∑
m=0

amψ̂
(α,β)
n,m (x)

= lim
x

<→ n

2k

M∑
m=0

am
2

k+1
2√

h
(α,β)
m

(
J (α,β)
m

(
2k+1x− 2n+ 1

)
+ (n− 1)

(
J (α,β)
m (1)− J (α,β)

m (−1)
))

= f(
n

2k
),

hence, f is continuous.

Remark 1
The familly

{
ψ̂
(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

is not orthogonal, but it is a wavelet frame for Ĥ =

span
{
ψ̂
(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

, since it is a finite set of elements of
(
L2
ω ([0, 1]) , ⟨., .⟩wav

)
([4]).

To apply Theorem 2., we must compute the dual of (6). The frame operator U can be defined as in ([4])

U :

Ĥ → R2K(M+1)

f →
{⟨

f, ψ̂
(α,β)
n,m

⟩
wav

}
n = 1, ..., 2k

m = 0, ...,M

.

The adjoint operator is given by

U∗ :

R2K(M+1) → Ĥ

{cnm}
n = 1, ..., 2k

m = 0, ...,M

→
2k∑
n=1

M∑
m=0

cnmψ̂
(α,β)
n,m

.

Let us define the dual frame
{
ψ̄
(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

as

S−1
(
ψ̂(α,β)
n,m

)
= ψ̄(α,β)

n,m ,

where
S = UU∗,

is called the frame operator. This operator is linear and self- adjoint. Note that in terms of the frame operator ([4])
we have

S(f) =

2k∑
n=1

M∑
m=0

⟨
f, ψ̂(α,β)

n,m

⟩
wav

ψ̂(α,β)
n,m , f ∈ Ĥ. (7)

Now, it remains to determine the ψ̄(α,β)
n,m .

Theorem 5
The dual frame ψ̄(α,β)

n,m is defined as ψ̄
(α,β)
n,0 = ψ

(α,β)
n,0 −

M∑
j=1

(n−1)

√
h
(α,β)
0√

h
(α,β)
j

(
J
(α,β)
j (1)− J

(α,β)
j (−1)

)
ψ
(α,β)
n,j

ψ̄
(α,β)
n,m = ψ

(α,β)
n,m , for m = 1, ...,M

, for n = 1, ..., 2k.
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Proof
We know that

ψ̂(α,β)
n,m (x) =

2
k+1
2√

h
(α,β)
m

(
J (α,β)
m

(
2k+1x− 2n+ 1

)
+ (n− 1)

(
J (α,β)
m (1)− J (α,β)

m (−1)
))

= ψ(α,β)
n,m (x) +

(n− 1)

√
h
(α,β)
0√

h
(α,β)
m

(
J (α,β)
m (1)− J (α,β)

m (−1)
) 2

k+1
2√

h
(α,β)
0

J
(α,β)
0 (x)

= ψ(α,β)
n,m (x) +A(n,m)ψ

(α,β)
n,0 (x),

with A(n,m) =
(n−1)

√
h
(α,β)
0√

h
(α,β)
m

(
J
(α,β)
m (1)− J

(α,β)
m (−1)

)
. Using (7), we get for n= 1, ..., 2k, m = 0, ...,M

S(ψ(α,β)
n,m ) =

2k∑
i=1

M∑
j=0

⟨
ψ(α,β)
n,m , ψ̂

(α,β)
i,j

⟩
wav

ψ̂
(α,β)
i,j

=

2k∑
i=1

M∑
j=0

(⟨
ψ(α,β)
n,m , ψ

(α,β)
i,j +A(i, j)ψ

(α,β)
i,0

⟩
wav

)
ψ̂
(α,β)
i,j

=

2k∑
i=1

δn,i

M∑
j=0

(⟨
ψ(α,β)
n,m , ψ

(α,β)
i,j

⟩
wav

+
⟨
ψ(α,β)
n,m , A(i, j)ψ

(α,β)
i,0

⟩
wav

)
ψ̂
(α,β)
i,j

=

M∑
j=0

(δm,j +A(n, j)δm,0) ψ̂
(α,β)
n,j

= ψ̂(α,β)
n,m +

M∑
j=1

A(n, j)δm,0ψ̂
(α,β)
n,j .

If m ̸= 0, we obtain
S(ψ(α,β)

n,m ) = ψ̂(α,β)
n,m ,

then,
ψ̄(α,β)
n,m = S−1(ψ̂(α,β)

n,m ) = ψ(α,β)
n,m . (8)

Otherwise,

S(ψ
(α,β)
n,0 ) = ψ̂

(α,β)
n,0 +

M∑
j=1

A(n, j)ψ̂
(α,β)
n,j ,

so

ψ̂
(α,β)
n,0 = S(ψ

(α,β)
n,0 )−

M∑
j=1

A(n, j)ψ̂
(α,β)
n,j ,

then

S−1
(
ψ̂
(α,β)
n,0

)
= ψ

(α,β)
n,0 −

M∑
j=1

A(n, j)S−1
(
ψ̂
(α,β)
n,j

)
. (9)

Combining (8) with (9), we find

ψ̄
(α,β)
n,0 = S−1(ψ̂

(α,β)
n,0 ) = ψ

(α,β)
n,0 −

M∑
j=1

A(n, j)ψ
(α,β)
n,j .
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So, for every function f in Ĥ , it can be written as

f(x) =

2k∑
n=1

M∑
m=0

⟨
ψ̄(α,β)
n,m , f

⟩
wav

ψ̂(α,β)
n,m (x). (10)

The space Ĥ is an RKHS for the same arguments given in the subsection 3.1. According to ([13]), the
reproducing kernel associated with Ĥ is

K̂(x, y) =

2k∑
n=1

M∑
m=0

ψ̄(α,β)
n,m (x)ψ̂(α,β)

n,m (y)

=

2k∑
n=1

(
ψ̄
(α,β)
n,0 (x)ψ̂

(α,β)
n,0 (y) +

M∑
m=1

ψ̄(α,β)
n,m (x)ψ̂(α,β)

n,m (y)

)

=

2k∑
n=1

M∑
m=0

ψ(α,β)
n,m (x)ψ(α,β)

n,m (y) = Kwav(x, y).

Similarly, the associated feature map is given by

Φ̂ : [0, 1] → Ĥ

x 7→ Φ̂(x) =
∑2k

n=1

∑M
m=0 ψ̄

(α,β)
n,m (x)ψ̂

(α,β)
n,m

=
∑2k

n=1

∑M
m=0 ψ

(α,β)
n,m (x)ψ

(α,β)
n,m

.

For the multidimensional case, we will take for every x, y ∈ [0, 1]
d
, d ∈ N∗ the following set

H = ⊗d
j=1Ĥ,

where ⊗ is the tensor product ([15]). We define the inner product in H by

⟨f, g⟩H =

d∏
j=1

⟨
f j , gj

⟩
wav

(11)

where f = ⊗d
j=1f

j , g = ⊗d
j=1g

j and f j , gj ∈ Ĥ, for j = 1, ..., d. We also define for x, y ∈ [0, 1]
d the following

functions (Lemma 4.6 of [17])

K(x,y) =

d∏
j=1

Kwav(x
j , yj), (12)

such as xj , yj ∈ [0, 1], and

Φ :
[0, 1]

d → H
x 7−→ Φ(x) = ⊗d

j=1Φ̂(x
j).

Theorem 6
The space H is the RKHS associated to the Jacobi wavelets for the multidimensional case, and K(., .) is its
reproducing kernel.

Proof
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i Let x, y ∈ [0, 1]
d, from relation (12), we have

K(x,y) =

d∏
j=1

Kwav(x
j , yj)

= ⊗d
j=1Kwav(x

j , .)(yj)

= K(x, .)(y),

so
K(x, .) = ⊗d

j=1Kwav(x
j , .). (13)

Since kwav is the reproducing kernel for Ĥ , then Kwav(x
j , .) ∈ Ĥ , so K(x, .) ∈ H.

ii Let f ∈ H and x ∈ [0, 1]
d
, we know that

f(x) =
(
⊗d

j=1f
j
)
(x)

=

d∏
j=1

f j(xj).

Since f j ∈ Ĥ and Ĥ is an RKHS, then

f(x) =

d∏
j=1

⟨
Kwav(x

j , .j), f j
⟩
wav

= ⟨K(x, .), f⟩H ,

this last equality follows from relations (11) and (13). Then, the reproducing property is verified.

iii The Dirac function is continuous on H. Indeed, for x ∈ [0, 1]
d and f ∈ H, we have

δx(f) = f(x)

=

d∏
j=1

f j(xj)

=

d∏
j=1

δxj

(
f j
)
.

We know that the functional δxj is continuous on Ĥ . So, δx is continuous.

The following theorem generalizes Remark 1. for the multidimensional case.

Theorem 7

The familly

{
d∏

j=1

ψ̂
(α,β)
n,m (.j)

}
n = 1, ..., 2k

m = 0, ...,M

forms a frame for H.

Proof
We know that

H = ⊗d
j=1Ĥ

= ⊗d
j=1span

{
ψ̂(α,β)
n,m (.j)

}
.
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Let f ∈ H, we have

f(x) =
(
⊗d

j=1f
j
)
(x)

=

d∏
j=1

f j(xj).

By applying relation (10) on every function f j in Ĥ , we get

f(x) =

d∏
j=1

2k∑
n=1

M∑
m=0

⟨(
ψ̄(α,β)
n,m

)j
, f j
⟩

wav

ψ̂(α,β)
n,m (xj)

=

2k∑
n=1

M∑
m=0

d∏
j=1

⟨(
ψ̄(α,β)
n,m

)j
, f j
⟩

wav

d∏
j=1

ψ̂(α,β)
n,m (xj)

=

2k∑
n=1

M∑
m=0

⟨
Ψ̄(α,β)

n,m , f
⟩
H
Ψ̂(α,β)

n,m (x),

where

Ψ̂(α,β)
n,m (x) =

d∏
j=1

ψ̂(α,β)
n,m (xj),

and

Ψ̄(α,β)
n,m (x) =

d∏
j=1

ψ̄(α,β)
n,m (xj).

So, the familly
{
Ψ̂

(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

is a frame for H, and the familly
{
Ψ̄

(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

is its

dual.

Remark 2
The space Ĥ = span

{
ψ̂
(α,β)
n,m

}
n = 1, ..., 2k

m = 0, ...,M

is the vector space of polynomials of degree less than or equal to

M . So, we can separate the data by applying theorem 6 of ([6]).

4. Numerical tests

In this section, we validate the performance of our regularized Jacobi wavelets on two examples in two-dimensional
space and give a geometric comparison between Jacobi kernel, Jacobi wavelets kernel and other kernels : Haar
wavelet kernel, Wavelet kernel proposed by Zhang and al ([24]), Hermite and Laguerre polynomial kernel, RBF
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and polynomial. In Table 1, we give the kernels which are used for our numerical tests

Jacobi k(x, y) =
d∏

j=1

M∑
i=0

J
(α,β)
i (xj)J

(α,β)
i (yj)

Haar k(x, y) =
d∏

j=1

k∑
i=0

2i∑
n=1

ψH
in(x

j)ψH
in(y

j)

Hermite k(x, y) =
d∏

j=1

M∑
i=0

Hi(x
j)Hi(y

j)

Laguerre k(x, y) =
d∏

j=1

M∑
i=0

Lα
i (x

j)Lα
i (y

j)

Wavelet k(x, y) =
d∏

j=1

cos
(
1.75×

(
xj−yj

a

))
exp

(
−∥xj−yj∥2

2a2

)
RBF k(x, y) =

d∏
j=1

exp

(
−∥xj−yj∥2

γ2

)
Polynomial k(x, y) =

d∏
j=1

(
xj × yj + 1

)p

,

Table 1
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Figure 1. two spiral dataset

with the following functions ψH
kn : Haar wavelet, Hi : Hermite polynomial, Lα

i : Laguerre polynomial of order
α. All this kernels have the following tuning parameters, k : dilatation parameter, n : translation parameter, M : the
degree of the polynomial, γ : RBF parameter and a : Zhang wavelet parameter.

Since Jacobi wavelets are defined on [0, 1], the original data should be transformed to [0, 1] using this formula

newxji =
xji −mini

(
xji

)
maxi

(
xji

)
−mini

(
xji

) , for i = 1, ..., l, j = 1, ..., d. (14)

The kernels parameters are selected by using the ten-folds cross validation. First, the data are normalized by the
relation (14). Then, 90% of the normalized data are chosen randomly as training set and the left ones as testing set.
The best kernel parameters are the ones that gave the best accuracy over the 10 blocks. The accuracy is given by
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the following formula

accuracy =
nbr of correctly predicted data

nbr of total testing data
× 100.

We choose the variation of the parameters as follows : the parameter C equal to 2i with i = −5, ..., 15. The RBF
parameter γ equal to 2i with i = −15, ..., 3. The degree of the polynomial N varies from 1 to 6. The dilatation
parameter of wavelets k varies from 1 to 3 and the parameter a = 0.5 : 0.5 : 4. Finally, the parameters α and β
varie from −0.75 : 0.25 : 2.

The programs used are implemented on a pc of 2.2 GHz with 4 Go of RAM for the first example, and on a pc
of 3.2 GHz with 4 Go of RAM for the second example. The SVM toolbox has been used is the solver fitcsvm of
Matlab version R2014a.

4.1. Example 1 : two spiral dataset

We consider the two spiral dataset which consist of points of R2 on two interwined spirals not lineary separable.
The spiral dataset has 100 points, 50 for each class (Figure 1.)

In Table 2, we reported only the best results for each kernel and they are shown in figures 2-9

Table 2

Table 3

4.2. Example 2 : checkerboard

The second dataset used was the checkerboard consisting of 486 blue points and 514 red points. For calculations
reasons, we only consider 200 points of the checkerboard chosen randomly ( see Figure 10. ).
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Figure 2. Jacobi kernel
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Figure 3. Jacobi wavelet kernel
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Figure 4. Laguerre kernel
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Figure 5. Hermite kernel
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Figure 6. polynomial kernel
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Figure 7. RBF kernel
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Figure 8. Haar wavelet kernel
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Figure 9. Wavelet kernel
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Figure 10. checker board with 200 points
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Figure 11. Jacobi kernel
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Figure 12. Jacobi wavelet kernel
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Figure 13. Hermite kernel
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Figure 14. Laguerre kernel
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Figure 15. polynomial kernel
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Figure 16. RBF kernel
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Figure 17. Haar wavelet kernel
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Figure 18. Wavelet kernel

The best results are reported in Table 3 and figures 11-18.

5. Conclusion

In this paper, a new kernel based on regularized Jacobi wavelets is proposed. We show that the functions belonging
to the RKHS defined by the Jacobi wavelets are not all continuous, where the continuity being essential for the
separation property. So, we construct another RKHS by introducing regularized Jacobi wavelets that form a frame
for the new RKHS. Using frame theory, this new RKHS verified the separation properties. Experimental results
show that this kernel can provide competitive results compared to other kernel functions. Kernels based on wavelets
and orthogonal polynomials, have the reputation of having an expensive Gram matrix in terms of computation time,
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this is known that is a big challenge for this type of kernel. However, we noticed that by reducing the number of the
data in the training set, as shown by the numerical tests, our kernel always behaves well with a very competitive
execution time.
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19. G. Szecö, Orthogonal polynomials, American mathematical society, colloquim publications, vol. XXIII, 1939.
20. V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, NewYork, 1995.
21. L. Wang, Support vector machines: theory and applications, New York, Springer-Verlag, 2005.
22. N. YE, R. Sun, Y. Liu and L. Cao, Support vector machine with orthogonal Chebyshev kernel, IEEE, 2006.
23. M. A. Zaky, I. G. Ameen and M. A. Abdelkawy, A new operational matrix based on Jacobi wavelets for a class of variable- order

fractional differential equations, proceedings of the Romanian Academy, series A, Vol. 18, no. 4, pp. 315–322, 2017.
24. L. Zhang, W. Zhou and L. Jiao, Wavelet support vector machine, IEEE transactions on systems, Man and Cybernetics, Part B,

Cybernetics, vol. 34, no. 1, 2004.
25. F. Zhou, Z. Fang and J. Xu, Constructing support vector machine kernels from orthogonal polynomials for face and speaker

verification, Fourth International Conference on Image and Graphics, IEEE, 2007.

Stat., Optim. Inf. Comput. Vol. 7, December 2019


