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Abstract An efficient process monitoring system is important for achieving sustainable manufacturing. The control
charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process
mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the
standard deviation to the mean should be monitored. Castagliola et al. [21] proposed the two-sided run rules (RR) control
charts for monitoring the CV and it is found that the RR CV charts revealed the problem of ARL-biased performances,
especially when the monitored sample size is small, for detecting downward CV shifts. This paper alters the RR CV chart by
suggesting the two one-sided run rules (ORR) CV charts achieve the unbiased ARL performances. Additionally, this paper
also investigates the ORR CV charts in terms of the expected average run length (EARL) criterion, which is not discussed in
[21]. A Markov chain model is established for designing the proposed charts. The statistical performances of the ORR CV,
RR CV and Shewhart CV (SH CV) charts are compared in terms of the average run length (ARL) and EARL criteria. The
results show that the proposed charts surpass the RR CV and SH CV charts for detecting small and moderate upward and
downward CV shifts. The implementation of the ORR CV charts is illustrated with an example using a real dataset.
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1. Introduction

Statistical Process Control (SPC) is a powerful collection of problem-solving tools that can be used to control and
improve the quality of a process through the reduction of variability. The importance of the SPC has been shown
through a wide variety of research publications, such as those by [28], [17], [1] and [32]. A control chart is one of
the effective tools in SPC, it has been used with the considerable amount of success in the industry for monitoring
the quality of a production process. Over the years, the implementations of control chart were recently extended
to many fields, i.e. chemical, finance, healthcare and many others, where the process mean and variance may not
vary independently of each other. This caused the use of the traditional control chart may lead to an erroneous
conclusion. To circumvent this problem, it is natural to explore the use of the coefficient of variation (CV), which
monitors the ratio of the standard deviation to the mean, in process monitoring. The CV has been applied to various
scientific areas. For example, Creticos et al. [25] applied the CV in dose-response studies. Bedeian and Mossholder
[3] used the CV in measuring the diversity whereas Pyne et al. [7] employed the CV to investigate the variability
of the competitive performance of Olympic swimmers. More recently, Ye et al. [12] explained the use of CV in
detecting the presence of chatter, which is several form of self-excited vibration in a machining process.
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Numerous research works on CV control charts have been made over the years. As pioneers in this field, Kang
et al. [6] introduced a Shewhart control chart (SH CV) to monitor the CV, which is very efficient in the detection
of large process CV shifts. Later, many intermediate and advanced type of the CV charts have been proposed
to improve the sensitivity in detecting small and moderate CV shifts, such as [23], [20], [21], [10], [18] and [4].
According to Tran [16], although exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)
type control charts can efficiently detect small and moderate process shifts, these charts are not widely accepted
by quality practitioners due to their relative complexity during implementation. Therefore, in some of the real-life
scenarios, a quality practitioner prefers to use an intermediate type control chart to monitor the production process
due to its simplicity. To fill this gap in research, Castagliola et al. [21] proposed the intermediate control charts to
monitor the CV, i.e. the two-sided run rules CV (RR CV) charts.

Meanwhile, the research works on run rules control charts are still being continually explored by many
researchers. Kritzinger et al. [24] suggested the improved run rules nonparametric sign charts. Majika et al. [11]
added the run rules schemes into the distribution-free Phase-II Mann-Whitney control charts. The implementation
of the run rules charts to monitor the ratio of two normal variables are recommended by [14]. Zhang et al. [31]
presented the run rules control charts for monitoring pre-specified changes in linear profiles. Rakitzis [2] evaluated
the performance of modified run rules x̄ charts with estimated parameters while Hu and Castagliola [30] studied a
run rules x̄ chart when the process parameters are unknown. Tran [15] and Tran [13] presented the run rules median
and t charts, respectively. Very recently, the run length properties of the synthetic and run rules x̄ charts have been
explained in zero-state [26] and steady-state [27] schemes.

The two-sided RR CV charts have better statistical performances compared to the SH CV chart in detecting
small and moderate CV shifts, in terms of average run length (ARL) and standard deviation run length (SDRL)
criteria. However, the two-sided RR CV charts revealed the problem of ARL-biased performances, especially
when the monitored sample size is small, for detecting downward CV shifts [21]. Additionally, Acosta-Meija
[5] indicated that a single two-sided control chart may produce ARL-biased performances, which may seriously
affect the simultaneous monitoring of upward and downward process shifts. The motivation of this research is to
overcome the aforementioned problem by proposing two one-sided RR CV charts (ORR CV), for detecting upward
and downward CV shifts. The proposed charts able to provide unbiased ARL performances. However, a setback of
this research is the exact shift size must be specified prior to the implementation of this scheme as this is required
by the ARL criterion. In most of the industrial scenarios, practitioners do not have knowledge of the exact CV
shift size. To tackle this issue, this paper also investigates the ORR CV charts in terms of the expected average run
length (EARL) criterion, which is not discussed in [21].

The goal of this paper is to overcome the ARL-biased performance of the RR CV chart [21]. Hence, this paper
proposes two one-sided run rules schemes, i.e. the 2-out-of-3 run rules (ORR2,3CV ) and the 3-out-of-4 run rules
(ORR3,4CV ) charts, for detecting upward and downward CV shifts. The remainder of this paper is organized as
follows: The next section discusses the basic properties of the SH CV chart. In Section 3, the proposed ORR CV
charts are described. The derivation of the formulae to compute the ARL, standard deviation of the run length
(SDRL) and EARL based on the Markov-chain approach are discussed. The numerical comparisons among the
ORR CV and existing RR CV and SH CV charts, in terms of the ARL, SDRL and EARL criteria, will be shown
in Section 4. The implementation of the ORR CV charts will be illustrated with an example based on a real dataset
from the manufacturing sector. In the last section, a summary of the findings and suggestions for future research
are provided.

2. Basic Properties of Sample CV

Suppose that µ and σ are the mean and standard deviation of a positive random variable, X , respectively. Then the
CV of X is

γ =
σ

µ
(1)
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We assume that X1, X2, ..., Xn is a random sample of size n from the normal distribution. Then, x̄ and S are the
sample mean and sample standard deviation, respectively, given as follows:

x̄ =
1

n

n∑
i=1

Xi (2)

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − x̄)2 (3)

The sample CV is computed as

γ̂ =
S

x̄
(4)

For the probability distribution of sample CV,
√
n
γ̂ follows a noncentral t distribution with n - 1 degrees of freedom

and noncentrality parameter
√
n
γ . Here, if γ(> 0) is not too large, say γ ∈ (0, 0.5], then the cumulative distribution

function (cdf) of γ̂ can be accurately approximated as

Fγ̂(x|n, γ) = 1− Ft(

√
n

x
|n− 1,

√
n

γ
), (5)

where Ft(.) refers to the cdf of a noncentral t random variable with n - 1 degrees of freedom and noncentrality
parameter

√
n/γ. Inverting Fγ̂(x|n, γ) gives the inverse cdf of γ̂ as

F−1
γ̂ (α|n, γ) =

√
n

F−1
γ̂ (1− α|n− 1,

√
n
γ )

(6)

where F−1
t̂

(.) refers to the inverse cdf of the noncentral t random variable with n - 1 degrees of freedom and

noncentrality parameter
√
n
γ .

The center line of the SH CV chart is set as the in-control CV value, γ0, while the charts limits are obtained using
probability limits. Two separate one-sided SH CV charts: (i) the upward chart consists of the upper control limit,
UCL, for detecting an increase in the CV and (ii) the downward chart consists of the lower control limit, LCL, for
detecting a decrease in the CV. By setting the Type-I error probability of each of the charts as α0, the limits are
obtained as

LCL = F−1
γ̂ (α0|n, γ0) (7)

and

UCL = F−1
γ̂ (1− α0|n, γ0) (8)

Note that α0 = 1
ARL0

, where the in-control ARL (ARL0) value is specified by the user. The upward and downward
SH CV charts detect an out-of-control signal when γ̂ is plotted above UCL or below LCL, respectively. Therefore,
the probability that the SH CV charts issue an out-of-control signal are B = Pr(γ̂ > UCL) (for the upward SH CV
chart) and B = Pr(γ̂ < LCL) (for the downward SH CV chart), respectively. The ARL, SDRL and out-of-control
EARL (EARL0) of the SH CV charts are computed as

ARL =
1

B
, (9)
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SDRL =

√
1−B

B
(10)

and

EARL1 =

∫ τmax

τmin

ARL1(LCL,UCL,B, n, γ0, τ)fτ (τ)dτ, (11)

where ARL1 is the out-of-control ARL and the in-control EARL (EARL0) is set equal to ARL0. Here, fτ (τ)
defines the probability density function (pdf) of τ , where τ is assumed to follow a uniform U(τmin, τmax)
distribution, while τmin and τmax denote the lower and upper bound for the shift size τ .

3. The ORR CV Charts

The run rules scheme monitors a process by looking at the number of samples, out of a certain number of successive
samples taken, which falls outside the warning limits. For instance, a m-out-of-k run rules will generate an out-of-
control signal if out of k consecutive samples taken, m samples fall outside the warning limits. Incorporating run
rules is known to improve the performance of the chart ([9], [8]). This paper proposes ORR2,3CV and ORR3,4CV
charts.

3.1. The Upward and Downward ORR2,3CV Charts

In the ORR2,3CV charts, an out-of-control signal is produced after two out of three successive sample CVs are
plotted above the upper warning limit (UWL) or below the lower warning limit (LWL). There are no control limits
in the ORR2,3CV chart. The proposed charts are simple to implement as they only involve a pair of limits. The
UWL of the upward ORR2,3CV chart and the LWL of the downward ORR2,3CV chart can be obtained as follows:

LWL = µ0(γ̂)−Kσ0(γ̂) (12)

and

UWL = µ0(γ̂) +Kσ0(γ̂) (13)

where K is the parameters of the warning limits. Note that µ0(γ̂) and σ0(γ̂) are the mean and standard deviation
of sample CV, respectively, when the process is in-control. The following approximations presented by Reh and
Scheffler [29] can be used to compute the limits in Equations (12) and (13):

µ0(γ̂) ≈ γ0(1 +
1

n
(γ2

0 − 1

4
) +

1

n2
(3γ4

0 − γ2
0

4
− 7

32
) +

1

n3
(15γ6

0 − 3γ4
0

4
− 7γ2

0

32
− 19

128
)) (14)

and

σ0(γ̂) ≈ γ0(
1

n
(γ2

0 +
1

2
) +

1

n2
(8γ4

0 + γ2
0 +

3

8
) +

1

n3
(69γ6

0 +
7γ4

0

2
+

3γ2
0

4
+

3

16
))

1
2 (15)

The Markov-chain approach is adopted to derive the formulae for the ARL, SDRL and EARL In both the
upward and downward ORR2,3CV charts, the states of the Markov-chain are defined based on the position of the
last two sample CVs plotted on the chart. The following three transient states of the upward chart are defined in
the Markov chain model:
State 1 (10): 1st sample above UWL and 2nd sample below UWL;
State 2 (01): 1st sample below UWL and 2nd sample above UWL;
State 3 (00): two successive samples below UWL.
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Then, three transient states of the downward ORR2,3CV chart are
State 1 (00): two successive samples above LWL;
State 2 (01): 1st sample above LWL and 2nd sample below LWL;
State 3 (10): 1st sample below LWL and 2nd sample above LWL.

The third point (i.e. the current ith sample CV, γ̂i) will decide whether the process is in-control or out-of-
control, as it will determine whether two or less than two sample CVs will fall outside the warning limits. The
following shows the transition probability matrix (tpm) without absorbing states for both the upward and downward
ORR2,3CV charts:

U2,3 =

(
Q2,3 r
0T 1

)
=

 0 0 1− PU

1− PU 0 0
0 PU 1− PU

 (16)

and

D2,3 =

(
Q2,3 r
0T 1

)
=

1− PL PL 0
0 0 1− PL

1− PL 0 0

 (17)

Note that Q2,3(3x3) is the transition probability matrix of transient probabilities while the vector r satisfies
r = 1−Q2,31 , i.e. the sum of the row probabilities are equal to unity. Note also that 0T = (0, 0, 0) and
1 = (1, 1, 1)T . The initial probabilities for both the upward and downward ORR2,3CV charts are q2,3 = (0, 0, 1)T

and q2,3 = (1, 0, 0)T , respectively. PU and PL are computed as

PU = Pr(γ̂ ≥ UWL) = 1− Fγ̂(UWL|n, γ1), (18)

and

PL = Pr(γ̂ ≤ LWL) = Fγ̂(LWL|n, γ1), (19)

where Fγ̂(.) is the cdf of γ̂ and γ1 = τγ0. Here, τ represents the shift size in the CV. The ARL and SDRL for both
the upward and downward ORR2,3CV charts can be obtained as

ARL = qT
2,3(I −Q2,3)

−11, (20)

and

SDRL =
√

2qT
2,3(I −Q2,3)−2Q2,31−ARL2 +ARL. (21)

In the computation of the ARL, the shift size, τ needs to be specified a priori. If τ could not be specified, the
EARL can be used as a performance measure to monitor the CV [20], [19]. In this paper, the EARL0 is set equal
to ARL0, while the EARL1 is computed as

EARL1 =

∫ τmax

τmin

ARL1(LWL(orUWL),K, n, γ0, τ)fτ (τ)dτ, (22)

where fτ (τ) denotes the pdf of τ . If there is no information on fτ (τ), then it is often hard to fit the actual shape
of fτ (τ). In this scenario, one can assume that τ follows a uniform distribution over the interval (τmin, τmax).
Castagliola et al. [23] recommended the interval (τmin, τmax) = [0.5, 1) for the downward chart and the interval
(τmin, τmax) = (1, 2] for the upward chart.
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3.2. The Upward and Downward ORR3,4CV Charts

In the ORR3,4CV charts, they consist of seven in-control states, depending on the position of the last three sample
CVs plotted on the chart. The following seven transient states of the upward ORR3,4CV chart are defined in the
Markov chain model:
State 1 (110): 1st and 2nd samples above UWL and 3rd sample below UWL;
State 2 (101): 1st sample above UWL, 2nd sample below UWL and 3rd sample above UWL;
State 3 (100): 1st sample above UWL, 2nd and 3rd samples below UWL;
State 4 (011): 1st sample below UWL, 2nd and 3rd samples above UWL;
State 5 (010): 1st sample below UWL, 2nd sample above UWL, and 3rd sample below UWL;
State 6 (001): 1st and 2nd samples below UWL and 3rd sample above UWL;
State 7 (000): three successive samples below UWL.

Then, three transient states of the downward ORR3,4CV chart are
State 1 (000): three successive samples above LWL;
State 2 (001): 1st and 2nd samples above LWL and 3rd sample below LWL;
State 3 (010): 1st sample above LWL, 2nd sample below LWL and 3rd sample above LWL;
State 4 (011): 1st sample above LWL, 2nd and 3rd samples below LWL;
State 5 (100): 1st sample below LWL, 2nd and 3rd samples above LWL;
State 6 (101): 1st sample below LWL, 2nd sample above LWL and 3rd sample below LWL;
State 7 (110): 1st and 2nd samples below LWL and 3rd sample above LWL.

The location of the current ith sample CV, γ̂i, on the chart will decide whether the process is in-control or out-
of-control, as it will determine whether three or less than three sample CVs will fall outside the warning limits.
The ORR3,4CV chart signals an out-of-control if three out of four successive sample CVs plot above UWL (for
the upward ORR3,4CV chart) or below LWL (for the downward ORR3,4CV chart). The upper and lower warning
limits of the ORR3,4CV chart can be computed using Equations (12) and (13).

Consequently, the ARL, SDRL and EARL of the ORR3,4CV charts are computed using Equations (20), (21)
and (22), respectively, by replacing qT

2,3 and Q2,3 with qT
3,4 and Q3,4, respectively. Here, q3,4 = (0, 0, 0, 0, 0, 0, 1)T

for the upward chart and q3,4 = (1, 0, 0, 0, 0, 0, 0)T for the downward chart, while Q3,4 is a (7 x 7) tpm. As in the
ORR3,4CV charts, the vector r satisfies r = 1−Q3,41 , i.e. the sum of the row probabilities are equal to unity.
The following shows the tpm without absorbing states for both the upward and downward ORR3,4CV charts:

U3,4 =

(
Q3,4 r
0T 1

)
=



0 0 1− PU 0 0 0 0
0 0 0 0 1− PU 0 0
0 0 0 0 0 PU 1− PU

1− PU 0 0 0 0 0 0
0 PU 1− PU 0 0 0 0
0 0 0 PU 1− PU 0 0
0 0 0 0 0 PU 1− PU


(23)

and

D3,4 =

(
Q3,4 r
0T 1

)
=



1− PL PL 0 0 0 0 0
0 0 1− PL PL 0 0 0
0 0 0 0 1− PL PL 0
0 0 0 0 0 0 1− PL

1− PL PL 0 0 0 0 0
0 0 1− PL 0 0 0 0
0 0 0 0 1− PL 0 0


(24)
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4. Numerical Comparison

In this paper, the performance of the proposed charts are evaluated in terms of the unbiased ARL, SDRL and
EARL. The ARL0 is set as 370.4. Once K is defined based on ARL0, the ARL1 and EARL1 can be numerically
evaluated for a particular shift size (τ ) and for a particular range of shift sizes (τmin, τmax), respectively. In this
paper, we consider n ∈ 5, 10, 15, γ0 ∈ 0.10, 0.15, 0.20, for τ0 ∈ 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.5, 2.0, 2.5.

Tables 1 and 2 present the ARL1 and SDRL1 values for the ORR2,3CV , ORR3,4CV ,
RR2,3CV [21], RR3,4CV [21] and SH CV [6] charts, for n ∈ 5, 10, 15, γ0 ∈ 0.10, 0.15, 0.20, for
τ0 ∈ 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.5, 2.0, 2.5. From Tables 1 and 2, it is clear that the ORR CV charts prevail over
the RR CV and SH CV charts, in terms of the ARL1 and SDRL1 criteria, for detecting both upward and downward
CV shifts. This means that the proposed charts provide unbiased ARL and SDRL performances. For example, in
Table 2, when τ = 0.9, n = 10, and γ0 = 0.15, ARL1 = 82.8, 183.7, 166.9 and SDRL1 = 80.1, 180.9, 166.4, for
the ORR3,4CV , RR3,4CV and SH CV charts, respectively, where the ORR3,4CV charts have the smallest ARL1

and SDRL1 values.
Table 3 shows the performances of the ORR2,3CV , ORR3,4CV , RR2,3CV [21], RR3,4CV [21] and SH CV

[6] charts, in terms of the EARL1 criterion, for n ∈ 5, 10, 15, γ0 ∈ 0.10, 0.15, 0.20, (τmin, τmax) = [0.5, 1), (1, 2].
The ORR CV charts outperform the RR CV and SH CV charts for detecting both upward and downward shifts
in the interval (τmin, τmax) = [0.5, 1), (1, 2]. For example, when n = 5, γ0 = 0.20 and (τmin, τmax) = [0.5, 1),
EARL1 = 100.7, 82.0, 845.9, 181.4 and 149.0, for the ORR2,3CV , ORR3,4CV , RR2,3CV , RR3,4CV and SH
CV charts, respectively, where the ORR CV charts have the smallest EARL1 value.

5. An Illustrated Example

In this section, the implementation of the ORR2,3CV chart is illustrated using a real dataset adopted from
Castagliola [22]. The data deal with die casting hot chamber process manufacturing zinc alloy (ZAMAK) parts for
the sanitary sector. The Phase-I data contain m = 30 samples, each with n = 5 measurements. The sample means,
sample standard deviations and sample CVs, for the 30 Phase-I samples are computed and listed in Table 4. The
in-control sample CV, γ̂0 is computed from the Phase-I data, for i = 1, 2, ?30, using Equation (4) as

γ̂0 =

∑30
i=1 γ̂i
30

= 0.00975. (25)

By setting the probability of the Type-I error, α = 0.0027, the lower and upper limits of the downward SH CV and
upward SH CV charts are computed using Equations (7) and (8) as

LCL = F−1
γ̂ (0.0027|5, 0.00975) (26)

and

UCL = F−1
γ̂ (1− 0.0027|5, 0.00975) (27)

respectively. The upward and downward SH CV charts are plotted in Figures (1) and (2), respectively. Figures (1)
and (2) show that γ̂i are plotted based on the 30 Phase-I sample CVs, γ̂i (for i = 1, 2, ?30). As all the γ̂i are plotted
below the UCL and above the LCL, the Phase-I process is in-control.

From the Phase-I analysis, γ̂0 = 0.00975. In the Phase-II analysis, we assume that n = 5 and ARL0 = 370.4 are
considered. The Phase-II data presented in Table 4 are used to construct the upward and downward ORR2,3CV
charts, where the charts are designed to compute the ARL1 for upward CV shift size, τ = 1.2 and downward
CV shift size, τ = 0.8. The parameter K is obtained as 1.9058 and 1.6065 using nonlinear equation solver for
the upward and downward ORR2,3CV charts, respectively. Then, µ0(γ̂) = 0.0092 and σ0(γ̂) = 0.0033 can be
computed from Equations (12) and (13). Subsequently, the warning limits are computed as

LWL = 0.0092− 1.6065(0.0033) = 0.0038 (28)
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Table 4. Phase-I and Phase-II dataset

Phase-I Phase-II
i x̄i Si γ̂i i x̄i Si γ̂i
1 292.6 2.701 0.0092 1 396.4 4.037 0.0102
2 289.0 0.707 0.0024 2 393.2 1.923 0.0049
3 291.4 2.073 0.0071 3 404.6 3.049 0.0075
4 288.0 3.937 0.0137 4 396.0 2.449 0.0062
5 290.0 0.707 0.0024 5 301.4 3.049 0.0101
6 288.2 1.303 0.0045 6 295.4 1.816 0.0061
7 535.4 8.264 0.0154 7 293.2 1.788 0.0061
8 518.4 7.224 0.0139 8 297.4 2.190 0.0074
9 529.2 9.203 0.0174 9 642.8 2.280 0.0035
10 527.0 9.591 0.0182 10 640.2 1.095 0.0017

11 533.6 4.929 0.0092 11 650.4 3.435 0.0053
12 439.2 3.114 0.0071 12 647.8 1.643 0.0025
13 447.2 2.774 0.0062 13 646.0 2.345 0.0036

14 443.4 8.173 0.0184 14 549.8 3.114 0.0057
15 434.0 2.549 0.0059 15 522.6 10.310 0.0197
16 436.0 1.224 0.0028 16 519.8 7.259 0.0140
17 437.6 2.408 0.0055 17 518.8 8.927 0.0172
18 419.6 4.307 0.0096 18 515.4 11.760 0.0228

19 422.4 4.159 0.0098 19 550.4 15.678 0.0285
20 416.8 3.962 0.0095 20 529.0 10.440 0.0197

21 420.4 4.979 0.0118 21 526.8 9.602 0.0182
22 421.6 2.302 0.0055 22 529.2 7.949 0.0150
23 418.4 4.393 0.0105 23 521.8 7.981 0.0153
24 410.4 4.219 0.0103 24 534.0 7.681 0.0144
25 449.0 6.204 0.0138 25 525.0 5.656 0.0108
26 441.6 3.781 0.0086 26 533.0 5.522 0.0104
27 393.2 6.220 0.0158 27 287.8 3.114 0.0108
28 401.8 1.483 0.0037 28 287.2 3.271 0.0114
29 412.6 3.049 0.0074 29 289.8 1.095 0.0038
30 461.4 7.700 0.0167 30 288.4 3.049 0.0106

and

UWL = 0.0092 + 1.9058(0.0033) = 0.0155 (29)

The upward and downward ORR2,3CV charts are plotted in Figures (3) and (4), respectively, based on the γ̂i values
in Phase-II data. Figure (3) shows that the downward ORR2,3CV chart detects two out-of-control samples, i.e. at
the 10th and 13th samples whereas Figure (4) presents the upward ORR2,3CV chart detects two out-of-control
signals at 18th and 20th samples (see the boldfaced values in Table 4). Following these out-of-control samples, the
practitioner should investigate the underlying process to find the assignable cause(s) present and take the necessary
corrective actions so that the process returns to the in-control situation again.
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Figure 1. Downward SH CV chart for the Phase-I data

Figure 2. Upward SH CV chart for the Phase-I data

6. Conclusion

This paper proposes one-sided run rules control charts for monitoring the CV (ORR CV) to circumvent the ARL-
biased performances of the two-sided RR CV charts presented by Castagliola [21]. Additionally, this paper also
considers the EARL as a performance measure to evaluate the proposed charts, which is very useful when the CV
shifts could not be specified. The computation of the ARL1, SDRL1 and EARL1 are enumerated in this paper.
From the numerical comparison, the proposed upward and downward ORR2,3CV and ORR3,4CV charts provide
unbiased ARL and EARL performances and they outperform the existing RR CV and SH CV charts in detecting
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Figure 3. Downward ORR2,3CV chart for the Phase-II data

Figure 4. Downward ORR2,3CV chart for the Phase-II data

small and moderate CV shifts. The implementation of the upward and downward ORR2,3CV charts are shown
using a real set of manufacturing data. This research can be considered as a framework for quality practitioners
who preferred to implement an intermediate type of control chart. The computational difficulty of the ORR charts
for monitoring the CV is similar to that of the traditional SH CV chart, but the ORR CV charts provide better
performance. By applying the proposed charts, the quality practitioners can perform quality monitoring easily and
efficiently. At the same time, they are able to detect an out-of-control signal in a shorter time. This shows that the
proposed charts should be implemented in practical applications. As future research, it is suggested to study the
CV charts based on estimated parameters when the in-control parameters are unknown.
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