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Abstract In this paper we obtain a version of the Levinson algorithm for block Toeplitz matrices in an infinite dimensional
setting from a geometrical approach. With this methodology we obtain a sequence of operators in the Levinson recurrences
whose norms in geometric terms represent angles between subspaces. Additionally, under this geometric framework a block
LU decomposition for a block Toeplitz matrix is obtained.
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1. Introduction

The Levinson algorithm (cf. [20]) is a very important result and has been widely used in prediction and signal
processing theory (cf. [5], [13], [21], [22], [26] and [27]). In the infinite dimensional setting, the problem of linear
prediction has applications in the context of continuous time processes and for large numbers of time series (cf. [3]
and [4]). A first matrix version of the Levinson algorithm was obtained by Whittle (cf. [33]) and later by Wiggins
and Robinson (cf. [34]). Matrix versions of this algorithm are also discussed in (cf. [10], [11], [12], [15] and [28]).
An extension to the infinite dimensional setting is found in (cf. [16]).

The Levinson recurrences are related to orthogonal polynomials in the unitary circle (cf. [11] and [17]). Also
these recurrence are related with the moment problem. From it arises development in theory function, in spectral
representation of operator and in statistics. In these recurrences appear an explicit parameters sequence that can
be identified with the partial autocorrelation coefficients (cf. [3], [7], [10] and [28]), the reflection coefficients in
geophysics (cf. [8] and [16]) and the Schur parameters in analytical functions (cf. [1], [31] and [32]). In the operator
theory they are known as choice sequences. These coefficients are very important in the theory of scalar stochastic
processes since they allow to characterize the autocorrelation coefficients of the process. An important application
of this characterization was the development of a new spectral estimation technique known as the Burg maximum
entropy method (cf. [6] and [28]). An extension of this technique to multivariate processes was studied in [29].
In [23] this concept is generalized to the Krein entropy. The partial autocorrelation coefficients are also related
to dilation matrices of a stochastic process, so (cf. [14]) proposed the introduction of a new vision of stochastic
process through geometry induced by dilation.

The Levinson algorithm is also used in the estimation of the coefficients of the autoregressive linear filter.
In this case we need to solve the system of linear equation, TpXp = Yp, where Tp is a Toeplitz matrix. For
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this, it is necessary to obtain the LU decomposition of Tp. In [9], this decomposition is used to demonstrate
that the maximum entropy density subject to the first p+ 1 autocovariance matrices is the spectrum of a
multivariate autoregressive process of p− th order. Problems involving Toeplitz linear equation arise in several
applications, e.g. in the prediction of stationary processes, in inverse scattering problem, in buffer analysis for data
communication system, among others (cf. [5], [18] and [27]). In [24] and [25] some previous results are obtained
using orthogonal decomposition for the finite dimensional case.

The main contribution of this work is to obtain a new version of the Levinson algorithm for block Toeplitz
matrices in an infinite dimensional setting using orthogonal decomposition. The parameters obtained in this
algorithm are a sequence of contractive operators whose norm can be expressed as angles between subspaces,
similar to the finite dimensional case. Also, we obtain a block LU decomposition for block Toeplitz matrices where
the triangular matrices can be obtained through Levinson recurrences.

Additionally, our methodology could be useful to solve extension problems in statistics and for prediction
problems in an infinite dimensional context (cf. [10], [11], [12], [15], [16], [19], [20], [28], [33] and [34]).

The scheme to obtain the Levinson algorithm is as follows: the data is a sequence of bounded operators
{Rk}pk=0, defined in a separable Hilbert space G. More specifically, based on the sequence of bounded operators
{Rk}pk=0, we built a Hilbert space Hp and a surjective isometry Vp : Dp → Rp, where Dp, Rp are two closed
subspaces of Hp. In this sense, the defect spaces of the isometry Vp are Np = Hp ⊖Dp, Mp = Hp ⊖Rp. Then,
the Levinson recurrences are obtained as a consequence of the orthogonal decompositions where the subspaces in
this decompositions are the defect spaces.

The paper is organized as follows: in the second section; we introduce some notations and preliminary results;
in the third section, we obtain a block LU decomposition for a block Toeplitz matrix; in fourth section, we state the
main result of this work and in the last section, we present the conclusions and discussions.

2. Preliminaries

First we are going to introduce the notation that we will be using in this work. Denote by N and Z to the sets of the
natural numbers and the integers respectively. We will use the symbols R and C to denote the set of real and complex
numbers respectively, D will denote the open unit disk in the complex plane, that is, D := {z ∈ C : |z| < 1}. The
unitary circle, the boundary of D, will be denoted by T. Define ek by ek(ζ) := ζk, ζ ∈ T, k ∈ Z. Denote, as usual,
the set of all bounded linear operator acting in the Hilbert space H as L(H). By 1 we indicate either the scalar unit
or the identity operator depending on context.

Next we explicitly explain how to build the Hilbert space Hp, the subspaces Dp and Rp and a surjective isometry
Vp : Dp → Rp. The defect spaces Np and Mp are also calculated explicitly. For this, we need that the sequence of
bounded linear operators {Rk}pk=0 verifies certain conditions.

Given a sequence of bounded linear operator 1, R1, · · · , Rp acting in the separable Hilbert space G, define
R−k = R∗

k, for k = 1, · · · , p and we say that the sequence is strictly positive definite if, and only if,

p∑
n=0

p∑
m=0

⟨Rm−nhn, hm⟩G > 0 (1)

for all not null sequence {hk}pk=0 ⊂ G.
Now, we stand for Tk, k = 0, 1, · · · , p the bounded operator Tk : Gk+1 → Gk+1 defined by

Tk =

 1 R−1 · · · R−k

...
... · · ·

...
Rk Rk−1 · · · 1


Therefore (1) is equivalent to that the bounded operator Tp is strictly positive.
Note that, if the bounded operator Tp is strictly positive, then the bounded operators Tk, k = 0, 1, · · · , p− 1

are also strictly positive. In the following γk = {γk
ij}i,j=0,1,··· ,k stand for the inverse of Tk. We know that the
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bounded operators γk, k = 0, 1, · · · , p are strictly positive because the bounded operators Tk, k = 0, 1, · · · , p are
strictly positive. Hence, the bounded operators γk

00 and γk
kk for k = 0, 1, · · · , p are strictly positive since they are

the compression of the operators γk to suitable subspaces of Gk+1.
Let’s suppose from now on, that the sequence of bounded operators {Rk}pk=−p satisfies (1).
Define Ep = {ϕ =

∑p
k=0 ekξk : ξk ∈ G, k = 1, · · · , p} as the set of all analytical trigonometrical polynomials of

degree less or equal p, in T with values in a Hilbert space G.
Define the inner product in Ep by:⟨

p∑
n=0

enfn,

p∑
m=0

emgm

⟩
p

=

p∑
m=0

p∑
n=0

⟨Rm−nfn, gm⟩G

=

⟨
Tp

f0
...
fp

 ,

g0
...
gp

⟩
Gp+1

.

.

The space (Ep, ⟨, ⟩p) is a Hilbert space. Indeed, we obtain this result from the fact that the operator Ip :
(Ep, ⟨., .⟩p) → Gp+1 defined by Ip(

∑
ekhk) = (h0, h1 · · · , hp) is a bounded and invertible.

Set Dp =
{∑p−1

k=0 ekξk : ξj ∈ G, j = 0, 1, . . . , p− 1
}

, Rp =
{∑p

k=1 ekξj : ξj ∈ G, k = 1, . . . , p
}

and
Vp : Dp → Rp the map defined as the linear extension of Vp(ekξ) = ek+1ξ.

Let L2
G as usual,

L2
G = {f : T → G|f measurable and

1

2π

∫ 2π

0

∥f(eit)∥2Gdt < ∞}.

Clearly, L2
G is a Hilbert space with the standard inner product

⟨f, g⟩L2
G
=

1

2π

∫ 2π

0

⟨f(eit), g(eit)⟩Gdt.

For k ∈ Z, let Gk the subspace of L2
G of the functions of the form eka (a ∈ G). It can be seen in [30] such that Gi

is orthogonal to Gj , if i ̸= j. Moreover,

L2
G =

∞⊕
−∞

Gk (2)

and
∥a∥G = ∥eka∥L2

G
.

Let Γp : (Ep(G), ⟨., .⟩p) → (Ep, ⟨., .⟩L2
G
) be the map defined by

Γp(f) =

p∑
k=0

ek

p∑
s=0

Rk−sfs, f ∈ Ep. (3)

Clearly Γp, is well defined.
The next result shows that Vp is a surjective isometry and that the operator Γp is bicontinuos.

Proposition 1 (a) Vp is a surjective isometry acting in (Ep, ⟨, ⟩p).
(b) The operator Γp satisfies the equality ⟨Γpf, g⟩L2

G
= ⟨f, g⟩p.

(c) The operator Γp is bicontinuos.
(d) The defect spaces of Vp, Np = Ep ⊖Dp y Mp = Ep ⊖Rp are generated by elements of the form Γ−1

p (epx)
and Γ−1

p (e0x), x ∈ G respectively. Moreover,

Γ−1
p (epx) =

(
e0γ

p
0p + · · ·+ epγ

p
pp

)
x,

Γ−1
p (e0x) =

(
e0γ

p
00 + · · ·+ epγ

p
p0

)
x

(4)
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Proof: The statement (a) is very easy since R(m+1)−(n+1) = Rm−n.
In order to see the statement (b), let f =

∑p
k=0 ekfk, g =

∑p
k=0 ekgk ∈ Ep, thus

⟨Γpf, g⟩L2
G
=

1

2π

∫ 2π

0

⟨
p∑

l=0

el

p∑
m=0

Rl−mfm,

p∑
k=0

ekgk

⟩
G

dt

= ⟨f, g⟩p

To prove (c), we note that the operator Jp : (Ep(G), ⟨., .⟩L2
G
) → Gp+1 defined by Jp(

∑p
k=0 ekhk) =

(h0, h1 · · · , hp) is a unitary isomorphism. Now,

J∗
pTpIp

(
p∑

k=0

ekhk

)
= Γp

(
p∑

k=0

ekhk

)
.

Therefore Γp = J∗
pTpIp and hence Γp is bicontinuos.

To see the statement (d), let f ∈ Ep ⊖Dp and {αk}∞k=1 be a complete orthonormal system of the Hilbert space
G. From (b) we obtain the classical normal equations, that is, for j ∈ N,

⟨Γpf, ekαj⟩L2
G
= ⟨f, ekαj⟩p = 0 for k = 0, 1, . . . , p− 1. (5)

Thus, from (2), for every j = 1, 2, · · · , there exists f j ∈ Ep ⊖Dp such that Γp(f
j) = epαj . Therefore, we get the

generators of the defect space Np: f j = Γ−1
p (epαj), j = 1, 2, . . . .

In a similar way, we prove that for every j ∈ N there exists gj ∈ Ep ⊖Rp such that gj = Γ−1
p (e0αj).

Finally, (4) can be obtained from Γp = J∗
pTpIp.

Lemma 1
Let Γp the bicontinuos operator defined by (3) and for 1 ≤ j < k ≤ p let Ij,k : (Ej , ⟨, ⟩j) → (Ek, ⟨, ⟩k) the identity
operator. The following statements are true:

(a)

P
Ep

Ep−1
Γp|Ep−1

= Γp−1

where Γp|A is the restriction of the operator Γp to the set A and P
Ep

Ep−1
is the orthogonal projection of Ep onto

Ep−1.
(b) Let x, y ∈ Ep−1. Then,

⟨x, y⟩p = ⟨Γpx, y⟩L2
G
= ⟨Γp−1x, y⟩L2

G
= ⟨x, y⟩p−1.

(c) For 1 ≤ j < k ≤ p, Ij,k is an isometry.
(d) There exists an isometry J such that

– Dp=Ep−1=J (Dp−1 ⊕Np−1)=J (Rp−1 ⊕Mp−1)=J (Vp−1Dp−1 ⊕Mp−1),
– Rp = VpDp = J(Rp−1 ⊕ Vp−1Np−1).
– Ep = Np ⊕Np−1 ⊕ · · · ⊕ N1 ⊕N0.
– Ep = V p

p M0 ⊕ V p−1
p Mp−1 ⊕ · · · ⊕ VpMp−1 ⊕Mp.

Proof: To see (a), note that (Ep−1, ⟨, ⟩L2
G
) is a subspace of (Ep, ⟨, ⟩L2

G
). Hence, from (3) we obtain the result.

The statements (b) and (c) are easy to prove.
The statement (d) is a direct consequence of the above proposition with J := Ip−1,p and from the preceding

results.
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3. A lower and upper triangular factorization of the matrix T−1
p

The main result of this section is a lower and upper factorization of the matrix T−1
p . To get such factorizations we

need to obtain complete orthonormal systems of the defect space Mp and Np.
For this, we consider the operator Lk : (G, ⟨, ⟩G) → (Gk, ⟨, ⟩L2

G
) for k = 0, p defined by Lkx = ekx, x ∈ G where

Gk are the subspace of L2
G previously introduced. Note that this operators are isometric isomorphisms. Now,

let M̃p(e
it) : (G, ⟨, ⟩G) → (Mp, ⟨, ⟩p) and Ñp(e

it) : (G, ⟨, ⟩G) → (Np, ⟨, ⟩p) the operator trigonometric polynomials
M̃p(e

it) = Γ−1
p L0 and Ñp(e

it) = Γ−1
p Lp respectively. Clearly this operators are invertible with inverse given by

M̃−1
p (eit) = L∗

0Γp|Mp and Ñ−1
p (eit) = L∗

pΓp|Np Thus,

M̃p(e
it)x = Γ−1

p (e0x) =
(
e0γ

p
00 + · · ·+ epγ

p
p0

)
x,

Ñp(e
it)x = Γ−1

p (epx) =
(
e0γ

p
0p + · · ·+ epγ

p
pp

)
x.

From these operators we define the normalized operators trigonometric polynomials Mp(e
it) and Np(e

it) given
by

Mp(e
it)x = M̃p(e

it) (γp
00)

−1/2
x, Np(e

it)x = Ñp(e
it)
(
γp
pp

)−1/2
x. (6)

From now on, we write Mp and Np instead of Mp(e
it) and Np(e

it) respectively.
This operators can be obtained from the classical equation (cf. [2], [16], [28] and [35]) using (3), the classical

normal equation ((5) for Np) and from the formula Γ−1
p = I∗pT

−1
p Jp.

The following result shows that from these operators can be obtained complete orthonormal systems of the defect
space of the isometry Vp.

Lemma 2
Let {αk}∞k=1 a complete orthonormal system of the separable Hilbert space G. Then,

mk
p = Mpαk and nk

p = Npαk; k = 1, 2, . . . (7)

are complete orthonormal systems of the defect spaces Mp and Np respectively.

Proof: The result is a direct consequence of the preceding proposition and (4).
Using a similar proof given in [24] we can to show that the zeros of nk

p and mk
p for k = 1, 2, . . . , lie in the open

unit disk D and in the exterior of the closed unit disk, respectively.

Lemma 3
Let Mp and Np the operator trigonometric polynomials defined in (6). Then, the following properties are true:

(a) Mp and Np are isometric isomorphism.

(b) For all j, k = 1, · · · , p and every x, y ∈ G; ⟨Njx,Nky⟩p = δjk and ⟨ep−kMkx, ep−jMjy⟩p = δjk.

Proof: The statement (a) is a direct consequence of the previous lemma.
The statement (b) follows from the orthogonal decompositions Ep = N0 ⊕N1 ⊕ · · · ⊕ Np and Ep = V p

p M0 ⊕
V p−1
p Mp−1 ⊕ · · · ⊕ VpMp−1 ⊕Mp.
Denote Mp and Np by

Mp = e0Mp,0 + · · ·+ epMp,p and Np = e0Np,0 + · · ·+ epNp,p

and define the matrices αp and βp by

αp =


Mp,0 · · · M1,0 M0,0

Mp,1 · · · M1,1 0
...

...
...

...
Mp,p · · · 0 0

 and βp =


N0,0 N1,0 · · · Np,0

0 N1,1 · · · Np,1

...
... · · ·

...
0 0 · · · Np,p

 .
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Since Nj,j , j = 0, 1, · · · , p are strictly positive,

β1 =

(
1 N1,0

0 N1,1

)
is invertible and for i = 2, · · · , p

βi =

 βi−1

 Ni−1,0

...
Ni−1,i−2

(
0 · · · 0

)
Ni,i


we can prove recursively that βi for i = 2, · · · , p are invertible. Analogously, a similar result can be obtained for
αi, i = 1, · · · , p.

The following result shows a lower and upper triangular factorization of T−1
p .

Proposition 2
Let αp and βp the matrices defined above. Then,

βpβ
∗
p = T−1

p = αpα
∗
p.

Proof: Let f = (f0, · · · , fp)t and g = (g0, · · · , gp)t. From the statement (b) of the previous lemma, we have

⟨f,g⟩Gp+1 = ⟨f0, g0⟩G + · · ·+ ⟨fp, gp⟩G
= ⟨N0f0, N0g0⟩p + · · ·+ ⟨Npfp, Npgp⟩p

= ⟨R0N0,0f0, N0,0g0⟩G + · · ·+
p∑

n=0

p∑
m=0

⟨Rm−nNp,nfp, Np,mgp⟩G

=

⟨
Tp


N0,0f0

0
...
0

 ,


N0,0g0

0
...
0


⟩

Gp+1

+ · · ·+

⟨
Tp


Np,0fp
Np,1fp

...
Np,pfp

 ,


Np,0gp
Np,1gp

...
Np,pgp


⟩

Gp+1

=

⟨
Tp


N0,0 N1,0 · · · Np,0

0 N1,1 · · · Np,1

...
... · · ·

...

0 0 · · ·
...Np,p



f0
f1
...
fp

 ,


N0,0 N1,0 · · · Np,0

0 N1,1 · · · Np,1

...
... · · ·

...

0 0 · · ·
...Np,p



g0
g1
...
gp


⟩

Gp+1

.

Thus, β∗
pTpβp = 1, or equivalently, β−1

p T−1
p (β∗

p)
−1 = 1. Hence βpβ

∗
p = T−1

p and β∗
p is a lower triangular

factorization of T−1
p .

The upper triangular factorization of T−1
p can be obtained from the fact that

⟨f,g⟩Gp+1 = ⟨f0, g0⟩G + · · ·+ ⟨fp, gp⟩G
= ⟨Mpf0,Mpg0⟩p + · · ·+ ⟨M0fp,M0gp⟩p.

From now on to simplify the notation we write γij instead of γk
ij for i, j = 0, 1, · · · , k; i, j ̸= 0.

We can see in the next section that the Levinson recurrences is an efficient algorithm to obtain this factorization.

Proposition 3
Let γk the inverse matrix of Tk for k = 0, 1, · · · , p. Then,

γ−1
kk = 1−A∗

kαk−1α
∗
k−1Ak = 1−A∗

kβk−1β
∗
k−1Ak
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and (
γk
00

)−1
= 1− Ckαk−1α

∗
k−1C

∗
k = 1− Ckβk−1β

∗
k−1C

∗
k

where A∗
k = [Rk, Rk−1, · · · , R1] and Ck = [R−1, R−2, · · · , R−k].

Proof: First, note that

Tk =

(
Tk−1 Ak

A∗
k 1

)
=

(
1 Ck

C∗
k Tk−1

)
.

We write the matrix γk = {γk
ij}i,j=0,1,··· ,k as,

γk =

(
γk−1 γk2
γ2k γkk

)
=

(
γk
00 γ̃k1

γ̃2k γ2k2

)
.

where γk2 = [γ0k, γ1k, · · · , γk−1,k]
t, γ2k = [γk0, γk1, · · · , γk,k−1] and γ̃k1 = [γ01, γ02, · · · , γ0k], γ̃2k =

[γ10, γ20, · · · , γk0]t, γ2k2 = {γk
ij}i,j=1,··· ,k.

Therefore, Tk−1γk2 +Akγkk = 0 and A∗
kγk2 + γkk = 1. This leads to γk2 = −T−1

k−1Akγkk. Hence

γ−1
kk = 1−A∗

kT
−1
k−1Ak

From the previous proposition we obtain the result.
Using the other representation of Tk and γk and the previous proposition we stablish the formula for γk

00.

4. The Levinson Recurrences in an infinite dimensional setting

In this section we extend the Levinson recurrences to the infinite dimensional setting and we derive an interesting
formula for these recurrences using the generators of the defect spaces of an isometry. In this way we get a set of
parameters whose norm can be interpreted as the angle between the subspaces. Similar results have been obtained
in the finite dimensional setting (cf. [24] and [25]).

Proposition 4
Set ∠VpNp−1

Mp−1
the angle between the subspaces VpNp−1 and Mp−1, {αk}∞k=1 a complete orthonormal system of the

separable Hilbert space G and Λp : G → G the map defined by

Λpx =

∞∑
k=1

∞∑
l=1

⟨x, αl⟩G⟨ζnl
p−1,m

k
p−1⟩pαk. (8)

Then, this map verifies the following properties

(a) Λpx = M−1
p−1P

Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1γ

1/2
p−1,p−1x) for all x ∈ G;

(b) ⟨Λpαj , αi⟩G = ⟨ζnj
p−1,m

i
p−1⟩p;

(c) ∥Λp∥ = cos
(
∠VpNp−1

Mp−1

)
;

Proof: In order to prove the statement (a), we use lemma 2 and part (b) of the proposition 1 to obtain,

P
Ep

Np
(epαj) =

∞∑
k=1

⟨epαj , n
k
p⟩pnk

p = Npγ
−1/2
pp αj (9)
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and thus,

P
Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1αj) = P

Ep−1

Mp−1
VpNp−1γ

−1/2
p−1,p−1αj

= Mp−1

∞∑
k=1

∞∑
l=1

⟨γ−1/2
p−1,p−1αj , αl⟩G⟨Vpn

l
p−1,m

k
p−1⟩pαk

.

From (8), we get

P
Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1αj) = Mp−1Λpγ

−1/2
p−1,p−1αj

which proves the result.
The part (b) holds under the hypothesis, {αk}∞k=1 is a complete orthonormal system of G,

⟨Λpαj , αi⟩G =

⟨ ∞∑
k=1

∞∑
l=1

⟨αj , αl⟩G⟨ζnl
p−1,m

k
p−1⟩pαk, αi

⟩
G

= ⟨ζnj
p−1,m

i
p−1⟩p

To prove the statement (c), let x ∈ Np−1, y ∈ Mp−1 with ∥x∥p−1 = 1 and ∥y∥p−1 = 1. Thus, x =
∑∞

i=1 xin
i
p−1,

y =
∑∞

j=1 yjm
j
p−1, where

∑∞
i=1 |xi|2 = 1 and

∑∞
j=1 |yi|2 = 1. From the definition of the angle between two

subspaces and the previous results, we have,

cos
(
∠VpNp−1

Mp−1

)
= sup{|⟨ζx, y⟩p| : ∥x∥p−1 = 1, ∥y∥p−1 = 1, x ∈ Np−1, y ∈ Mp−1}

= sup

{∣∣∣∣∣
∞∑
i=1

∞∑
j=1

xiyj⟨ζni
p−1,m

j
p−1⟩p

∣∣∣∣∣ :
∞∑
i=1

|xi|2 = 1,

∞∑
j=1

|yj |2 = 1

}

= sup

{∣∣∣∣∣
∞∑
i=1

∞∑
j=1

xiyj⟨Λpαi, αj⟩G

∣∣∣∣∣ :
∞∑
i=1

|xi|2 = 1,

∞∑
j=1

|yj |2 = 1

}
= sup

{
|⟨Λpu, v⟩G | : ∥u∥2G = 1, ∥v∥2G = 1

}
= ∥Λp∥.

Corollary 1
Let Λp the operator defined by (8). Then,

Λp =

p∑
m=1

p−1∑
n=0

M∗
p−1,nRm−nNp−1,m−1. (10)

Moreover,

Λp = Λp−1 +Mp−1,0RpNp−1,p−1 +M∗
p−1,p−1

(
p−1∑
m=1

Rm−p+1Np−1,m−1

)

+

(
p−1∑
n=1

M∗
p−1,nRp−n

)
Np−1,p−1

Proof: To stablish (10) we note that,

⟨e1nl
p−1,m

k
p−1⟩p = ⟨e1Np−1αl,Mp−1αk⟩p =

p∑
m=1

p−1∑
n=0

⟨
M∗

p−1,nRm−nNp−1,m−1αl, αk

⟩
G .
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Therefore,

Λpx =

∞∑
k=1

∞∑
l=1

⟨x, αl⟩G⟨ζnl
p−1,m

k
p−1⟩pαk

=

∞∑
k=1

∞∑
l=1

⟨x, αl⟩G
p∑

m=1

p−1∑
n=0

⟨
M∗

p−1,nRm−nNp−1,m−1αl, αk

⟩
G αk

=

p∑
m=1

p−1∑
n=0

M∗
p−1,nRm−nNp−1,m−1x.

The recursion for Λp is a direct consequence of (10).
Now, we need to define the following operators to simplify the notation in the main result of this work,

Wp = γ
−1/2
p−1,p−1γ

1/2
pp , Sp =

(
γp−1
00

)−1/2
(γp

00)
1/2

From the proposition 3 these operators can be computed from Mp−1, Np−1 and the sequence R1, · · · , Rp.

Theorem 1
(Levinson algorithm) Let Mp y Np the operators trigonometric polynomials defined by (6) and Λp as in (8). Then,
for every p ∈ N the following recurrences are true,

Np = (ζNp−1 −Mp−1Λp)Wp, N0 = 1

Mp =
(
Mp−1 − ζNp−1Λ

∗
p

)
Sp, M0 = 1.

(11)

Proof: First, let {αk}∞k=1 a complete orthonormal system of the separable Hilbert space G and note that
epαj = Vp(ep−1αj) and ep−1αj = P

Ep−1

Dp
(ep−1αj). From lemma 1, Ep−1 = Dp = Dp−1 ⊕Np−1. Hence,

P
Ep

Dp
(epαj) = VpP

Ep−1

Dp−1
(ep−1αj) + P

Ep

Dp
VpP

Ep−1

Np−1
(ep−1αj). (12)

Second, from of the orthogonal decompositions Dp = Rp−1 ⊕Mp−1 and Rp = Rp−1 ⊕ VpNp−1, we have,

P
Ep

Dp
VpP

Ep−1

Np−1
(ep−1αj = P

Ep

Rp−1⊕Mp−1
VpP

Ep−1

Np−1
(ep−1αj)

= P
Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1αj). (13)

Substituting (13) into (12), we obtain,

P
Ep

Dp
(epαj) = VpP

Ep−1

Dp−1
(ep−1αj) + P

Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1αj). (14)

Again, using the orthogonal decomposition, Dp+1 = Dp ⊕Np we get P
Ep

Np
(epαj) = epαj − P

Ep

Dp
(epαj). This

operator is called the forward innovation operator. Now, we can rewrite (14) as,

P
Ep

Np
(epαj) = VpP

Ep−1

Np−1
(epαj)− P

Ep−1

Mp−1
VpP

Ep−1

Np−1
(ep−1αj).

Finally, from proposition 4 we have the first recurrence of (11),

Npγ
−1/2
pp αj = ζNp−1γ

−1/2
p−1,p−1αj −Mp−1Λpγ

−1/2
p−1,p−1αj .

For the other recursion we need the orthogonal decomposition Rp = Rp−1 ⊕ VpNp−1. Thus,

P
Ep

Rp
(e0αj) = P

Ep

Rp−1
(e0αj) + P

Ep

VpNp−1
(e0αj). (15)
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Now, from the orthogonal decomposition Ep = Rp ⊕Mp we have, P
Ep

Mp
(e0αj) = e0αj − P

Ep

Rp
(e0αj). This

operator is called the backward innovation operator. Thus, we can rewrite (15) as

P
Ep

Mp
(e0αj) = P

Ep

Mp−1
(e0αj)− P

Ep

VpNp−1
(e0αj).

From proposition 1 and lemma 2, we have P
Ep

Mp
(e0αj) = Mp (γ

p
00)

−1/2
αj . Therefore,

Mp (γ
p
00)

−1/2
αj = Mp−1

(
γp−1
00

)−1/2
αj − P

Ep

VpNp−1
(e0αj). (16)

It remains to obtain P
Ep

VpNp−1
(e0αj). Note that from proposition 1, lemmas 1 and 2 and (8),

P
Ep

VpNp−1
(e0αj) = P

Ep

VpNp−1

(
P

Ep

Rp−1
(e0αj) + P

Ep

Mp−1
(e0αj)

)
= P

Ep

VpNp−1
P

Ep

Mp−1
(e0αj) = VpNp−1Λ

∗
p

(
γp−1
00

)−1/2
.

Substituting this expression into (16), we conclude that

Mp (γ
p
00)

−1/2
= Mp−1

(
γp−1
00

)−1/2
− ζNp−1Λ

∗
p

(
γp−1
00

)−1/2
.

Which proves the main result of this work.

5. Conclusions and Discussions

In this work we have obtained a new version of the Levinson algorithm in infinite dimension setting using a
geometrical approach. This result, together with the lower and upper triangular factorization of the inverse for
block Toeplitz matrix Tp allows us to solve efficiently system of equations TpXp = Yp where Xp, Yp ∈ Gp+1

, recursively computing the solution of the system of increasing size TkXk = Yk. Additionally, the parameters
obtained can be interpreted in terms of angles between subspaces. This generalizes the result obtained in the
finite dimensional case where this parameters can be identified with the partial autocorrelation coefficients. Indeed,
if we assume that 1 = R0, . . . , Rp are the scalar partial autocorrelation coefficients of a second order stationary
stochastic process X = {Xk}k∈Z this sequence is strictly positive definite. From [25] we know that the map
X−j → ej , j ∈ Z establishes a unitary automorphism between HX = Span{Xj : j ∈ Z} (the closure of the space
generated by the process) and L2(fdt) where f is the spectral density of the process. Now, let l, k ∈ N, k > l and
Hl,k := Span{X−n}kn=l subspaces of HX . We define the innovations by

ϵp = X−p − PH1,p−1X−p, ϵ∗p = X0 − PH1,p−1X0

and they verify

⟨ϵp, ϵ∗p⟩HX

⟨ϵp, ϵp⟩1/2HX ⟨ϵ∗p, ϵ∗p⟩
1/2

HX

= ⟨Vpnp−1,mp−1⟩p = cos
(
∠VpNp−1

Mp−1

)
= ∥Λp∥.

These parameters are called partial de autocorrelation coefficients and are obtained from the Levinson algorithm.
When the dimension is q we have a similar result. More details can be found in [24].

In this paper we show that the parameters Λp have the same interpretation: ∥Λp∥ = cos
(
∠VpNp−1

Mp−1

)
.

We have obtained from Corollary 1 that these parameters can be computed recursively and there exists a one to
one correspondence between these parameter and the sequence of operators {Rk}pk=1.

Finally, the geometrical technique obtained in this work could be useful to solve extension problems in Statistics
and for prediction problems in an infinite dimensional setting.
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