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Abstract Any given system can be represented as a parallel arrangement of series structures. Motivated by this fact, a
general family of distributions is introduced, by adding two extra parameters to a distribution (called baseline distribution),
twice compounding with power series distribution. The new family can allow various hazard rate curves that compete well
with other alternatives in fitting real data. We derive formal expressions for its moments, generating function, mean residual
lifetime and other reliability functions. Certain characterizations of the new family are presented in terms of the ratio of two
truncated moments as well as based on the hazard rate function. The maximum likelihood estimation technique is used to
estimate the model parameters and a simulation study is conducted to investigate the performance of the maximum likelihood
estimates. Finally, two applications of the model with real data sets are presented to illustrate the usefulness of the proposed
distribution.
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1. Introduction

The reliability of the parallel and series systems with a random number of components has extensive literature.
Throughout the last two decades, several distributions have been proposed to model the lifetime of systems with
an unknown number of components. These new distributions are built by compounding a lifetime distribution
and a member of the power series family of distributions in series or parallel arrangement. Let U denote the
number of components in a system connected in series or parallel structures and let Xi denote the lifetime
of the ith component. Then, the lifetime of the system can be represented as Y = min(X1, X2, . . . , XU ) or
Y = max(X1, X2, . . . , XU ).

Marshall and Olkin [21] proposed adding a parameter to the lifetime distribution through compounding with the
geometric distribution. Their work was extended by Adamidis and Loukas [5] when the two-parameter exponential-
geometric (EG) distribution was introduced. Similarly, Chahkandi and Ganjali [9] proposed the exponential power
series (EPS) distribution; Morais and Barreto-Souza [22] introduced the Weibull power series (WPS) distribution,
which contains the EPS distribution as a special case. Flores et al. [15] proposed the complementary EPS
distribution, complementary to the EPS distribution.
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The purpose of this paper is to introduce a new family of lifetime distributions by compounding a lifetime
distribution and twice the power series distribution, which is referred to as the lifetime PS2 family of distributions.
The compounding procedure follows the ideas of Marshall and Olkin [21]. The proposed family is motivated
by a system consisting of parallel components with each component consisting of a series of components, i.e,
a system made of parallel and series structures. According to Ross [28], any system can be represented either
as a series arrangement of parallel structures or as a parallel arrangement of series structures. This new family
is the first family of distributions motivated by a system made of parallel and series components. Applications
of the parallel and series systems can be found in the areas of nuclear power systems [25] and modeling crystal
deformation [13]. The lifetime PS2 family of distributions contains as special cases all the compounded lifetime
distributions constructed by Marshall and Olkin method such as the generalized exponential geometric distribution
[4], exponential power series [9], Weibull power series [22], exponentiated extended Weibull power series [32] and
the inverse Weibull geometric distribution [20].

The rest of the paper is organized as follows. In Section 2, the new family of distributions are introduced. Section
3 derives some of its mathematical properties; the density, survival, hazard rate and moment generating functions
are given in this section. Section 4 deals with various characterizations of the new family of distributions. Section
5 presents some special cases of the new distribution. Estimation of the parameters of the new distribution via the
maximum likelihood method and some related inferences and finite sample behaviors of the maximum likelihood
estimates are investigated in Section 6. In Section 7, a simulation study is performed to illustrate the behavior of
asymptotic variances of maximum likelihood estimations (MLEs). Illustrative examples to two real data sets are
given in Section 8. The paper is concluded in Section 9.

2. The new family

Suppose that a system is made of U parallel components and that the ith component is made of Zi components
working in series. See Figure 1 for an illustration. Let Xi,j denote the lifetime of the jth component in the ith series
component. Then, the lifetime of the system is

X = max
{
min {Xi,j}Zi

j=1

}U

i=1
.

Figure 1. The system made up of parallel and series components.

Let Xi,j be independent and identically distributed baseline random variables with the probability distribution
function (pdf) g(x;τττ) and cumulative density function (cdf) G(x,τττ), where τττ denoted the vector of parameters
of the baseline distribution. The survival function of the baseline distribution is Ḡ(x;τττ) = 1−G(x;τττ). Let
Z1, Z2, . . . , ZU be independent and identically distributed power series random variables (truncated at zero) with
parameter θ and the probability mass function (pmf) [24]
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P (z; θ) =
bzθ

z

B (θ)
,

for z = 1, 2, . . ., where bz depends only on z and B (θ) =
∑∞

z=1 bzθ
z < ∞. Let U be a power series random

variable with parameter λ and probability mass function

P (u;λ) =
auλ

u

A (λ)
,

for u = 1, 2, . . ., where au depends only on u and A (λ) =
∑∞

u=1 auλ
u < ∞. Assume Xi,j and Z1, Z2, . . . , ZU

are independent random variables. Table 1 shows useful quantities of some members of the power series family
(truncated at zero) such as the Poisson, geometric, logarithmic series, negative binomial and binomial distributions.

Table 1. Members of the power series family.

Distribution pmf λ extended λ after compounding au A(λ) I(λ) =
∫ λ

0
A′ (v) log {A′ (v)} dv

Zero Truncated Poisson e−λλu/u!
(
1− e−λ

)
0 < λ < ∞ λ ∈ (−∞, 0)

∪
(0,+∞) 1/u! eλ − 1 (λ− 1)eλ + 1

Geometric (1− λ)λu−1 0 < λ < 1 λ ∈ (−∞, 0)
∪
(0, 1) 1 λ/(1− λ) −2 (λ+ log {1− λ}) / (1− λ)

Logarithmic −λu/u log {1− λ} 0 < λ < 1 λ ∈ (−∞, 0)
∪
(0, 1) 1/u − log{1− λ} −1

2 log
2 {1− λ}

Negative Binomial
(
m+u−1

u

)
(1− λ)

m
λu/1− (1− λ)

m
0 < λ < 1 λ ∈ (−∞, 0)

∪
(0, 1)

(
m+u−1

u

)
(1− λ)

−m − 1 log{m}A′(λ)− m+1
m

{
(1− λ)

−m
[m log {1− λ}+ 1]− 1

}
Zero Truncated Binomial

(
m
u

)
λu/ ((1 + λ)

m − 1) 0 < λ < ∞ λ ∈ (−1, 0)
∪
(0,+∞)

(
m
u

)
(1 + λ)

m − 1 (1 + λ)m log
{
m(1 + λ)

m−1
}
− log{m}

It can be shown that the cdf of X is

F (x;ξξξ) = [A (λ)]
−1

A
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
,

for x > 0, ξξξ = (τττ , θ, λ) and survival function F̄ (x;ξξξ) = 1− F (x;ξξξ). The corresponding pdf and hazard rate
functions (hrf) are

f (x;ξξξ) =
λθg (x;τττ)B′ (θḠ (x;τττ)

)
A (λ)B (θ)

A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
(1)

and

h (x;ξξξ) =
λθg (x;τττ)B′ (θḠ (x;τττ)

)
A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
B (θ)

{
A (λ)−A

(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})} ,

for x ≥ 0 respectively. We shall see later that the hrf can be constant, decreasing, increasing, bathtub-shaped and
upside down bathtub-shaped for different baseline and power series distributions. We shall refer to X as a member
of the lifetime power series power series (Lifetime PS2) family of random variables. The baseline distribution is a
soecial case for N = U = 1. The WPS distribution of Lemos Morais and Barreto-Souza [22] and EPS distribution
of Chahkandi and Ganjali [9] are the special cases for U = 1 and U = α = 1, respectively. On the other hand,
CEPS Flores et al. [15] is a special case for Zi = α = 1 and i = 1, 2, . . .. Since

lim
θ→0+

F (x;ξξξ) = lim
θ→0+

[A (λ)]
−1

A
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
= [A (λ)]

−1
A (λG (x;τττ)) ,

lim
λ→0+

F (x;ξξξ) = lim
λ→0+

[A (λ)]
−1

A
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
= 1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)
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and

lim
θ,λ→0+

F (x;ξξξ) = lim
θ,λ→0+

[A (λ)]
−1

A
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})
= G (x;τττ) ,

the compound of lifetime and power series distributions with minimum structure, compound of lifetime and power
series distributions with maximum structure and baseline distribution are the lifetime PS2 distributions lwith special
cases as the limiting distributions.

3. Mathematical properties

Let X be a lifetime PS2 random variable with the parameter vector ξξξ = (τττ , θ, λ). Using the binomial expansion and

A′ (λ) =
∞∑
u=1

uauλ
u−1, the cdf and pdf of X can be expanded as

F (x;ξξξ)) =

∞∑
k=0

∞∑
j=0

ck,jḠ(x;τττ)
k+j (2)

and

f (x;ξξξ) = g(x)

∞∑
k=0

∞∑
j=0

dk,jḠ(x;τττ)
k+j−1

, (3)

where ck,j = ck,j(θ, λ) and dk,j = dk,j(θ, λ) = −(k + j)ck,j . Details of the derivation and coefficients are given in
Appendix B. The density function is an infinite linear combination of the baseline survival function. Furthermore,
in Appendix C, we introduce and calculate the following useful quantity

κ (a, b, c) = E
[
Xag(X)

b−1
Ḡ(X)

c
]
=

∫ ∞

0

xa[g (x)]
b[
Ḡ (x)

]c
dx,

where g(.) and Ḡ(.) denoted the pdf and survival function of the baseline distribution, respectively. So, the
mathematical quantities, such as the moments, moment generating and mean residual functions, of this family,
can be derived. From (3) the sth raw moment of X is

µ′
s = E [Xs] =

∞∑
k=0

∞∑
j=0

dk,j

∫ ∞

0

xsg(x)Ḡ(x)
k+j−1

dx

=

∞∑
k,j=0

dk,jκ (s, 1, k + j − 1) , (4)

for s > 0, where κ (s, 1, k + j) = M (s, 0, k + j) is the (s, 0, k + j)th probability weighted moment (PWM) of the
baseline distribution defined by Greenwood et al. [19] as follows

M (i, j, l) = E
[
XiG(X)

j
Ḡ(X)

l
]
=

∫ +∞

0

xi[G (x)]
j[
Ḡ (x)

]l
dG (x) .

The first four moments with different values of the parameters are calculated numerically for the Weibull geometric
Poisson distribution (WGP for brevity, see Section 5.3). These values are given in Table 2.
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Table 2. The four moments of WGP distribution for some selected value of parameters.

α β θ γ µ′
1 µ′

2 µ′
3 µ′

4

0.8 0.5 0.2 0.5 2.728 19.059 224.853 37907.02
0.8 0.5 0.8 1 1.316 6.965 74.420 1209.41
0.8 1 0.2 0.5 1.147 3.375 16.858 121.984
0.8 2 0.8 1 0.233 0.218 0.4145 1.215
1 0.5 0.2 0.5 2.023 8.119 48.770 390.305
1 0.5 0.8 1 1.076 3.209 16.916 127.768
1 1 0.2 0.5 1.013 2.030 6.096 24.394
1 2 0.8 1 0.269 0.201 0.264 0.499

1.5 0.5 0.2 0.5 1.464 3.039 8.119 25.876
1.5 0.5 0.8 1 0.906 1.424 3.209 9.270
1.5 1 0.2 0.5 0.911 1.206 2.030 4.076
1.5 2 0.8 1 0.360 0.224 0.201 0.230

The incomplete moments of X can be determined from (4) using the incomplete probability weighted moment
as

IX (r, y, ξ) =

∫ y

0

xrf(x)dx =

∞∑
k=0

∞∑
j=0

dk,jκ
y (r, 1, k + j − 1),

where the lower incomplete kappa function is defined by

κy (a, b, c) =

∫ y

0

xa[g (x)]
b[
Ḡ (x)

]c
dx.

The moment generating function (MX(t)) can be expressed as

MX (t) = E
[
etX
]

= E

[ ∞∑
s=0

(tX)
s

s!

]
=

∞∑
s=0

ts

s!
E [Xs]

=

∞∑
s=0

∞∑
k,j=0

ts

s!
dk,jκ (s, 1, k + j − 1).

Given survival to time x0, the residual life is the period from x0 until the time of failure. From the expansion
of the survival function (Appendix B, equation (14)), the mean residual lifetime of the lifetime PS2 distribution is
given by

m(x0) = E [X − x0|X > x0] =
[
F̄ (x0;ξξξ)

]−1
∫ ∞

x0

F̄ (v;ξξξ)dv

=
[
F̄ (x0;ξξξ)

]−1
∞∑
k=1

∞∑
j=0

c′k,j

∫ ∞

x0

Ḡ(v)
k+j

dv

=
[
F̄ (x0;ξξξ)

]−1
∞∑
k=1

∞∑
j=0

c′k,jκx0 (0, 0, k + j) ,

where the upper incomplete kappa function κx0 (a, b, c) is introduced in Appendix C.
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The entropy of a random variable is a measure of the variation of uncertainty. Shannon’s entropy [29] of the
random variable X with pdf f(x) is defined by −E {log [f(x)]}. Hence, the Shannon’s entropy for the lifetime PS2

distribution can be expressed in the form

IS (X) = − log

[
λθ

A (λ)B (θ)

]
− E [log {g (X;τττ)}]− E

[
log
{
B′ (θḠ (X;τττ)

)}]
− E

[
log
{
A′
(
λ
[
1− {B (θ)}−1

B′ (θḠ (X;τττ)
)])}]

.

First, we can show that

E [log {g(X;τττ)}] =

∞∑
k=0

∞∑
j=0

dk,j

∫ ∞

0

g(x;τττ)Ḡ(x;τττ)
k+j−1

log {g(x;τττ)}dx

=
d

dt

∞∑
k=0

∞∑
j=0

dk,jκ (0, 1 + t, k + j − 1) |t=0.

We use an equation of Qi et al. [27] for the logarithm of a power series throughout and the fact that the derivative
of a power series is a power series as well (Appendix A, equation (10)), to show that

E
[
log
{
B′ (θḠ (X;τττ)

)}]
=

∞∑
k=0

∞∑
j=0

dk,j

∫ ∞

0

g(x;τττ)Ḡ(x;τττ)
k+j−1

log
{
B′ (θḠ (x;τττ)

)}
dx

=

∞∑
k=0

∞∑
j=0

∞∑
z=0

φzdk,jθ
z

∫ ∞

0

g(x;τττ)Ḡ(x;τττ)
k+j+z−1

dx

=

∞∑
k,j,z=0

φzdk,jθ
z(k + j + z)

−1
,

where

φz =
1

b1

[
(z + 1) bz+1 −

1

z

z−1∑
k=1

k (z − k + 1)φkbz−k+1

]
.

Finally,

E
[
log
{
A′
(
λ
[
1− (B (θ))

−1
B
(
θḠ (x;τττ)

)])}]
=

1

A (λ)

∫ λ

0

A′ (u) log {A′ (u)} du.

Table 1 shows the closed-form expressions of I (λ) = 1
A(λ)

∫ λ

0
A′ (u) log {A′ (u)} du for Poisson, geometric,

logarithmic and other members of the power series distributions.
Let X1, X2,. . . ,Xn be independent and identically distributed lifetime PS2 random variables. We can write the

density of the ith order statistic, Xi:n as

fi:n (x) = Kf(x)[F (x)]
i−1

[1− F (x)]
n−i

= K

n−i∑
j=1

(−1)
j

(
n− i

j

)
f(x)[F (x)]

m
, (5)

where m = i+ j − 1 and K = n!/ [(i− 1)!(n− i)!].
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Using binomial expansion and equations (12) and (13) (Appendix A) we have

A′
(
λ
[
1− {B (θ)}−1

B
(
θḠ (x;τττ)

)]) [
A
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (x;τττ)

)})]m
=

∞∑
u=0

ϕm,u

{
λ
[
1− {B (θ)}−1

B
(
θḠ (x;τττ)

)]}m+u

=

∞∑
u=0

ϕm,uλ
m+u

m+u∑
k=0

(
m+ u

k

)
[−B (θ)]

−k{
B
(
θḠ (x;τττ)

)}k
=

∞∑
u=0

m+u∑
k=0

(
m+ u

k

)
ϕm,uλ

m+u[−B (θ)]
−k

∞∑
z=0

c′k,zθ
k+z
[
Ḡ (x;τττ)

]k+z

=

∞∑
k=0

∞∑
z=0

c′k,zρm,kθ
k+z[−B (θ)]

−k[
Ḡ (x;τττ)

]k+z
, (6)

where c′k,z and ϕm,u were introduced in Appendix A and

ρm,k = ρm,k (λ) =

∞∑
u=k−m

(
m+ u

k

)
ϕm,uλ

m+u.

The pdf of Xi:n is obtained by inserting pdf and cdf of the lifetime PS2 distribution in (5). From the expansion
of B′(θ) =

∑∞
r=1 rbrθ

r−1 and equation (6), we can rewrite density of Xi:n as

fi:n (x) =
Kλθg (x; τ)B′ (θḠ (x; τ)

)
A (λ)B (θ)

n−i∑
j=1

∞∑
k,z=0

(
n− i

j

)
(−1)

k+j
c′k,zρm,kθ

k+z[B (θ)]
−k[

Ḡ (x; τ)
]k+z

=
Kλθg (x; τ)

A (λ)B (θ)

∞∑
j=1

∞∑
k,z=0

∞∑
r=1

(
n− i

j

)
(−1)

k+j

[B (θ)]
k
rbrc

′
k,zρm,kθ

k+z+r−1
[
Ḡ (x; τ)

]k+z+r−1
, (7)

for x ≥ 0. Equation (7) is the main result of this section. It reveals that the pdf of the lifetime PS2 order statistics
is a linear combination of the baseline survival functions. So, several mathematical quantities of the lifetime PS2

order statistics such as ordinary, incomplete and factorial moments, mgf, mean deviations and several others can
be found. With this, we obtain a formula for the sth moment of the ith order statistic Xi:m:

E [Xs
i:m] =

Kλθ

A (λ)B (θ)

∞∑
j=1

∞∑
k,z=0

∞∑
r=1

(
n− i

j

)
(−1)

k+j

[B (θ)]
k
rbrc

′
k,zρm,kθ

k+z+r−1κ (s, 1, k + z + r − 1).

Let U be a random variable with standard uniform distribution. Then, the following transformation of U has
lifetime PS2 distribution:

X = Ḡ−1

(
1

θ
B−1

(
B (θ)

[
1− A−1 (UA (λ))

λ

]))
, (8)

where Ḡ−1(.) is the inverse of the baseline survival function. Furthermore, A−1(.) and B−1(.) are the inverse
functions of A(.) and B(.). The ωth quantile of the lifetime PS2 distribution is

xω = Ḡ−1

(
1

θ
B−1

(
B (θ)

[
1− 1

λ
A−1 (ωA (λ))

]))
.

Stat., Optim. Inf. Comput. Vol. 7, December 2019



786 A NEW GENERALIZED FAMILY OF LIFETIME DISTRIBUTIONS MOTIVATED

4. Characterizations of PS2 family of distributions

This section deals with various characterizations of PS2 distribution. These characterizations are based on: (i) a
simple relationship between two truncated moments and (ii) the hazard function. It should be mentioned that for
characterization (i) the cdf may not have a closed form.

We present our characterizations (i)− (ii) in two subsections.

4.1. Characterizations based on two truncated moments

In this subsection, we present characterizations of PS2 distribution in terms of the ratio of two truncated moments.
This characterization result employs a theorem due to Glänzel [16] see Theorem 1 of Appendix D. Note that the
result holds also when the interval H is not closed. As shown in Glänzel [17], this characterization is stable in the
sense of weak convergence.

Proposition 1. Let X : Ω → R be a continuous random variable and let , q1 (x) =
[B′(θG(x;τ))]

−1
G(x;τ)

A′(λ{1−[B(θ)]−1B(θG(x;τ))})
and q2 (x) = q1 (x) [BG (x; τ)]

2 for x ∈ R. The random variable X has pdf (1) if and only if the function η defined
in Theorem 1 has the form

η (x) =
1

2

{
1 + [G (x; τ)]

2
}
, x ∈ R.

Proof. If X has pdf (1), then

(1− F (x))E [q1 (X) | X ≥ x] =
λ

2A (λ)B (θ)

{
1− [G (x; τ)]

2
}
, x ∈ R,

and

(1− F (x))E [q2 (X) | X ≥ x] =
λ

4A (λ)B (θ)

{
1− [G (x; τ)]

4
}
, x ∈ R,

and finally

η (x) q1 (x)− q2 (x) =
1

2
q1 (x)

{
1− [G (x; τ)]

2
}
> 0 for x ∈ R.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2g (x; τ)G (x; τ)

1− [G (x; τ)]
2 x ∈ R,

and hence

s (x) = − log
{
1− [G (x; τ)]

2
}
, x ∈ R.
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Now, in view of Theorem 1, X has density (1) .

Corollary 1. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1 Then, X
has pdf (1) if and only if there exist functions q2 and η defined in Theorem 1 satisfying the differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2g (x; τ)G (x; τ)

1− [G (x; τ)]
2 , x ∈ R.

The general solution of the differential equation in Corollary 1 is

η (x) =
{
1− [G (x; τ)]

2
}−1

[
−
∫

2g (x; τ)G (x; τ) (q1 (x))
−1

q2 (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition
1 with D = 1

2 . However, it should be also noted that there are other triplets (q1, q2, η) satisfying the conditions of
Theorem 1.

4.2. Characterization in terms of the hazard function

The hazard function, hF , of a twice differentiable distribution function, F , satisfies the following first order
differential equation

f ′(x)

f (x)
=

h′
F (x)

hF (x)
− hF (x).

It should be mentioned that for many univariate continuous distributions, the above equation is the only
differential equation available in terms of the hazard function. In this subsection, we present a non-trivial
characterization of PS2 in terms of the hazard function.

Proposition 2. Let X : Ω → R be a continuous random variable. The random variable X has pdf (1) if and
only if its hazard function hF (x) satisfies the following differential equation

h′
F (x)− g′ (x; τ)

g (x; τ)
hF (x) =

λθg (x; τ)

B (θ)

d

dx

B′ (θG (x; τ)
)
A′
(
λ
{
1− [B (θ)]

−1
B
(
θG (x; τ)

)}){
A (λ)A

(
λ
{
1− [B (θ)]

−1
B
(
θG (x; τ)

)})}
 , x ∈ R.

Proof. If X has pdf (1), then clearly the above differential equation holds. If the differential equation holds,
then

d

dx

{
(g (x; τ))

−1
hF (x)

}
=

λθ

B (θ)

d

dx

B′ (θG (x; τ)
)
A′
(
λ
{
1− [B (θ)]

−1
B
(
θG (x; τ)

)}){
A (λ)A

(
λ
{
1− [B (θ)]

−1
B
(
θG (x; τ)

)})}
 , x ∈ R,

from which we arrive at the hazard function corresponding to the pdf (1).
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5. Some special cases

In this section, we introduce some special cases of the lifetime PS2 family of distributions. To illustrate the
flexibility of the distributions, graphs of the pdf and hazard rate functions for selected distributions are presented.

5.1. Exponential power series power series (EPS2) distribution

The cdf and pdf of the exponential distribution with scale parameter β > 0 are given by G(x;β) = 1− e−βx and
g(x;β) = βe−βx, respectively. Inserting these expressions in (1) results in the EPS2 pdf

f (x;ξξξ) =
βλθe−βxB′ (θe−βx

)
A (λ)B (θ)

A′
(
λ
{
1− [B (θ)]

−1
B
(
θe−βx

)})
,

for x ≥ 0, β > 0.

5.2. Lindley power series power series (LPS2) distribution

Consider the Lindley distribution with scale parameter β > 0 and cdf and pdf are given by

G(x;β) = 1− β + 1 + βx

β + 1
e−βx and g(x;β) =

β2

β + 1
(1 + x) e−βx,

respectively. Inserting these expressions in (1) results in the LPS2 density function

f (x;ξξξ) =
β2λθ (1 + x) e−βxB′

(
θ
[
β+1+βx

β+1 e−βx
])

(β + 1)A (λ)B (θ)
A′
(
λ

{
1− [B (θ)]

−1
B

(
θ

[
β + 1 + βx

β + 1
e−βx

])})
,

for x ≥ 0, β > 0.

5.3. Weibull power series power series (WPS2) distribution

The WPS2 distribution is defined from (1) by taking G(x;α, β) = 1− e−βxα

and g(x;α, β) = αβxα−1e−βxα

for
the cdf and pdf of the Weibull distribution with parameters α and β. The WPS2 pdf is given by

f (x;ξξξ) =
αβλθxα−1e−βxα

B′ (θe−βxα)
A (λ)B (θ)

A′
(
λ
{
1− [B (θ)]

−1
B
(
θe−βxα)})

,

for x ≥ 0, α > 0 and β > 0. Figures 2 and 3 display the density and hazard rate functions of the Weibull geometric
Poisson (WGP) and Weibull geometric binomial (WGB) distributions for selected parameter values.

5.4. Lomax power series power series (LxPS2) distribution

The cdf and pdf of the Lomax distribution with scale parameter β and shape parameter α are given by
G(x;β) = 1− [1 + βx]

−α and g(x;β) = αβ[1 + βx]
−α−1, respectively. The LxPS2 pdf is obtained by inserting

these expressions in (1)

f (x;ξξξ) =
αβλθB′ (θ[1 + βx]

−α)
A (λ)B (θ) [1 + βx]

α+1A
′
(
λ
{
1− [B (θ)]

−1
B
(
θ[1 + βx]

−α)})
,

for x ≥ 0 and α, β > 0.
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Figure 2. Graphs of the WGP (first row) and WGB (second row) pdfs for selected values of the parameters.

Figure 3. Graphs of the WGP (first row) and WGB (second row) hrfs for selected values of the parameters.

5.5. Log-logistic power series power series (LLPS2) distributions

Consider the log-logistic distribution with scale parameter β and shape parameter α, where the cdf and pdf

(for x ≥ 0) are given by G (x;α, β) =
[
1 + (βxα)

−1
]−1

and g (x;α, β) = αβ(βx)
α−1

[1 + (βx)
α
]
−2. The LLPS2
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distribution defined by twice compounding the log-logistic and power series distribution. The LLPS2 pdf is given
by

f (x;ξξξ) =
αβλθxα−1B′

(
θ[1 + βxα]

−1
)

A (λ)B (θ) [1 + βxα]
2 A′

(
λ
{
1− [B (θ)]

−1
B
(
θ[1 + βxα]

−1
)})

,

for x ≥ 0 and α, β > 0.

5.6. Generalized half-normal power series power series (GHNPS2) distributions

Generalized half-normal distribution was introduced by Cooray and Ananda [11] with cdf and pdf

G (x) = 2Φ (βxα)− 1 and g (x) =

√
2

π
αβxα−1e−

1
2 (βx

α)2 ,

respectively. The GHNPS2 pdf is obtained by inserting these expressions in (1)

f (x; ξ) =

√
2
παβλθx

α−1e−
1
2 (βx

α)2B′ (2θΦ (−βxα))

A (λ)B (θ)
A′
(
λ
{
1− [B (θ)]

−1
B (2θΦ(−βxα))

})
for x ≥ 0 and α, β > 0.

6. Estimation of the parameters

In this section, we discuss the estimation of the parameters of the lifetime PS2 distribution. Suppose X =
(X1, X2, . . . , Xn) is a random sample from the lifetime PS2 distribution with the vector of the observed values
x = (x1, x2, . . . , xn) and parameter vector ξξξ = (τττ , θ, λ). The log-likelihood function based on the observed sample
is

ℓ (ξξξ | x) = n log θ + n log λ− n log [A (λ)]− n log [B (θ)] +

n∑
i=1

log [g (xi;τττ)]

+

n∑
i=1

log
[
A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)})]
. (9)

The associated score function is given by Un (ξξξ) =
(
∂ℓ
∂τττ ,

∂ℓ
∂θ ,

∂ℓ
∂λ

)
, where

∂ℓ

∂τττ
=

n∑
i=1

gτττ (xi;τττ)

g (xi;τττ)
− λθ

B (θ)

n∑
i=1

Ḡτττ (xi;τττ)B
′ (θḠ (xi;τττ)

)
A′′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)})
A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)}) ,

∂ℓ

∂θ
=

n

θ
− nB′ (θ)

B (θ)
− λ

n∑
i=1

B (θ) Ḡ (xi;τττ)B
′ (θḠ (xi;τττ)

)
−B′ (θ)B

(
θḠ (xi;τττ)

)
[B (θ)]

2

×
A′′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)})
A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)}) ,
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and

∂ℓ

∂λ
=

n

λ
− nA′ (λ)

A (λ)
+

n∑
i=1

{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)}
A′′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)})
A′
(
λ
{
1− [B (θ)]

−1
B
(
θḠ (xi;τττ)

)}) ,

where

Ḡτττ (xi;τττ) =
∂Ḡ (xi;τττ)

∂τττ
and gτττ (xi;τττ) =

∂g (xi;τττ)

∂τττ
.

The functions g(.) and Ḡ(.) are defined in Section 2. The MLE estimate of ξξξ (ξ̂ξξ) is obtained by solving the nonlinear
likelihood equations Un (ξξξ) =

(
∂ℓ
∂τττ ,

∂ℓ
∂θ ,

∂ℓ
∂λ

)
= 0. These equations cannot be solved analytically and a statistical

software can be used to solve them via iterative numerical methods such as the Newton-Raphson, quasi-Newton,
or Nelder-Mead procedures such as the Newton-Raphson, quasi-Newton, or Nelder-Mead procedures. In the data
examples section 8, the MLEs were obtained by directly maximizing (9) with respect to the parameters. The
’optim’ routine in R based on the method “BFGS” was used for numerical maximization.

For interval estimation of (τττ , θ, λ) and hypothesis tests on these parameters, we obtain the observed information
matrix since the expected information matrix is very complicated and requires numerical integration. The
(p+ 2)× (p+ 2) observed information matrix Jn(ξξξ), where p is the dimension of the parameter vector τττ , becomes

Jn(ξξξ) =



∂2ℓ

∂θ2
∂2ℓ

∂θ∂λ

∂2ℓ

∂θ∂τττ

∂2ℓ

∂λ∂θ

∂2ℓ

∂λ2

∂2ℓ

∂λ∂τττ

∂2ℓ

∂τττ∂θ

∂2ℓ

∂τττ∂λ

∂2ℓ

∂τττ2

 .

Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary
and large n, the distribution of

√
n
(
ξ̂ξξ − ξξξ

)
can be approximated by Np+2

(
0, nJ−1

n (ξξξ)
)
. This multivariate normal

distribution can be used to construct approximate confidence intervals and confidence regions for the individual
parameters and for the hazard rate and survival functions.

7. Simulation study

We conducted a simulation study to assess the performance of the maximum likelihood estimation procedure for
estimating the GHNGP distribution parameters using (8). Samples of sizes 10, 12, 14, . . . , 200 are generated for
parameter vector ξξξ = (1, 2, 0.5, 0.9) from GHNGP distribution.

Figure 4. From top to bottom and from left to right: biasα(n), biasβ(n), biasθ(n), biasλ(n).
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Figure 5. From top to bottom and from left to right: MSEα(n),MSEβ(n),MSEθ(n),MSEλ(n).

We repeated the simulation k = 100 times and calculated the MLEs and the bias and mean squared error (MSE)
of the parameter estimates. The empirical results are given in Figures 4 and 5 shows that as the sample size
increases, the biases, and MSEs of the estimators decrease. The broken lines in Figure 4 correspond to the biases
being zero. The following observations can be made:

1. The bias for α is generally positive, but θ and λ have a negative bias;

2. the biases for each parameter decrease to zero as n → ∞;

3. the biases and the mean squared errors are the smallest for the parameter, α;

4. the biases and the mean squared errors are the largest for the parameter, λ;

5. the mean squared errors for each parameter decrease to zero as n → ∞;

6. the biases and mean squared errors for each parameter appear reasonably small for all n > 60.

We have presented results for only one choice for ξξξ = (α, β, θ, λ), namely that ξξξ = (1, 2, 0.5, 0.9). However, the
results were similar for a wide range of other choices.

8. Real data examples

In this section, we fit the lifetime PS2 family of distributions to two real data sets by the method of maximum
likelihood. First, we give the MLEs and the corresponding standard errors of the model parameters and the values
of the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information
Criterion (BIC) and Kolmogorov-Smirnov (K-S) statistics. The lower the values of these criteria, the better the
fit. Finally, we provide the histograms of the data sets to have a visual comparison of the fitted density functions.
We used the total time on test (TTT) transform procedure proposed by Aarset [1] as a tool to identify the hazard
behavior of the distribution. The TTT-transform can illustrate the variety of the hazard rate curves for a lifetime
distribution. If the empirical TTT-transform is convex and concave, the shape of the corresponding hazard rate
function is decreasing and increasing, respectively. If the TTT-transform is convex and concave, the failure rate
function will have bathtub shape. Finally, If the TTT-transform is concave and convex, the failure rate function
unimodal will be more appropriate.

Data set 1

The first data set consists of the number of successive failures for the air conditioning system of each member in
a fleet of 13 Boeing 720 airplanes. The pooled data, yielding a total of 213 observations, were first analyzed by
Proschan [26] and further discussed in Tahmasbi and Rezaei [31] and Chahkandi and Ganjali [9]. Table 3 gives
some descriptive statistics for the data set.
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Table 3. Descriptive statistics for data set 1.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
213 93.14 22 57 118 14 11398.47 2.11 7.92 1 603

The new three parameters distributions, exponential geometric Poisson (EGP), exponential geometric binomial
(EGB), generalized half-normal geometric geometric (GHNGG) distributions given by the following pdfs were
fitted:

fEGP (x;ξξξ) =
βλ (1− θ) e−βx

(1− e−λ) {1− θe−βx}2
exp

(
−λ (1− θ) e−βx

1− θe−βx

)
,

fEGNB (x;ξξξ) =
mβλ (1− θ) e−βx

(
1− θe−βx

)m−1{
(1− λ)

−m − 1
}
{1− λ+ (λ− θ) e−βx}m+1

and

fGHNGG (x;ξξξ) =

√
2
παβ (1− γ)xα−1e−

1
2 (βx

α)2

{1− 2γ Φ(−βxα)}2
,

for x ≥ 0 and α, β > 0. By using the geometric stability property [21] and the reparameterization γ = λ−θ
1−λ , it

is easy to show that GHNGG is an extended case of generalized half-normal geometric (GHNG) distribution
with extended γ parameter space (−∞, 0)

∪
(0, 1). The parameter space of Poisson distribution in compound

distributions could be extended to (−∞, 0)
∪
(0,+∞) and the parameter space of negative binomial distribution

could be extended to (−1, 0)
∪
(0,+∞). More similar extension of the parameter space may be done to power series

parameters (See Table 1). In the EGNB distributions, we assumed m = 2, so every fitted distribution has three
parameters. The fit of these distributions were compared to the fit of the odd Weibull (OW) [10], beta exponential
(BE) [23] and exponentiated Lomax (ELD) [2] distributions specified by the pdfs:

fOW(x;ξξξ) =
αβγxα−1eβx

α (
eβx

α − 1
){

1 + (eβxα − 1)
γ}−2

γ−1

,

fBE (x;ξξξ) =
β

B (a, b)
e−bβx

[
1− e−βx

]a−1

and

fELD (x;ξξξ) = αβγ(1 + βx)
−(γ+1)[

1− (1 + βx)
−γ]α−1

,

for x ≥ 0 and α, β, a, b and γ are positive value parameters. The MLEs (and the corresponding standard errors
in parentheses) of the parameters are reported in Table 4. Additionally, to compare the models, we adopt four
criterions: AIC, AICc, BIC, and K-S. The values in this table indicate that the new models give the best fit among
the fitted models. In particular, we can see that the largest log-likelihood value, the largest p-value, the smallest
AIC value, the smallest AICc value, and the smallest BIC value are obtained for the EGNB distribution.

Figure 7a shows the TTT-plot for the data set 1 has a concave and convex shape, which indicates that the hazard
rate function has a unimodal shape. The estimated hrf for the data set 1 is plotted in the Figure 8a. So, the EGNB
distribution could be a proper model for the data set 1.
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Table 4. Estimates and goodness-of-fit measures for the first data set.

Model ξ̂ξξ Log-likelihood K-S p-value AIC AICc BIC

Weibull 0.9214, 0.01594 -1177.587 0.0662 0.425 2359.17 2359.23 2365.90
SE
(
ξ̂ξξ
)

(0.0482, 0.0039)

OW 0.6667, 0.0469, 1.4838 -1176.06 0.054 0.627 2358.12 2364.12 2368.20
SE
(
ξ̂ξξ
)

(0.1581, 0.0312, 0.3907)

BE 1.0483, 2.2710, 0.0104 -1177.77 0.056 0.562 2361.54 2361.73 2371.62
SE
(
ξ̂ξξ
)

(0.5925, 1.5206, 0.0058)

ELD 1.2049, 0.0049, 3.3860 -1175.92 0.054 0.627 2357.84 2358.03 2367.94
SE
(
ξ̂ξξ
)

(0.3929, 0.0011, 0.5598)

EGP 0.0069, 0.8853, 3.2665 -1174.62 0.050 0.715 2355.24 2355.35 2365.32
SE
(
ξ̂ξξ
)

(0.0606, 0.0012, 1.1747)

EGNB 0.0069, 0.9770, 0.8907 -1174.39 0.048 0.772 2354.78 2354.90 2364.87
SE
(
ξ̂ξξ
)

(1.2844, 0.0018, 0.8832)

GHNGG 1.0967, 0.0022, 0.8334 -1174.51 0.049 0.741 2355.02 2355.13 2365.10
SE
(
ξ̂ξξ
)

(0.0223, 0.0002, 0.02633)

Table 5. Descriptive statistics for data set 2.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
63 1.507 1.375 1.59 1.685 1.61 0.105 -0.90 3.92 0.55 2.24

Data set 2

The second data set consists of the strength of 1.5 cm glass fibres, measured at National physical laboratory,
England [30]. Table 5 gives some descriptive statistics for this data set. The new distributions, WGP, WGB,
generalized half-normal geometric Poisson (GHNGP) and generalized half-normal geometric binomial (GHNGB)
distributions given by the following pdfs were fitted:

fWGP (x;ξξξ) =
αβλ (1− θ)xα−1e−βxα

(1− e−λ) {1− θe−βxα}2
exp

(
−λ (1− θ) e−βxα

1− θe−βxα

)
,

fWGB (x;ξξξ) =
mαβλ (1− θ)xα−1e−βxα

{(1 + λ)
m − 1} {1− θe−βxα}2

{
1 + λ

1− e−βxα

1− θe−βxα

}m−1

,

fGHNGP (x;ξξξ) =

√
2
παβλ (1− θ)xα−1e−

1
2 (βx

α)2

(1− e−λ) {1− 2θ Φ(−βxα)}2
exp

(
−2λ (1− θ) Φ (−βxα)

1− 2θΦ(−βxα)

)
and

fGHNGB (x;ξξξ) =

√
2
πmαβλ (1− θ)xα−1e−

1
2β

2x2α

{(1 + λ)
m − 1} {1− 2θΦ(−βxα)}2

{
1 +

[
λ

2Φ (βxα)− 1

1− 2θΦ(−βxα)

]}m−1

,
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for x ≥ 0 and ξξξ = (α, β, θ, λ), where α, β > 0. The parameter spaces of power series distribution are present in
Table 1. The MLEs of the parameters are computed and the goodness-of-fit statistics for these models are compared
with fit of the popular OW, beta Weibull (BW) [14] and beta generalized exponential (BGE) [8] distributions with
pdfs:

fBW (x;ξξξ) =
αβxα−1

B (a, b)
e−bβxα[

1− e−βxα]a−1
,

and

fBGE (x;ξξξ) =
αβe−βx

B(a, b)

(
1− e−βx

)aα−1
[
1−

(
1− e−βx

)α]b−1

,

respectively, for x ≥ 0 and α, β, a, b > 0. The MLEs, log-likelihood value, the corresponding standard errors, the
Kolmogorov-Smirnov statistic, its p-value, AIC, AICc and BIC values are shown in Table 6. For second data set,
we can see that the largest log-likelihood value, the largest p-value, the smallest AIC, AICc, and BIC values are
obtained for the new family. However, results are very close to those obtained by other members of this family, it
shows that the GHNGP distribution gives the best fit respect to all indices.

Table 6. Estimates and goodness-of-fit measures for the second data set.

Model ξ̂ξξ Log-likelihood K-S p-value AIC AICc BIC

OW 6.0258, 0.0539, 0.9438 -15.187 0.155 0.114 36.374 37.064 42.803
SE
(
ξ̂ξξ
)

(1.3333, 0.0331, 0.2667)

BW 7.0138, 0.5533, 0.4498, 0.0499 -13.044 0.118 0.387 34.088 35.141 42.661
SE
(
ξ̂ξξ
)

(0.8896, 0.6459, 0.1810, 0.0464)

BGE 22.6124, 0.9227, 0.4125, 93.4655 -15.599 0.158 0.103 39.198 40.251 47.771
SE
(
ξ̂ξξ
)

(22.8153, 0.5135, 0.3152, 116.6665)

WGP 3.2061, 0.6888, -11.4004, 0.5528 -12.029 0.105 0.527 30.058 30.465 36.487
SE
(
ξ̂ξξ
)

(0.9476, 0.5627, 27.2243, 3.2966)

WGB 3.2122, 0.6854632, -13.0061, 0.3434 -12.030 0.105 0.527 30.060 30.467 36.489
SE
(
ξ̂ξξ
)

(0.9436, 0.5564, 22.4894, 2.4127)

GHNGP 1.9680, 0.8239, -11.5009, 0.9499 -11.952 0.097 0.623 29.904 24.311 36.333
SE
(
ξ̂ξξ
)

(0.7462, 0.5163, 28.7797, 2.8064)

GHNGB 1.9641, 0.8280, -15.0000, 0.6201 -11.957 0.098 0.616 29.914 30.321 36.343
SE
(
ξ̂ξξ
)

(0.7356, 0.5091, 29.0133, 2.6193)

The density graphs for the fit of the distributions for both data sets are shown in Figure 6. The fitted pdfs of
the EGNB and GHNGP distributions captures the observed histograms better than others for data sets 1 and 2
previously. Hence, we can say that the new family of distributions provides the best fit for at least two real data
sets.
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(a) Data set 1 (b) Data set 2

Figure 6. Graphs (a) and (b) of the estimated pdfs of the new family and other competitive models for the data sets 1 and 2.

(a) Data set 1 (b) Data set 2

Figure 7. (a) TTT-plot on the data set 1. (b) TTT-plot on the data set 2.

Figure 7b shows that the TTT-plot for the data set 2 has a concave shape, that indicates that the hazard
rate function has an increasing shape. Figure 8b plots the estimated hrf for the data set 2. Hence, the GHNGP
distribution could be an appropriate model for the fitting of such data.

9. Concluding remarks

In this paper, we proposed a new family of distributions with two extra parameters, referred to as the lifetime PS2

family of distributions, by compounding a lifetime and twice power series distributions. This family is the first
lifetime family of distributions, motivated by systems having both parallel and series structures. The number of
parallel and series components is taken to be a power series random variable and the lifetime of components is
taken to be iid continuous positive random variables. This new family of distributions contains all of the lifetime
distributions constructed by Marshall and Olkin (1997) method. We obtained some of its mathematical properties,
including quantiles, moments, moment generating function, mean residual lifetime, Shannon entropy and order
statistics properties. Certain characterizations of the PS2 family of distributions are presented. The proposed
distribution is applied to two real data sets illustrating better fits than the popular lifetime distributions.
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(a) Data set 1 (b) Data set 2

Figure 8. Estimated hazard rate function for the data sets 1 and 2.

Appendix A: Some useful expansions

Some power series expansions are presented that were required for the proof of the general result in section 3. A
useful summary of these expansions can be seen in Alizadeh et al. [3].

(a) Let c0 ̸= 0 and

C (x) =

∞∑
n=1

cnx
n

be a given power series expansion. Then, the composition log[C(x)] has the expansion

log[C(x)] =

∞∑
n=1

anx
n, (10)

where the coefficients an for n ∈ N satisfy

an =
1

c0

[
cn − 1

n

n∑
k=1

kakcn−k

]
.

(b) We use an equation of Gradshteyn and Ryzhik [18] for a power series raised to a positive integer n given by

( ∞∑
k=0

aky
k

)n

=

∞∑
k=0

cn,ky
k, (11)

where the coefficients cn,k (for k = 1, 2, . . .) are obtained from the recurrence equation

cn,k = (ka0)
−1

k∑
m=1

[m(k + 1)− k]amcn,k−m,

and cn,0 = a0
n.
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(c) Using (11)

( ∞∑
u=1

auy
u

)z

=

∞∑
u=0

c′z,uy
u+z, (12)

where cz,0 = (a1)
z and for u = 1, 2, . . ., we have

c′z,u = (ua1)
−1

u∑
r=1

[r(u+ 1)− u]au+1dz,u−r.

(d) We now obtain some expansion for the power series. Let A(λ) be a power series, then

A (λ) =

∞∑
u=1

auλ
u

and

A′ (λ) =
d

dλ
A (λ) =

∞∑
u=1

uauλ
u−1 =

∞∑
u=0

(u+ 1) au+1λ
u.

Using (11) we have

[A (λ)]
m

=

∞∑
u=0

c′m,uλ
m+u.

Finally, using Cauchy product of two series

A′ (λ) [A (λ)]
m

= λm
∞∑
u=0

(u+ 1) au+1λ
u

∞∑
u=0

c′m,uλ
u = λm

∞∑
u=0

ϕm,uλ
u =

∞∑
u=0

ϕm,uλ
m+u, (13)

where ϕm,u =
u∑

i=0

(i+ 1) ai+1c
′
m,u−i.

Appendix B: Proofs of (2) and (3)

Using binomial expansion and equation (12) we have

F (x;ξξξ) = (A (λ))
−1

∞∑
u=1

auλ
u
[
1− (B (θ))

−1
B
(
θḠ (x; τ)

)]u
= (A (λ))

−1
∞∑
u=1

auλ
u

u∑
k=0

(
u

k

)
(−1)

k
(B (θ))

−k

[ ∞∑
z=1

bz
{
θḠ (x)

}z]k

= (A (λ))
−1

∞∑
u=1

auλ
u

u∑
k=0

(
u

k

)
(−1)

k
(B (θ))

−k
∞∑
j=0

lk,j
{
θḠ (x)

}k+j
,

where j = z − 1 and lk,j = (jb1)
−1

j∑
m=1

[m(j + 1)− j] bm+1lk,j−m. Then
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F (x;ξξξ) =

∞∑
k=0

∞∑
j=0

ρklk,j(−1)
k
[B (θ)]

−k
θk+jḠ(x)

k+j

=

∞∑
k=0

∞∑
j=0

ck,jḠ(x)
k+j

,

where ρk = ρk(λ) =
∞∑

u=max{1,k}

(
u
k

)
auλ

u/A (λ) and ck,j = ck,j(λ, θ) = ρklk,j [−B (θ)]
−k

θk+j . Equation (3) is

obtained by using direct differentiation of equation (2). An expansion for survival function can be derived in a
similar way

F̄ (x;ξξξ) =

∞∑
k=1

∞∑
j=0

ρ′klk,j(−1)
k
[B (θ)]

−k
θk+jḠ(x)

k+j

=

∞∑
k=1

∞∑
j=0

c′k,jḠ(x)
k+j

, (14)

where ρ′k = ρ′k(λ) =
∞∑

u=k

(
u
k

)
auλ

u/A (λ) and ck,j = c′k,j(λ, θ) = ρ′klk,j [−B (θ)]
−k

θk+j .

Appendix C: A useful quantity

In this section, we introduce and calculate a very useful quantity κ(a, b, c), which is defined by

κ (a, b, c) = E
[
Xag (X)

b−1
Ḡ (X)

c
]
=

∫ ∞

−∞
xa[g (x)]

b[
Ḡ (x)

]c
dx,

where a, c are positive real numbers and b ≥ 1. If b = 1 , c = 0 and a is a nonnegative integer, then κ (a, 1, 0)
represents the conventional moment about the origin of order a. If κ (a, 1, 0) exists and π(x) is a continuous
function, then κ (a, b, c) exists for all b ≥ 1 and nonnegative c. If c is a nonnegative integer, then

κ (a, 1, c) = M (a, 0, c) =

∞∑
k=0

(−1)
k

(
c

k

)
M (a, k, 0) ,

where M (i, j, l) is the (i, j, l)th probability weighted moment (PWM) defined by Greenwood et al. [19] as

M (i, j, l) = E
[
XiG(X)

j
Ḡ(X)

l
]
=

∫ +∞

−∞
xi[G (x)]

j[
Ḡ (x)

]l
dG (x) .

In the special case where a, c are nonnegative integers, (c+ 1)κ (a, 1, c) is the ath moment about the origin of the
first order statistic for a sample of size c+ 1. Furthermore, the upper and lower incomplete kappa functions could
be defined as

κy (a, b, c) =

∫ ∞

y

xa[g (x)]
b[
Ḡ (x)

]c
dx

and

κy (a, b, c) =

∫ y

−∞
xa[g (x)]

b[
Ḡ (x)

]c
dx,
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respectively. These functions arise in the mean residual lifetime and incomplete moments of reliability models. It
is clear that if κ (a, b, c) exist for a lifetime distribution, then incomplete kappa functions exists for every real value
x0.

One can obtain an expression for the κ (a, b, c) for some distributions. For others, this quantity can be evaluated
numerically. We obtain closed-form expressions for κ for exponential, Weibull, Lomax, Lindley and log-logistic
distributions, respectively.

(a) Exponential distribution

κ (a, b.c) = βb

∫ ∞

0

xae−(b+c)βxdx = βb−a−1(b+ c)
−a−1

Γ (a+ 1) .

(b) Weibull distribution

κ (a, b.c) = αbβb

∫ ∞

0

xb(α−1)+ae−(b+c)βxα

dx =
αb−1Γ

(
b+ a−b+1

α

)
(b+ c)

b
[β (b+ c)]

a−b+1
α

.

(c) Lomax distribution

κ (a, b.c) = αbβb

∫ ∞

0

xa[1 + βx]
−α(b+c)−b

dx = αbβb−α−1B (α(b+ c) + b− a− 1, a+ 1) ,

where B(.,.) is the beta function.

(d) Lindley distribution

κ (a, b.c) =
β2b−a−1

(b+ c)
a+1

(β + 1)
b

n+m∑
k=0

ck
Γ (k + a+ 1)

[β(b+ c)]
k

,

where ck = ck(β) =
n∑

l=max{0,k−m}

(
b

l

)(
c

k − l

)(
β

β+1

)k−l

.

(e) Log-logistic distribution

κ (a, b, c) = αbβαb

∫ ∞

0

xb(α−1)+a[1 + (βx)
α
]
−2b−c

dx

= αb−1βb−a−1B

(
b+

a− b+ 1

α
, b+ c− a− b+ 1

α

)
.

Appendix D: Theorem 1

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d <
e (d = −∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H . Finally, assume that the equation ηq1 = q2 has no
real solution in the interior of H . Then F is uniquely determined by the functions q1, q2 and η , particularly
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F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
η q1 − q2

and C is the normalization constant,
such that

∫
H
dF = 1.
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