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Abstract Most of the commonly used linear regression variable selection techniques are affected in the presence of outliers
and high leverage points and often could produce misleading conclusions. This article proposes robust variable selection
methods, where the suspected outliers and high leverage points are identified by regression diagnostics tools and then the best
variables are selected after diagnostic checking. The performance of the proposed methods is compared with the classical
non-robust criteria and the existing criteria via simulations. Furthermore, Hawkins-Bradu-Kass data set was analyzed for
illustration.
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1. Introduction

Variable selection is one of the important topics in regression modeling, it gains the interest of many authors.
Beside the common stepwise deletion and subset selection others proposed penalized likelihood approach ([1]).
Recently, [2] considered the problem of variable selection for ultrahigh-dimensional additive models, and [3]
employed the firefly algorithm to select variables in count data regression.

For multiple linear regression model which is given in the form:

yi = xT
i β + εi, (1)

where, xi = (xi1, ..., xip)
T is a vector, containing p explanatory variables, and yi is the response variable, β is a

vector of p parameters, and εi is the error component, that is independent and identically distributed (iid), with
mean 0 and variance σ2. There are different criteria for model selection, the most common are Mallows’ Cp [4],
Schwartz criterion (SIC) [5] and Akaike information criterion (AIC) [6], which are defined as the following form:

Z = G(SSE) + c. (2)

Here the G(SSE) is a function in the term of sum of square error, SSE =
∑n

i=1 r
2
i , with residual ri = yi − xT

i β
and c is a constant. The G(SSE) value equals SSE/σ2, log(SSE/n) and ln(SSE/n) for the Cp, SIC and AIC
respectively, where n is the sample size. In the classical criteria, the β̂ is the OLS-estimator corresponding to the
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traditional square function. It is defined by

β̂OLS = argmin

n∑
i=1

(yi − xT
i β)

2. (3)

Indirect approaches to robust model selection procedures are using a residual, ri from robust fit. In robust model
selection of [7], [8] and [9] where robust versions of AIC ,SIC and Cp (RAIC, RSIC and RCp ) are proposed
considering the residual ri following robust M -estimator, by choosing β̂ to minimize

∑
ρ(ri), where, β is a vector

of p parameters in linear regression model and ρ(.) is a function less sensitive to outliers than squared, yielding
the estimating equation

∑
ψ(ri/σ

2)xi = 0, where ψ(.) = ρ′(.). M -estimators are efficient and highly robust to
unusual values of y, but one rogue leverage point can break them down completely.

Whereas in recent years a good deal with outlier identification on direct approaches focused on the use of
single-case diagnostic (see [10] [11], and [12]). A general idea to outlier diagnostic is to form a clean subset of
data that is free of outliers. Let R be the set of indexes of the observations in the clean subset, yR and xR be the
subsets of observations indexed by R, β̂R be estimated regression coefficients computed from fitting the model to
the set R. And let SSER be the corresponding sum of squares residual that finds the estimates corresponding to
the clean samples having the smallest sum of squares of residuals. As such, as expected, the breakdown point is
50%. When R = n, β̂R = β̂OLS . This study suggests using SSER in different model selection criteria.

The paper is organized as follows. In section 2, we indicate the extreme sensitivity of the exiting robust model to
the leverage point, and discuss the robust diagnostic-variable selection criteria in Section 3. In Section 4 we review
a popular regression diagnostic tool and its breakdown point which leads to a robust selection criteria. Section 5
presents the result for our simulation study and real data sets, while section 6 concludes the study.

2. Robust model selection criteria

The influence of leverage point on RAIC, RSIC and RCp are illustrated through the presence of outliers in the
X-direction. For simplicity, a set of independent random uniform variable X on [-2,2] was generated according to
the simple regression model given as follows:

yi = Xi + εi, i = 1, ..., 19 (4)

where, the εi are iid, normally distributed with expectation 0 and variance (0.12). The data has been presented in
Table 1 and Figure 1.

For this, a point with coordinates (0, x10) is added, Figure 2 shows the situation. Figure 3 shows that, the value
of different criteria increases as the size of contamination in x10 increases, as expected, and if x are extremely
large, then the values of RIAC, RSIC and RCp change dramatically, and that mean reject the straight line. This
shows the high sensitivity of RIAC, RSIC and RCp selections procedures. Indeed, a very small change in the
observations at x = 0 has already the effect of changing the selected model.

Table 1. The data set

yi 1.2 1.35 1.02 1.16 0.95 1.05 0.73 0.91 0.85 0 -0.88 -0.61 -0.81 -0.97 -1.18 -1.08 -0.99 -1.11 -1.14
Xi -1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9 -0.85 -0.8 x10 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
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Figure 1. Scatter diagram of y versus X.

Figure 2. Data and positions for x10

Figure 3. RAIC, RSIC and RCp criteria for different value of x10
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3. The diagnostic version of model selection criteria

Consider the diagnostic sum of squares error SSER, by replacing the value of SSE in equation ( 2) in terms of
SSER , the criteria in equation ( 2), can be expressed as follows:

ZR = G(SSER) + c, (5)

Then the new robust methods, AICR, CpR and SICR, can be expressed as follows:

AICR = ln(SSER/R) + 2p, (6)

CpR = SSERp/(σ̂
2
full −R+ 2p), (7)

SICR = log(SSERp/R) + (p log(R))/R. (8)

where SSER is compute from the diagnostic-OLS (OLSR) estimator defined as:

β̂OLSR
= argmin

R∑
i=1

(r2R(βR))i. (9)

Therefore, OLSR corresponds to find the clean subset of R observations whose least squares fit produces the
lowest sum of squared residuals, and has a high breakdown point. It is resistant to outliers, including leverage
points. In equation ( 5), the estimates corresponding to the R samples are having the smallest sum of residuals.
This would be the most direct implementation of the idea that one wants to find the model which fits best for the
majority of the data. However, the distributional properties of OLS residuals are much better understood.

3.1. Breakdown point

Definition breakdown point of an estimate β̂ of the parameters β is the largest amount of contamination that the
data may contain and even turn over some information about β̂. In other words, the breakdown point of an estimate
β̂ shows the effects of replacing several data values by outliers [17]. Hence, the breakdown point for the regression
estimator β̂ of the sample Z = (X, y) can be defined as:

ε⋆(β̂;Z) = min{m/n : sup
Z̃

∥β̂(Z ′)∥2 = ∞}, (10)

where Z̃ are contaminated data obtained from Z by replacing m of the original n data be outliers. We obtained the
following result from the breakdown point of the OLSR estimator.

Remark 1. The breakdown point of the diagnostic-OLS estimator β̂OLSR
with subset size R ≤ n is given by

ε⋆(β̂OLSR
;ZR) = (n−R+ 1)/n. (11)

Applying Remark 1 to the OLS (n−R = 0) yields a finite sample breakdown point of

ε⋆(β̂OLS ;Z) = 1/n. (12)

However, only one outlier can already let the OLS tend to infinity, this classical OLS comes from the use
of squared residuals. Using other convex loss function, as we have done in the diagnostic-squared residuals, does
solve the problem and also results in a breakdown point of (n−R+ 1)/n. With smaller values ofR, the breakdown
point will be higher, and by making R small enough (k big enough), it may result in a breakdown point larger than
50%. Instead, we suggest to use this method with data containing no more than 25% outliers, then take a value of
R equal to 0.75% of the sample size. Such that the diagnostic-estimate is based on a sufficiently large number of
observations. This will be high efficiency, as will be shown in the numerical example (simulations).
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4. Techniques used to identify vertical and leverage

In this section we introduce a different way of finding the clean subset R. The residual mean square, σ̂2 =
(y − ŷ)/(n− p), the ordinary residual vector is defined as:

ε̂ = y − ŷ = (1−H)y, (13)

where H is the hat or leverage matrix that is considered as a symmetric matrix and contains the information on the
influence of the response value y on the corresponding fitted values ŷi = HT

i . In this equation, HT
i is the ith row

of H matrix and hii are the diagonal elements of H .

[10] suggested using the least median of squares (LMS) estimator to detect regression outliers. This method
began by computing the residuals associated with LMS regression:

s = 1.4826

(
1 +

5

(n− p− 1)

)√
Mr, (14)

where, Mr is the median of r21, ..., r2n, and p is the number of predictors. However, a regression outlier is ith vector
that satisfies (ri/s) > 2.5.

Later, [11] introduced potentials as a single leverage deleted measure:

pii = xT
i (X

T
(i)X(i))

−1xi, (15)

where X(i) is the data matrix with the ith row deleted. A cut-off point for pii is Median(pii) + 3MAD(pii),
where MAD is a median absolute deviation.

Well-known Mahalanobis (MDi) distances are also suggested to apply as measures of leverage points in the
literature (e.g. [12] ). Another study [14] reviewed different types of residuals for the diagnostic purpose of which
the most commonly used is Studentized residuals, define as:

ti =
yi − xT

i β̂
(−i)

σ̂(i)
√
1− hii

, (16)

an observation i is termed as an outlier if |ti| > c, where c is a constant value 2 ≤ c ≤ 3. According to [15],
DFFITS are introduced as:

DFFITSi =

√
hii

1− hii
ti. (17)

Further, the authors recommended considering observations as influential if |DFFITSi| ≥ 2
√
p/n. However, the

quantity DFFITS is closely related to the well-known Cook’s distance [16]. Cook’s distance is defined as

CDi =
(β̂

(−i)
− β̂)T (XT X)−1(β̂

(−i)
− β̂)

pσ̂2
. (18)

The relationship between CDi and DFFITSi is given as:

CDi =
σ̂(i)

pσ̂2
DFFITS2

i . (19)

[13] suggested that hii with values less than 0.2 appear to be safe, values between 0.2 and 0.5 as being risky and
values greater than 0.5 if possible, are better to be avoided by controlling the design matrix.
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5. Numerical examples

A simulation study is carried out to investigate the performance of the AICR, CpR, and SICR statistic for
detecting best variables in the regression model in equation ( 1) based on equations ( 6), ( 7) and ( 8).

The simulation study aims to compare the performance of the three proposed robust measures, namely AICR,
CpR and SICR with nonCrobust measures AIC, Cp and SIC as well as robust measures based on M -estimation
RAIC, RCp and RSIC , respectively.
In this simulation, 50 independent replicates of 3 independent uniform random variables on [-1,1] of xi1, xi2

and xi3, and 50 independent normally distributed errors εi ∼ N(0, 1) were generated. The true model is given by
yi = xi1 + xi2 + εi, for i = 1, ..., 50 using two variables xi1 and xi2. In order to illustrate the robustness to outliers,
we consider the following cases:

1. Vertical outliers (outliers in the y only),
2. Bad leverage points (outliers in some x only).
3. Good leverage points (outliers in both y and x ).

For all cases we introduce outliers into the data such that the percentages of contamination used are varied (0%,
5%, 10%, and 20%) of outliers from N(50, 0.12) distribution. For each of these setting we simulate 1000 samples.
We use the LMS given in equation ( 14) and potentials given in equation ( 15), to identify the verticals outliers
and leverage points, respectively. The simulations were performed in R. To run the simulations, the R package rlm
was used for the LMS (lmsreg).

Tables 2 to 4 shows several results as follows:
1. The classical methods AIC, Cp, and SIC work better than the robust methods for the data without outliers.
2. When the percentage of vertical increases from 5% to 20%, the classical methods tend to under fit (xi1 or xi2).
By contrast, the variable selection methods with the diagnostic tool (AICR, CpR, and SICR) perform well with
reasonably good power. Whilst, the robust methods based on M -estimation (RAIC, RCp, and RSIC) continues
to perform well until 20% contamination. Nonetheless, the proposed methods AICR, CpR, and SICR perform
well compared to the RAIC, RCp, and RSIC in both the uncontaminated and contaminated regression data.
3. In the presence of bad leverage point, the model selection criteria based on OLS and M -estimation often over
fit or wrong fit in this case. Interestingly, the diagnostic tool based methods tend to correctly fit the true model
more often.

The simulation results above illustrates that the performance of the proposed method (AICR, CpR, and SICR)
yields a comparable power of selection, correct fit of those obtain in classical or RAIC, RCp, and RSIC
approaches for both cases in presence of vertical and leverage points.

5.1. Example

In this example, Hawkins-Bradu-Kass dataset is used. This data available from the R library wle as data (artificial).
Artificial data set containing 75 observations with 10 outliers (cases 1 to 10) and 14 high leverage points (cases
1 to 14). Scatter plots of Y on each three X′s as shown in Figure 4,clearly separate 10 high leverage outliers, 4
high leverage points and 61 clean observations. The robust regression model based on M -estimator was fitted to
the data set. The parameter estimates are given by, intercept = -0.7848, βHawkins = 0.1791, βBradu = 0.0062,
βKass = 0.2715. Further, the correlation matrix of data is given by 1 0.9450 0.9606

0.9450 1 0.9786
0.9606 0.9786 1

 ,

which suggest that the data seem to be highly concentrated. All 23 possible models fitted with a combination of
any of these covariates and computed several model selection methods values for each model (see Tables 5 to 7).
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Table 2. Percentage of different variable select criterion from simulated data, with vertical outliers

ϵ No. of Set of AICOLS AICM AICR CpOLS CpM CpR SICOLS SICM SICR
(%) Verticals Variables

0 0 Intercept 0 0 0 0 0 0 0 0 0
x1 0.4 21.2 3.4 0.6 8.0 3.8 2.4 10.4 5.6
x2 1.2 21.6 3.6 1.2 8.8 0.0 3.4 11.2 7.4
x3 0.2 2.0 0.2 0.2 3.2 0.4 0.2 3.8 0.4

x1, x2 82.2 54.4 59.0 81.0 36.6 62.4 88.2 40.4 63.8
x1, x3 0.0 0.0 2.0 0.0 6.6 2.2 0.0 5.8 3.4
x2, x3 0.2 0.0 2.2 0.2 8.0 0.0 0.2 6.6 1.8

x1, x2, x3 15.8 0.0 29.4 16.8 28.8 31.2 5.6 21.8 17.6
5 2 Intercept 0 0 0 0 0 0 0 0 0

x1 6.6 23.2 1.8 6.8 5.8 2.2 16.6 7.8 6.6
x2 7.2 25 2.0 8.2 8.8 0.0 15.4 12.6 6.0
x3 0.2 2.0 0.4 0.4 2.8 1.2 0.4 3.6 1.0

x1, x2 70.8 49.8 63.2 70.4 34.8 64.4 63.2 39.6 67.4
x1, x3 1.2 0.0 1.0 1.2 7.6 1.0 0.8 6.8 1.0
x2, x3 0.4 0.0 1.4 0.2 8.6 0.0 0.2 7.4 2.2

x1, x2, x3 12.4 0.0 29.8 12.8 31.6 31.2 3.4 22.2 15.8
10 5 Intercept 0 0 0 0 0 0 0 0 0

x1 17.8 24.8 3.0 26.0 7.2 3.4 35.2 11.6 7.6
x2 20.2 26.2 3.0 30.6 5.4 0.0 37.8 9.0 6.2
x3 7.0 1.6 0.2 15.2 0.2 0.6 17.6 0.2 0.6

x1, x2 15.2 47.4 67.0 15.2 70.4 69.0 6.0 69.2 69.2
x1, x3 6.4 0.0 2.0 6.6 1.2 2.0 1.6 0.6 2.0
x2, x3 3.8 0.0 1.6 4.0 1.8 0.0 1.4 1.8 2.4

x1, x2, x3 2.4 0.0 23.2 2.4 13.8 25.0 0.4 7.6 12.0
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 16.6 36.6 4.0 27.4 11.2 4.6 32.4 14.4 9.8
x2 21.0 34.2 5.0 35.4 11.0 0.0 41.0 14.6 10.0
x3 7.4 1 0.0 17.2 0.2 0.2 20.0 0.6 0.4

x1, x2 8.4 28.2 68.4 8.4 70.4 73.2 3.2 67.0 67.4
x1, x3 4.4 0.0 2.0 4.6 0.8 1.8 1.4 0.6 1.6
x2, x3 4.8 0.0 1.8 5.0 0.4 0.0 1.4 0.4 1.4

x1, x2, x3 2.0 0.0 18.6 2.0 6.0 20.2 0.6 2.4 9.4

Table 3. Percentage of different variable select criterion from simulated data, with bad leverage points

ϵ No. of Set of AICOLS AICM AICR CpOLS CpM CpR SICOLS SICM SICR
(%) Verticals Variables

5 2 Intercept 0 0 0 0 0 0 0 0 0
x1 5.4 31.8 2.8 8.2 12.0 3.2 17.4 17.2 6.2
x2 3.8 35.2 3.4 9.4 11.6 0.0 19.4 18.4 7.6
x3 0.8 33.0 0.2 7.0 14.0 0.4 15.6 20.2 0.4

x1, x2 0.8 0.0 60.4 1.6 2.4 63.8 0.4 1.0 65.0
x1, x3 32.8 0.0 2.0 1.6 2.6 1.6 0.4 1.0 1.4
x2, x3 36.4 0.0 2.4 1.6 2.8 0.0 0.6 1.8 2.4

x1, x2, x3 15.4 0.0 28.6 70.6 54.6 31.0 46.2 40.4 17.0
10 5 Intercept 0 0 0 0 0 0 0 0 0

x1 2.2 34.4 4.4 6.6 12.2 4.2 15.6 18.6 8.4
x2 3.0 31.6 5.0 7.2 13.0 0.0 16.4 18.6 10.0
x3 1.4 34.0 0.6 8.0 12.0 1.2 17.4 18.6 1.2

x1, x2 0.0 0.0 57.4 0.8 2.0 62.0 0.2 1.4 62.6
x1, x3 36.6 0.0 2.0 1.4 1.8 2.2 1.0 0.8 1.2
x2, x3 36.6 0.0 3.4 1.4 2.2 0.0 0.0 1.6 3.4

x1, x2, x3 15.8 0.0 27.2 74.6 56.8 30.4 49.4 40.4 13.2
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 2.2 33.0 4.4 5.8 11.4 8.6 15.6 17.6 8.8
x2 2.4 34.4 3.2 10.6 12.2 0.0 19.6 19.2 8.6
x3 1.6 32.6 2.2 8.4 14.6 5.4 17.0 19.8 6.8

x1, x2 0.2 0.0 20.0 2.0 1.4 22.6 0.8 0.8 20.4
x1, x3 38.0 0.0 25.6 1.4 2.4 28.2 0.2 1.2 25.6
x2, x3 35.0 0.0 20.0 1.2 2.4 0.0 0.2 1.2 19.8

x1, x2, x3 14.6 0.0 18.8 70.6 55.6 35.2 46.6 40.2 10.0

The best three selected models based on each version of AIC, Cp, and SIC methods are given in Table 8.

We observe from the results that all of the commonly used measures of selection model fail to focus on best
variables. Tables 5 to 7 present the commonly used model selection AIC, Cp, and SIC together with robust
RAIC, RCp, RSIC methods and AICR, CpR, and SICR. It is clear from the results presented in this table that
variable selected by the classical selection methods are not correct enough. Though the robust model selection
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Table 4. Percentage of different variable select criterion from simulated data, with good leverage points

ϵ No. of Set of AICOLS AICM AICR CpOLS CpM CpR SICOLS SICM SICR
(%) Verticals Variables

5 2 Intercept 0 2.6 0 0 0 0 0 0 0
x1 0.0 25.3 3.4 0 1.0 3.2 0 1.2 6.4
x2 0.0 25.1 1.8 0 0.0 0.0 0 1.0 3.8
x3 0.0 2.0 0.0 0 0.2 0.2 0 0.4 0.6

x1, x2 85.6 47.0 64.2 0 0.2 65.8 0 0.0 70.4
x1, x3 0.2 0.0 0.8 0 0.2 1.0 0 0.2 1.8
x2, x3 0.2 0.0 1.6 0 0.0 0.0 0 0.0 1.6

x1, x2, x3 14.0 0.0 28.2 100 98.4 29.8 100 97.2 15.4
10 5 Intercept 0 2.0 0 0 0 0 0 0 0

x1 0.0 26.6 2.4 0 0.0 2.6 0 0.0 5.0
x2 0.0 26.3 2.8 0 0.0 0.0 0 0.2 5.2
x3 0.0 0.0 0.0 0 0.2 0.2 0 0.2 0.2

x1, x2 81.0 44.2 62.8 0 0.0 67.2 0 0.0 70.2
x1, x3 0.2 0.0 1.2 0 0.0 1.0 0 0.0 1.4
x2, x3 0.0 0.0 0.4 0 0.0 0.0 0 0.2 1.2

x1, x2, x3 18.8 0.0 30.2 100 99.8 29.0 100 99.4 16.8
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 30.0 2.6 0 0.0 2.6 0 0.0 6.0
x2 0.0 36.6 1.8 0 0.2 0.0 0 0.6 5.6
x3 0.0 1.0 0.2 0 0.0 0.4 0 0.0 0.6

x1, x2 85.2 32.4 66.8 0 0.0 70.2 0 0.0 71.6
x1, x3 0.0 0.0 1.2 0 0.0 1.2 0 0.0 1.2
x2, x3 0.0 0.0 2.6 0 0.0 0.0 0 0.0 2.4

x1, x2, x3 14.8 0.0 24.6 100 99.8 25.6 100 99.4 12.6

based on M -estimation is also sensitive to high leverage points, the table shows that they fail to choose the first
variable (Hawkins). Robust model selection based on the diagnostic tool suggests that first observation (Hawkins)
is best variable. When we apply the diagnostic checking based on LMS and hat matrix cases 1 to 14 return to the
contamination subset and thus the AICR, and CpR finally identify the first variable as best variable. And SICR

tends to chose Kass as best variable.

Figure 4. RAIC, RSIC and RCp criteria for different value of x10
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Table 5. Values of the classical AIC, and robust RAIC, and AICR statistics for Hawkins-Bradu-Kass data

Selected Variables AIC RAIC AICR

(y, Hawkins) 5.68 4.81 2.74
(y, Bradu) 5.79 4.14 2.80
(y, Kass) 5.63 3.62 2.77

(y, Hawkins, Bradu) 7.68 5.62 4.73
(y, Hawkins, Kass) 7.62 5.79 4.69

(y, Bradu, Kass) 7.57 5.67 4.75
(y, Hawkins, Bradu, Kass) 9.56 7.76 6.66

Table 6. Values of the classical Cp, and robust RCp, and CpR statistics for Hawkins-Bradu-Kass data

Selected Variables Cp RCp CpR
(y, Hawkins) 5.30 130.77 1.19

(y, Bradu) 8.90 32.55 2.26
(y, Kass) 17.93 -9.72 3.16

(y, Hawkins, Bradu) 2.93 -7.53 2.03
(y, Hawkins, Kass) 6.68 4.13 3.14

(y, Bradu, Kass) 10.84 -4.38 4.26
(y, Hawkins, Bradu, Kass) 4.00 4.00 4.00

Table 7. Values of the classical SIC, and robust RSIC, and SICR statistics for Hawkins-Bradu-Kass data

Selected Variables SIC RSIC SICR

(y, Hawkins) 1.79 0.9 -1.04
(y, Bradu) 1.90 0.26 -1.02
(y, Kass) 1.75 -9.72 -1.063

(y, Hawkins, Bradu) 1.85 -0.20 -0.97
(y, Hawkins, Kass) 1.80 -0.03 -1.01

(y, Bradu, Kass) 1.75 -0.15 -0.99
(y, Hawkins,Bradu, Kass) 1.79 -0.15 -0.94

Table 8. Hawkins-Bradu-Kass, the selected best variables from best three models based on different classical criteria, robust
criteria with M -estimation, and robust criteria using a deletion estimate of the scale

Criteria Selected variables
Best model Second best model Third best model

AIC Kass Hawkins Bradu
RAIC Kass Bradu Hawkins
AICR Hawkins Kass Bradu
Cp Hawkins, Bradu Hawkins, Bradu, Kass Hawkins
RCp Kass Hawkins, Bradu Bradu, Kass
CpR Hawkins Hawkins, Bradu Bradu
SIC Kass Bradu, Kass Hawkins
RSIC Kass Hawkins, Bradu Bradu, Kass
SICR Kass Hawkins Bradu
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6. Conclusion

Diagnostic regression measures are robust regression methods, which are frequently used in practice. Nevertheless,
they are not commonly used in selection models. This paper had introduced variable selection criteria based on a
diagnostic scale, which are robust against outliers and leverage points. The simulation results had illustrated good
performance of the proposed diagnostic variable selection criteria.
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