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Abstract We present the cooperation between two searchers start at the origin to seek for the pipeline hole. The pipeline
searched with random distances and velocities through the time by each searcher. There is no available information about
the target position to the searchers all the time. We study this problem in the case of bounded asymmetric and unbounded
symmetric hole distribution. Rather than finding the expected value of the time detection, we find the optimal search plan
which minimizes this detection time. The effectiveness of this model is illustrated using a numerical example.
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1. Introduction

The Linear search problem for a lost target either located or moved is often a time-critical issue, when the target
is very important, e.g., searching for a bomb in the street. The prime focus is to find and search for the cast ways
in the smallest possible amount of the time. When the target is located somewhere on the real line, according to
a known probability distribution, the searcher searches for it with a know velocity and tries to find it in minimal
expected time. It is assumed that the searcher can change the direction of its motion without any loss of time. The
target can be detected only, if the searcher reaches the target. In an earlier work, this problem has been studied
extensively in many variations, mostly by Beck et al. [1, 2, 3, 4, 5, 6, 7], Franck [8] and Reyniers [9, 10].

The main contribution in the case of a randomly moving target is showing the existence of finite and optimal
search plan when the searcher starts its motion from the origin or any point rather than the origin. Also, obtaining
the optimal search plan which minimizes the expected value of the first meeting time between the searcher and
the target. For example, when the target moves with a random walk, Mc Cabe[11], Mohamed [12], Mohamed and
El-Hadidy [13] and El-Hadidy and Abou Gabal[17] presented the conditions which give the existence of finite and
optimal search plan. In some earlier works, a linear search method has been presented to find a Brownian target
motion such as El-Rayes et al.[14], Mohamed et al.[15] and El-Hadidy [23]. They also discussed the finiteness
of finite and an optimal search plan. A comprehensive discussion of many aspects of search problem is found in
El-Hadidy et al.[18, 19, 27, 21, 22, 23, 24, 25, 26, 27, 28, 30]. Finding the holes in the existing oil pipeline in the
depths of the seas and oceans help to the lack of a disaster such as that occurred in the Gulf of Mexico in 2010
and led to the death of fish. One of the famous search methods, is the coordinated linear search method which
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considers two unit-speed searchers starting at the origin point seek a stationary target hidden according to a know
bounded symmetric and asymmetric distribution. The objective is to minimize the expected time of the searchers
to return to the origin after one of them has found the target as in Reyniers [9, 10]. There are two constraints in
the coordinated linear search method: (1) the speed of the searchers is equal to one; (2) the searchers return to the
origin point and one of them is waiting for the other. We ask ourselves what happen if the straight line is flat like
the street which contains the tops and bottoms (i.e., non smoothing)?. This necessarily leads to change the searcher
speed through the time. In addition, the objective of the coordinated search is to minimize the expected search
time, How? Where the constrain (2) is found. Here, we let X be a position of the hole which is randomly in the
pipeline and has asymmetric distribution. We have two sensors S1 and S2 starting together and looking for the hole
from the point a0 = b0 = 0 on the pipeline. We will address the shortcoming of the previous works by considering
the velocities of the searchers are random through the time. The sensor S1 searches the right part of the pipeline
and S2 searches the left part as in figure 2 with random velocity v. In order to overcome the second constraint,
the searchers will use the modern communication technology to relate to each other and not returning to the origin
point. Thus, there is no stand by and return time. Therefore, the expected value of the detection time is less than the
half value of the expected time that given in Reyniers [9, 10]. We use the audio signals as a communication method
under the water instead of electromagnetic waves, because the electromagnetic waves do not spread well in salt
water, see Website https://www.youtube.com/watch?v=evIwfBCru4I. Our aim is to find the expected value of the
time for the sensors to detect the hole. Also, we wish to obtain the optimal search plan to find the hole in minimum
time. This paper is organized as follows: Section 2 discusses the assumptions which modeling the search problem
for bounded asymmetric hole distribution. Beside that we determine the optimal search strategy that minimizes the
expected value of the time for detecting this hole. Also in this Section 2 we give an example with numerical results
that can show the effectiveness of this model. In Section 3 we study the problem which discussed in Section 2 when
the hole has an arbitrary unbounded symmetric distribution. Finally, the paper concludes with a discussion of the
results and directions for the future research.

2. Problem formulation

The problem under study can be formally described as follows.

2.1. The searching framework

The space of search: The search space is a real line L.
The target: The target is randomly located on Lwith known distribution.
The means of search: We will consider that searching the target will be carried out by two searchers S1 and S2.

The searcher S1 will search the right part of the line and S2 will search the other part.

2.2. The searching technique for bounded asymmetric distribution hole

The searching process of all searchers will start at the same moment. For example S1 will do its searching process
in the right part as follows:
I. Start at the origin and go to the +ve part of Las far as a1 = c1 − c0 such that 0 < a1 ≤ H2

1 . Then, using the
communication device (which works with audio signals (see in Figure 1) to send a report to the origin (the ship has
a radar received an audio signal) whether the hole pipe is detected or not. He waits the response from the ship to
complete the searching process or not. If the reply came to not complete the searching process, then the hole has
been detected by the other searcher. Otherwise, go to step II.
II. Since, the hole has not detected, then S1 will go to the +ve part of Las far as a2 = c2 − c1. Then, S1 send the
report to the ship. And so on until the hole will detect (see Figure 2)

Zaburdaev et al. [31] show that the random velocity of the particle has a probability density function: h(v) =
[δ(v − v0) + δ(v + v0)]/2, −∞ ≤ v ≤ ∞, where v0 is the initial velocity and δ is Dirac Delta function. Here, we
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Figure 1. Ship has a radar received an audio signals.

Figure 2. Cooperative coordinated search technique for finding a pipeline hole.

consider any searcher has a random velocity with probability density function (PDF):

g(v) = |v − v0| δ(v2 − v0),−∞ ≤ v ≤ ∞ (1)

In the optimal case, we consider the length of the maximum distance which traveled by S1 before the ith dialing in
the right part be Hi (in the left part be H̃i). The nature of the searching process for the pipe hole make the distances
which traveled by the searchers are random and given by 0 < ai ≤ H2

i in the right part where ai = ci − ci−1 (and
0 < bi ≤ H̃2

i in the left part where bi = di − di−1). We consider the PDF of the random distance is given by:

f1(ai) =
1

Hi
√
ai

− 1

H2
i

, 0 < ai ≤ H2
i (2)

And,

f2(bi) =
1

H̃i

√
bi

− 1

H̃2
i

, 0 < bi ≤ H̃2
i (3)

In this work, the searchers wish to minimize the expected time to detect the pipe hole. Let X be a random variable
that represents the position of the pipe hole. In addition, this hole has a certain asymmetric distribution on the pipe.
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It means every searcher moves on the pipe with different distances according to the probability of the existence
of the hole on the pipe. Thus, we can assume that Hi < H̃i (or Hi > H̃i). Consequently, if their exist Γ ≥ 0 is
a random variable has a known distribution with expected value E(Γ), then we can consider H̃i = Hi + E(Γ).
Hence, (3) become

f2(bi) =
1

(Hi + E(Γ))
√
bi

− 1

(Hi + E(Γ))2
, 0 < bi ≤ (Hi + E(Γ))2 (4)

The searchers S1 and S2 follow search paths a and b, respectively, to detect the hole. The search path a of S1 is
completely defined by a sequence {ai; i ≥ 0}, i is a nonnegative integer. Also, the search path b of S2 is completely
defined by a sequence {bi; i ≥ 0}. Let the search plan be defined by ϕ = (a, b) ∈ Φ where Φ is the set of all search
plans. Define,

α = inf{x;F (x) > 0}andβ = sup{x;F (x) < 1} (5)

where F (x) is the distribution function of the hole position, α is the minimum value of bi and β is the maximum
value of ai.

Let γ be a measure of probability induced by the hole position and γ(x, y) = F (y)− F (x). Also, let Ω(ϕ)be the
detection time by one of the searchers.
Theorem 1. The expected value of the detection time for the asymmetric hole distribution on the pipe is given by:

E(Ω(ϕ)) =
1

6

∞∑
i=0

(
H2

i+1[γ(α, di)]− (Hi+1 + E(Γ))2[γ(ci, β)]
)
. (6)

Proof. Since, each searcher moves on the pipe with different and random distances (have PDFs (2) and (4) in the
two parts of the pipe) according the probability of the existence of the hole on the pipe. Thus, the expected value
of the distance in the right is,

E(ai) =

∫ H2
i

0

ai

(
1

Hi
√
ai

− 1

H2
i

)
dai =

H2
i

6
,

and in the left part is,

E(bi) =

∫ (Hi+E(Γ))2

0

bi

(
1

(Hi + E(Γ))
√
bi

− 1

(Hi + E(Γ))2

)
dbi =

(Hi + E(Γ))2

6
.

Also, the expected value of the velocity is given by E(v) = ±1. Consequently, the expected value of detection
time in the right part is Ω1 = E(ai)

+1 =
H2

i

6 (in the left part is Ω2 = E(bi)
−1 = − (Hi+E(Γ))2

6 ). If the hole lies in ]a0, a1],

then Ω2 = − (H1+E(Γ))2

6 . And, if the hole lies in ]a1, a2], then Ω2 = −
[
(H1+E(Γ))2+(H2+E(Γ))2

6

]
. Thus, if the hole

lies in ]ak−1, ak], then Ω2 = −
[
(H1+E(Γ))2+(H2+E(Γ))2+...+(Hk+E(Γ))2

6

]
. Similarly, the hole lies in [bk, bk−1[, then

Ω1 =
[
H2

1+H2
2+...+H2

k

6

]
and so on. According to the assumptions that the hole has a certain asymmetric distribution

on the pipe, we get the expected value of the detection time as follows:
E(Ω(ϕ)) = −

[
(H1+E(Γ))2

6

]
[γ(c0, c1)]−

[
(H1+E(Γ))2+(H2+E(Γ))2

6

]
[γ(c1, c2)]− ...

−
[
(H1+E(Γ))2+(H2+E(Γ))2+...+(Hk+E(Γ))2

6

]
[γ(ck−1, ck)]− ...

+
H2

1

6 [γ(d1, d0)] +
[
H2

1+H2
2

6

]
[γ(d2, d1)] + ...+

[
H2

1+H2
2+...+H2

k

6

]
[γ(dk, dk−1)] + ...

=
H2

1

6 [γ(d1, d0) + γ(d2, d1) + ...+ γ(dk, dk−1) + ...] +
H2

2

6 [γ(d2, d1) + ...+ γ(dk, dk−1) + ...] + ...

+
H2

k

6 [γ(dk, dk−1) + ...] + ...

− (H1+E(Γ))2

6 [γ(c0, c1) + γ(c1, c2) + ...+ γ(ck−1, ck) + ...]
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− (H2+E(Γ))2

6 [γ(c1, c2) + ...+ γ(ck−1, ck) + ...]− ...

− (Hk+E(Γ))2

6 [γ(ck−1, ck) + ...]− ..

=
H2

1

6 [γ(α, d0)] +
H2

2

6 [γ(α, d1)] + ...+
H2

k

6 [γ(α, dk−1)] + ...

− (H1+E(Γ))2

6 [γ(c0, β)]− (H2+E(Γ))2

6 [γ(c1, β)]− ...− (Hk+E(Γ))2

6 [γ(ck−1, β)]− ..

= 1
6

∑∞
i=0

(
H2

i+1[γ(α, di)]− (Hi+1 + E(Γ))2[γ(ci, β)]
)
.

Since, 0 < ci − ci−1 ≤ H2
i then if their exist ε ≥ 0 one can get H2

i = (ci − ci−1 + ε)2 . Hence, (6) take the form:

E(Ω(ϕ)) =
1

6

∞∑
i=0

(
(ci+1 − ci + ε)2[γ(α, di)]− (ci+1 − ci + ε+ E(Γ))2[γ(ci, β)]

)
. (7)

Also, if their exist ξ ≥ 0 one can get H̃2
i = (di − di−1 + ξ)2. Compensate for Hi = H̃i − E(Γ) = di − di−1 + ξ −

E(Γ) in (6) we get:

E(Ω(ϕ)) =
1

6

∞∑
i=0

(
(di+1 − di + ξ − E(Γ))2[γ(α, di)]− (di+1 − di + ξ)2[γ(ci, β)]

)
. (8)

Since, the hole has bounded asymmetric distribution, then we do not need to find the necessary and sufficient
conditions that show the existence of optimal search plan. Immediately, we can get the optimal values of the points
ci and di which give the optimal path to detect the hole by using (7) and (8) as in the following section.

2.3. Optimal search path for bounded asymmetric hole distribution

Our aim is to minimize E(Ω(ϕ)). Then the main problem is to find the optimal value of {ai; i ≥ 1} and {bi; i ≥ 1}
that give the optimal search path for a given hole distribution function from class Q. If such a search path exists,
we call it optimal search path.

We deduce that, if Q′is a subclass of Q for which only one element and if a∗ and b∗ are optimal values of a
and b; respectively, then the optimal search path will be in Q′. As it can be seen that the search path depends
on two unknown factors. Those are the target distribution F (x), and the values of aand b used by the searchers.
Since the values of aand b depend on the values of {ci; i ≥ 0} and {di; i ≥ 0} then we need to find the optimal
values {c∗i ; i ≥ 0} and {d∗i ; i ≥ 0}. Let us assume, from now on, that the hole distribution be known. However, if
we assume that the hole distribution F (x)is also regular (i.e., the target distribution F (x) is absolutely continuous
with strictly positive density f(x)) and that E(x) < ∞.

Obtaining the optimal values {c∗i ; i ≥ 0} is corresponding to solve the following Non-linear programming
problem (NLP(1)):
NLP(1):

min
ci

(ci − ci−1 + ε)2[γ(α, di−1)]− (ci − ci−1 + ε+ E(Γ))2[γ(ci−1, β)]
+(ci+1 − ci + ε)2[γ(α, di)]− (ci+1 − ci + ε+ E(Γ))2[γ(ci, β)],

,

Sub. to: ci−ci−1+ε
ci−ci−1

≥ 1, ci+1−ci+ε
ci+1−ci

≥ 1, ci − ci−1 > 0, ci+1 − ci > 0,

ci − ci−1 + ε+ E(Γ)

di − di−1
≥ 1,

ci+1 − ci + ε+ E(Γ)

di+1 − di
≥ 1, di − di−1 > 0,

di+1 − di > 0, ε ≥ 0,Γ ≥ 0.

Definition 1 (Optimal solution): c∗ ∈ R are said to be an optimal solution of the above NLP, if there exist c ∈ R
such that Ξ(c∗) ≤ Ξ(c) for all c ∈ R.

However, on formulating the non-linear programming that closely describes and represents the real decision
situation, various factors of the real system should be reflected in the description of the objective function and
the constraints. Non-linear programming can be applied to various fields of study. It is widely used in business
and economics, and is also utilized for some engineering problems. Industries that use non-linear programming
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models include transportation, energy, telecommunications, and manufacturing. It has proved useful in modeling
diverse types of problems in planning, routing, scheduling, assignment, and design.

The above non-linear programming problem NLP(1) take the form:
NLP(2):

min
ci

(ci − ci−1 + ε)2[γ(α, di−1)]− (ci − ci−1 + ε+ E(Γ))2[γ(ci−1, β)]
+(ci+1 − ci + ε)2[γ(α, di)]− (ci+1 − ci + ε+ E(Γ))2[γ(ci, β)],

,

Sub. to : 1− ci−ci−1+ε
ci−ci−1

≤ 0, 1− ci+1−ci+ε
ci+1−ci

≤ 0, ci−1 − ci < 0, ci − ci+1 < 0,

1− ci − ci−1 + ε+ E(Γ)

di − di−1
≤ 0, 1− ci+1 − ci + ε+ E(Γ)

di+1 − di
≤ 0, di−1 − di < 0,

di − di+1 < 0,−ε ≤ 0,Γ ≤ 0.

From the Kuhn-Tucker conditions, we get

2(ci − ci−1 + ε)[γ(α, di−1)]− 2(ci − ci−1 + ε+ E(Γ))[γ(ci−1, β)]− 2(ci+1 − ci + ε)[γ(α, di)]
+2(ci+1 − ci + ε+ E(Γ))[γ(ci, β)]

+(ci+1 − ci + ε+ E(Γ))2f(ci) + u1

(
0− 2(ci−ci−1+ε)(ci−ci−1)−(ci−ci−1+ε)

(ci−ci−1)2

)
+ u2

(
0− 2(ci+1−ci+ε)(ci+1−ci)−(ci+1−ci+ε)

(ci+1−ci)2

)
+u3

(
0− 1

di−di−1

)
+ u4

(
0− 1

di+1−di

)
+ u5(−1) + u6(1) = 0,

(9)

u1

(
1− ci − ci−1 + ε

ci − ci−1

)
= 0, (10)

u2

(
1− ci+1 − ci + ε

ci+1 − ci

)
= 0, (11)

u3

(
1− ci − ci−1 + ε+ E(Γ)

di − di−1

)
= 0, (12)

u4

(
1− ci+1 − ci + ε+ E(Γ)

di+1 − di

)
= 0, (13)

u5(ci−1 − ci) = 0, (14)

u6(ci − ci+1) = 0. (15)

Many cases have been found to solve the above Eqs. (9)-(15). We found that the optimal values of {ci; i ≥ 0} are
given only from the case: u1 = u2 = ... = u6 = 0. Consequently, the optimal value of ci+1 is given after solving
the following equation,

c2i+1f(ci) + ci+1[2γ(α, di)− 2γ(ci, β) + 2f(ci)(ci + ε+ E(Γ))] = Θ, (16)

where,

Θ = 2(ci − ci−1 + ε)[γ(α, di−1)]− 2(ci − ci−1 + ε+ E(Γ))[γ(ci−1, β)]− 2(−ci + ε)[γ(α, di)]
+ 2(−ci + ε+ E(Γ))[γ(ci, β)] + (−ci + ε+ E(Γ))f(ci).

Also, the optimal values of di+1 is obtaining after solving the following NLP(3):

min
di

(di − di−1 + ξ − E(Γ))2[γ(α, di−1)]− (di − di−1 + ξ)2[γ(ci−1, β)]
+(di+1 − di + ξ − E(Γ))2[γ(α, di)]− (di+1 − di + ξ)2[γ(ci, β)],

,
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Sub. to : 1− di−di−1+ξ−E(Γ)
di−di−1

≤ 0, 1− di+1−di+ξ−E(Γ)
di+1−di

≤ 0,

1− di − di−1 + ξ

di − di−1
≤ 0, 1− di+1 − di + ξ

di+1 − di
≤ 0,

ci−1 − ci < 0, ci − ci+1 < 0, di−1 − di < 0, di − di+1 < 0,−ξ ≤ 0,Γ ≤ 0.

Applying Kuhn-Tucker conditions, we found that the optimal values of di+1 is given after solving the following
equation,

d2i+1f(di) + di+1[2γ(ci, β)− 2γ(α, di)− 2f(di)(ξ − di − E(Γ))] = Λ, (17)

where,
Λ = 2(di − di−1 + ξ − E(Γ))[γ(α, di−1)]− 2(di − di−1 + ξ)[γ(ci−1, β)] + 2(−di−1 + ξ − E(Γ))[γ(α, di)]

+ (−di + ξ + E(Γ))2f(di)− 2(ξ − di)γ(ci, β).
Example 1

The oil is transferred to the consumer markets in both Europe and the United States of America during the
Mediterranean through pipelines stretch for long distances. Supposing that there is a hole in the pipeline and its
position X has a double truncated standard normal distribution with mean 0 and variance 1 about the origin with
probability density function:

f(x) =
1

erf
(

β√
2

)
− erf

(
α√
2

)√ 2

π
e−

x2

2 , α ≤ x ≤ β (18)

and distribution function :

F (x) =


erf

(
α√
2

)
−erf

(
x√
2

)
erf

(
α√
2

)
−erf

(
β√
2

) , α ≤ x ≤ β

0 Otherwise

(19)

Also, let Γ has an exponential distribution with parameter λ > 0. Here, we consider that 1 < Γ < 4, then Γ

has a truncated exponential distribution with mean E(Γ) = (1+λ)e−λ−(4λ+1)e−4λ

λ2 . In addition, let λ = ε = 1, α =
−4, β = 6, ξ = 2 and c−1 = d−1 = c0 = d0 = 0. Based on the initial information, the distribution of the hole and
using (16), S1 should go to the +ve part of Las far as 1.80253 unit distance. Simillary, in the the -ve part of L
and using (17), one can found that the other searcher should go -0.855632 unit distance. After substuting with
c1 = 1.80253 in (16), we found that c2 = 0.728099i which is impossible. This means that S1 was informed to stop
the searching process and the hole was discovered by another searcher.

3. Hole with an arbitrary unbounded symmetric distribution

In this section we develop the theory which applies
In this section, we aim to find the hole which has an arbitrary unbounded symmetric distribution. Of course, the

existence of a search plan with finite expected time could be taken for granted. We determine a condition on the
hole distribution necessary and sufficient for a finite expected search time and then with the additional assumption
of a decreasing continuous density function determine a necessary and sufficient condition for the existence of an
optimal search strategy.

We begin by assuming that a hole is located on the pipeline according to a known unbounded distribution which
is symmetric about zero in the sense that its cumulative distribution function F satisfies 1− F (x) = F (−x). The
set of search strategies available to the searchers is the set C consisting of all strictly increasing sequences of
positive numbers which tend to infinity. That is, C = {c = (c1, c2, ...) : 0 ≡ c0 < c1 < c2 < ..., lim

i→∞
ci = ∞}.

The searching process of all searchers will start at the same moment. The searcher S1 will do its searching
process in the right part who is following strategy c goes from 0 to c1 and tell the ship (origin), then to c2 and so
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on. The ’left’ searcher S2 follows the path which is symmetric about zero to this path. If the hole lies in one of the
intervals ±(ci−1, ci], which has probability 2(F (ci)− F (ci−1)), then the first connect with the ship (origin) after
one of the searchers finds the hole occurs at time 1

6

∑i
ϑ H

2
iϑ = 1

6

∑i
ϑ(ciϑ − c(i−1)ϑ + ε)2.

Corollary 1. If the hole has a symmetric distribution about the origin, then the expected value of the time to detect
it is given by:

E(Ω(ϕ)) =
1

3

∞∑
i=0

(
(ci+1 − ci + ε)2[F (ci+1)− F (ci)

)
, (20)

The coordinated search technique for the oil pipeline hole is to determine the least expected time
E(Ω(ϕ)) = Ê(Ω(ϕ)) to find this hole. The following recursion gives a necessary condition for a search
plan to be optimal with respect to a given distribution.

Lemma 1. Let F be a symmetric distribution with finite first absolute moment and density function f. Then, if
E(Ω(ϕ)) = Ê(Ω(ϕ)) (i.e., if a is optimal where ai = ci − ci−1 )it must satisfy the following recursion (where
a−1 = c−1 = c0 = 0):

cn+1 =

√
2(cn − cn−1 + ε)[F (cn−2)− F (cn−1)]

f(cn)
+ cn − ε.

Proof:
Whenever, the search path a is optimal where ai = ci − ci−1 (this leads to ai + ci−1 = ci) then (cn−1 −

cn−2, cn+1 − cn) → R defined by: E(Ω(c1 − c0, ..., cn − cn−1, cn+1 − cn, ...)) must have a global minimum.
Since,

E(Ω(ϕ)) = 1
3

∑∞
i=0

(
(ci+1 − ci + ε)2[F (ci+1)− F (ci)]

)
= 1

3

∑∞
i=0

(
(ai+1 + ε)2[F (ci−1)− F (ai + ci−1)]

)
= 1

3

[
(a1 + ε)2[F (c−1)− F (a0 + c−1) ] + (a2 + ε)2[F (c0)− F (a1 + c0)] + ...

+(an + ε)2[F (cn−2)− F (an−1 + cn−2)] + (an+1 + ε)2[F (cn−1)− F (an + cn−1)] + ... ].

Then, we have,

∂E(Ω(ϕ))

∂an
= 2(an + ε)[F (cn−2)− F (an−1 + cn−2)] + (an+1 + ε)2[−f(an + cn−1)] = 0,

leads to,

(an+1 + ε)2 =
2(an + ε)[F (cn−2)− F (an−1 + cn−2)]

f(an + cn−1)
.

Consequently,

(cn+1 − cn + ε)2 =
2(cn − cn−1 + ε)[F (cn−2)− F (cn−1)]

f(cn)
.

Which equivalent to :

cn+1 =
√

2(cn−cn−1+ε)[F (cn−2)−F (cn−1)]
f(cn)

+ cn − ε.

We now consider the question of existence of an optimal strategy. The remainder of this section settles this
question, at least for the important case of distributions given by a density which is continuous and decreasing for
positive hole distances.

Theorem 2. Suppose that the hole at the position x from the call center (origin) has an unbounded symmetric
distribution F which is given by density f. This density is continuous expect possibly at the origin. If lim

x→0
f(x) = ∞

then there is no optimal search strategy.
Proof:
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Let w = (c1 − c0, c2 − c1, ...)be optimal for the hole distribution F where c1 − c0 ≤ c2 − c1 ≤ .... (according
to the probability of the existence of the hole on the pipe). Also, let c′(x)be a search plan given by (x− 0, c1 −
c0, c2 − c1, ...). Eq. (20) can be written more simply as:

E(Ω(ϕ)) =
1

3

∞∑
i=0

(
(ci+1 − ci + ε)2[1− F (ci)

)
. (21)

Define,
q(x) = E(Ω(w′(x))− E(Ω(w(x))

= x(1− F (0)) + (c1 − c0 + ε)(1− F (x)) + (c2 − c1 + ε)(1− F (c1)) + ...
− (c1 − c0 + ε)(1− F (c0))− (c2 − c1 + ε)(1− F (c1))− ...
= x(1− F (0)) + (c1 − c0 + ε)(1− F (x))− (c1 − c0 + ε)(1− F (c0))
= x

2 + (c1 − c0 + ε)
(
1
2 − F (x)

)
.

If the hole at the call center then one can find that q(0) = 0. Since, x < c1 then if we let 0 < ϖ < c1with
q(ϖ) < 0, which means that the search plan w′(ϖ) has a lower expected than c1 − c0, so that w cannot be optimal.

4. Conclusion and future work

Coordinated search technique for a pipe hole has been presented, where the hole initial position is given by a
random variable X. The searchers search the pipeline with random distances and velocities through the time. We
formulate this problem when this hole has bounded asymmetric distribution. We obtain the expected value of the
time for finding this hole as in Theorem 1. Moreover, we present the optimal search path that minimizes this
expected value. We give an example with numerical results that can show the effectiveness of this model. In other
hand we study this problem when the hole has an arbitrary unbounded symmetric distribution. It seems that the
proposed model will be extendible to the multiple searchers case by considering the combinations of multiple
holes.
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