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Abstract Community detection is one of the most appealing research fields in computer science. Although many different
methods have been proposed to cluster the nodes of a graph, none of these methods is complete. Each method has strengths
and weaknesses in extracting highly coherent groups of nodes (i.e. communities or clusters). The differences that various
methods show are typically due to two main factors: 1) structure of the network they operate on, and 2) the strategy they use
to find clusters. Since none of these methods is optimal, it seems a good idea to combine them to take advantage of their
strengths while minimizing their weaknesses. In this paper, we present a new approach for the community detection problem
by considering an ensemble of community detection methods. We refer to our approach as “Mitra”. The base methods
employed in Mitra, use different techniques and strategies to find communities for different applications of network data
analysis. Mitra employs some known base community detection methods, receives their results on a network and builds a
bipartite network to combine the communities found by the base methods. Then the fast projection technique compresses
and summarizes the bipartite network to a new unipartite one. Then we find the communities of the unipartite network
in the final step. We evaluate our approach against real and artificial datasets and compare our method with each one of
the base methods. Artificial datasets include a diverse collection of large scale benchmark graphs. In this work, the main
experimental evaluation function is Normalized Mutual Information (NMI). We also use several measures to compare the
quality and properties of final community structures of the partitions found by all methods.
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1. Introduction

Detecting clusters or communities in real-world graphs such as large social networks, web graphs, and
biological networks is a problem of considerable practical interest that has received a great deal of attention
[33, 50, 29, 57, 16]. Community detection is used in particular to understand image segmentation, natural
language processing, product-customer segmentation, web page sorting, sociological behavior, protein to
protein interactions, gene expressions, recommendation systems, medical prognosis, DNA 3D folding and more
[12, 13, 14]. Most recent approaches consider that a network community (also sometimes referred to as a module
or cluster) is typically thought of as a group of nodes with more and/or better interactions amongst its members
than between its members and the remainder of the network [50, 29, 57, 58, 16, 55].

More formally, a partition P = {C1 , C2,... , Ck} of the vertices of a graph G = (V,E) (∀i ∈ {1, 2, ..., k}, Ci ⊆
V ) represents a good community structure if the proportion of edges inside the community Ci (internal edges) is
high compared to the proportion of edges between them (see for example the definitions given in [32]). Identifying
communities in a network can provide valuable information about the structural properties of the network, the
interactions among nodes in the communities, and the role of the nodes in each community. Thorough reviews of
different types of community detection algorithms can be found in [28, 64, 36, 41].

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2019 International Academic Press



M. KHEIRKHAHZADEH AND M. ANALOUI 865

Several community detection algorithms give satisfactory results when they are tested on networks. Nevertheless,
since some methods disclose serious limitations and biases, and most algorithms are likely to fail in some limit, an
ideal method to detect communities in graphs, does not exist [30]. To overcome this problem, it seems a good idea
to take advantage of the strengths of different existing methods to find a better solution and avoid the weaknesses of
these methods. To reach this goal some approaches are proposed. One of them is ensemble clustering (also known as
consensus clustering), that is inspired by ensemble learning, where multiple community detection algorithms run as
an ensemble and the identified communities are then combined to improve the communities. Moreover, ensemble
clustering is a technique used in some applications such as machine learning and is useful in merging several
clustering results into one [25]. In this work, we use ensemble clustering to make a combination of the outputs
of some famous community detection algorithms (called base classifiers or base methods), compress their results
and get a consensus on the viewpoints of these algorithms on a community detection problem. This fusion process
decreases the generalization error, because the more predictors differ, the better the performance of the ensemble
is. This also explains why an ensemble of classifiers performs better than a more advanced single classifier, as the
error rate can be decreased by increasing the number of classifiers included in the ensemble [62]. In order to create
our consensus method Mitra, we select a number of broadly used community detection algorithms that perform
well on graphs and get their results on the same network. A bipartite network is then generated to combine the
information prepared by different base methods in the consensus pool. As the next step, a special projection [42]
is applied on this bipartite network to convert it to a unipartite network, called consensus graph. At this step we
detect communities of the consensus graph by one of the existing community detection algorithms.

We evaluate our approach on several artificial networks and compare it with each one of the methods used
in the fusion. The comparison of the reference communities and the detected ones is according to NMI values
[21] (see Subsection 5.1). In order to do more evaluations on the results, we investigate some quality scores on
the detected communities. It is known that there is no single perfect quality metric for the comparison of the
communities detected by different algorithms [15]. Therefore, we use a number of structural quality functions
such as conductance [40] and modularity [51] to evaluate the quality of the detected communities. Before we
proceed, it is worthwhile to clarify some nomenclature. We use “consensus clustering” and “ensemble clustering”
interchangeably. Moreover, “cluster” is equivalent to “community”.

The following of this paper is organized as follows. Section 2 reviews some related work on ensemble clustering.
Our new approach Mitra is explained in 3, then the introduction of employed base community detection methods
and our fast projection method are presented in this Section. Evaluation criteria are explained in Section 5.
Important implementation results of the proposed method and comparison with base methods are reported in
Section 6 and, finally the paper is concluded in Section 7.

2. Ensemble Clustering

In recent years a large number of methods for detecting community structures have been developed, drawing
on knowledge from many different fields, e.g. computer science, statistical mechanics, discrete mathematics,
statistics, and sociology. These methods have also been improved to handle weighted, directed, and multi graphs.
For a comprehensive review of the field as a whole, the readers are referred to the references [31, 28, 64].
Another approach for improving community detection is to use ensemble clustering which is inspired by ensemble
learning. In Ensemble clustering, multiple community detection algorithms run as an ensemble and the identified
communities are combined to improve the community qualities. By considering an ensemble of clustering methods,
it is possible to consider different definitions of community structure. In addition, more effective algorithms can
be found by merging (aggregating) many runs of fast stochastic algorithms as well as several runs of the same
algorithm using different settings. Moreover the latter method can be used to analyze the community structure
of the network at many different scales, providing insight into the relations between community structures at
different levels. The integration of consensus clustering with popular existing techniques leads to more accurate
partitions than those delivered by the methods alone on LFR benchmark graphs [43]. Interestingly, this holds even
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for methods whose direct application gives poor results on the same graphs, like modularity optimization [31].
In other words, to identify communities one is often confronted with the problem that one has a large number
of potential partitions and often no good way to select a single best partition. Consensus clustering attempts to
mitigate the problem by identifying common features of an ensemble of partitions [37].

One widely applied method for ensemble clustering is based on constructing a consensus graph. A consensus
graph is composed of the set of partitions to be combined, returned by the base community detection algorithms[27,
60]. The consensus graph Gcons is defined over the set of nodes of G. Two nodes vi, vj ∈ V are linked in Gcons

if there is at least one partition where both nodes are in the same cluster. Each link (vi, vj) is weighted by the
frequency of instances that nodes vi, vj are placed in the same cluster. The obtained graph is not necessarily a
connected one. If there is not a priori information about the relative importance of the individual groupings, a
reasonable goal for the ensemble result is to seek a clustering that shares the most information with the original
clusterings[60]. Different approaches can be applied in order to compute the aggregated clustering out of the
consensus graph. In the following paragraphs, some of these approaches are pointed out.
In [60], authors transform the consensus graph into a complete one by adding missing links with a null weight, then
nodes are finally partitioned into clusters using agglomerative hierarchical clustering with some linkage rule, or by
using a classical graph partitioning method such as the Kernighan-Lin algorithm [49]. In another work [52], by
maximizing the overlap of the weak input partitions, the authors search for a strong partition. They show that if the
process of restarting begin from maximal overlaps of the initial partitions, the quality of the initial weak partitions
is not so important and the final result will be good. The point is if the base algorithms do not correspond on the
communities, the method will not return any ensemble solution. The authors of [43] show that consensus clustering
can be combined with any existing method in a self-consistent way, enhancing the stability and the accuracy of the
resulting partitions. This method integrate consensus clustering in a giving method which is different from our
approach to combine several different algorithms. The proposed ensemble clustering method in [38] works on
the derived network partitions computed around a seed instead of growing communities around selected seeds.
An ensemble ranking method to fuse different local modularity functions, computes the local communities. An
iterative agglomerative algorithm expands the seeds. One of the drawbacks of this work is that the networks used
for evaluating the method are all small networks. In [39] given a set of r base partitions, the authors compute an
r × r pair-wise clustering similarity matrix M . A similarity graph GV is defined over the set of base partitions
by using M . Then the given samples are clustered by a community detection algorithm applied on the similarity
graph. A modularity-driven ensemble-based approach to multilayer community detection is proposed in [61] by
aggregating the community structures separately generated for each network layer. The method is only proposed for
multi layer networks and is different from our approach. The other difference is consensus methods use different
specifications of network nodes to partition a network whereas, in this work all the base methods use the same
specification of nodes. In [24] the proposed ensemble consists of only two clustering algorithms on some networks
with simple structures (small values of µ as a network parameter) not for sophisticated networks. Using a modified
version of modularity with a null model based on the ensemble of partitions for the consensus clustering step is
presented in [37]. In this work the authors propose a hierarchical consensus clustering procedure, based on this
modified modularity. A genetic algorithm for detecting a community structure in attributed graphs is proposed
in [53]. The method optimizes a fitness function that combines node similarity and structural connectivity. The
communities obtained by the method are composed by nodes having both similar attributes and high link density.
The key distinguishing feature of our ensemble clustering procedure compared to these existing approaches is that
we use different community detection algorithms instead of multiple runs of one algorithm. On the other hand, our
approach is not agglomerative or extending method. A notable point is since some of the recent proposed ensemble
approaches employ basically different strategies (e.g. using only one community detection algorithm instead of
several different algorithms ([43, 52])) in comparison with Mitra, or ensemble approaches work on the other types
of networks (such as multilayer networks [61]), or ensemble approaches work based on multiple specifications of
network nodes [61] (not only one specification like our work), or designed to reach a dissimilar target function
(such as [52]), comparison of Mitra with the recent similar approaches does not seem fair. Hence, we do not
compare Mitra with other similar ensemble algorithms in our experiments.
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In this paper, we perform an empirical comparison and quality evaluation of the communities identified by a
variety of community detection algorithms. These algorithms use different strategies to find communities. We then
compare their produced results with the results of our consensus clustering algorithm. Our approach is different
from the others in some aspects, such as using different community detection algorithms instead of only one
algorithm. The base algorithms are limited to use the same node specification unlike some of the similar approaches
which use some different specifications. Moreover our approach is not an agglomerative or extending method. We
propose to use a bipartite network as an intermediate network to fuse previously generated results and reach to
a consensus graph by fast projection method[42]. The next Section explains our ensemble approach with more
details.

3. Our Approach

In this section the overview of the proposed algorithm is presented. Then the based methods are introduced briefly
and fast projection technique[42] is explained.

3.1. Our algorithm

Our approach “Mitra” consists of the following phases:

1. Apply k − 1 base community detection algorithms {A1, A2,... , Ak−1} on G to create a set P of partitions
{P1, P2,... , Pk−1} produced by these algorithms

2. Combine the partitions of P by constructing a bipartite graph Gb

3. Create unipartite graph Gu by applying fast projection on Gb

4. Apply Ak that is also one of the base community detection algorithms on Gu to find the final partition P ∗

Figure 1 depicts the above algorithm.In the first phase, a number of popular community detection algorithms
(called base methods) are applied to the network graph G to extract node communities, but One desired base
method (called Ai) is kept for using in the last step. The set of base methods consists of algorithms that use
different strategies to find the communities. The reason for selecting different methods is to add more diversity
to the consensus, and consider different strategies or functions in order to find clusters. Each base method
produces a partition Pi of the nodes independently. This phase can be done in a parallel manner if sufficient
resources are available, to decrease the execution time. The base methods set includes CNM[19], Walktrap[54],
CONCLUDE[22], Copra[35], Oslom[45], LPM[56], MCL[23], Infomap[57], Louvain[16]. The base methods are
briefly introduced in subsection 3.2.
In the second phase, a bipartite network Gb is created based on the original network G. The bipartite network Gb

includes two types of nodes: the real nodes of G as primary nodes and, the secondary nodes associated with the
communities found by the base community detection methods. In other words, for each base method we add as
many community nodes as the communities found by this base method. Then connect this community node to all
its real node members in Gb. As a consequence, at the end of this step, Gb consists of all the real nodes of G and
all the community nodes produced by all the base methods. Gb is a weighted graph. In Gb each community node
divides probability 1 between all the real nodes connect to it evenly. The number of community nodes is

∑k
i=1 |Pi|,

where |Pi| is the number of communities in Pi, i ∈ {1, 2, ..., k}. As a result, the number of all the nodes of Gb is
Nb = N +

∑k
i=1 |Pi| where N is the number of real nodes of G.

In the third step, Gb is reduced to a unipartite network Gu by fast projection technique [42]. In fact Gu is our
consensus graph. In other words, only the real nodes of G are kept and the community nodes are removed. The
removal process of community nodes is done in such a manner that the effect of the removed community nodes is
kept by the weights of links of Gu. Therefore Gu consists of the real nodes of G, but the links of Gu are different
from the links of G. In other words, the links of Gu show the compressed result produced by the partitions of all the
base methods. It is possible to construct Gu in four different ways: it may constructed as an undirected/directed and
unweighted/weighted graph. Since fast projection builds links between primary nodes according to two-step walks,
Gu is a directed graph. Moreover, fast projection selects links according to the highest probabilities. Consequently,
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Figure 1. Mitra algorithm

Gu is a weighted graph.
In the last step, the final partition P ∗ is detected by applying Ak on Gu. Ak is one of the base algorithms not
applied in the first step. Each base algorithm can be selected as Ak. Since Gu is essentially weighted and directed,
some base methods are not capable of detecting communities on Gu. For example, CNM can only be applied to
connected graphs, thus it is eliminated from the set of candidate methods which can apply in the last step. Also
Walktrap is not able to work on directed graphs, therefore it could only be used in the last step if Gu considered
undirected. There are some techniques for converting a directed graph to undirected one such as the techniques in
Ref. [39]. We report the case of undirected and unweighted graph in our implementations. It is notable that some
base methods are capable of finding overlapping communities, only the versions able to find disjoint communities
are used.

To describe “Mitra” more formally, let G =< V,E > be an undirected simple graph where V is the set of nodes
and E is the set of edges. Suppose we have a set of base community detection algorithms A = {A1, A2, ..., Ak}.
We apply algorithms {A1, A2, ..., Ak−1} on G to generate a set of different partitions P = {P1, P2, ..., Pk−1}
defined over the same set V by k − 1 algorithms respectively, i.e. Pi is a partition of the set V generated by
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the base algorithm Ai applied on graph G. We have by definition Pi = {C1
i , C

2
i , ..., C

l
i} where Cj

i ⊆ V and
∀i,

∪
j C

j
i = V and ∀j, q ∈ [1, l], Cj

i

∩
Ck

i = ϕ. Gb is a bipartite graph generated to show the relations of real
nodes and community nodes. Gb is reduced to a unipartite graph Gu that is the consensus graph. Ak is a member
of base algorithms applied on the consensus graph Gu to produce consensus clustering P ∗. We also consider PG

as the ground truth partition that is the reference partition we are looking for. We also consider average NMI
value NMI = 1

k−1

∑k−1
i=1 NMI(Pi, PG). The goal of our ensemble clustering function is to reach to a consensus

clustering P ∗ such that the number of disagreements between P ∗ and PG is less than the number of disagreements
between the average of Pi’s and PG. In other words, Mitra is not producing a simple mean of ensemble results and
it is better than an average. In a formal way we have:

NMI(P ∗, PG) > NMI (1)

Where NMI() is a function measuring the distance between two partitions [21]. NMI value equals 1 if the
partitions are identical. it has an expected value of 0 if the partitions are independent. The closer the NMI value is
to 1, the more similar the partitions are. NMI function is described formally in subsection 5.1. In the following the
set of employed base algorithms is introduced.

3.2. Base Methods

In this work, a wide spectrum of community detection methods have experimented that we call base methods.
The base methods come from a variety of different theoretical frameworks, as we try to select a set of community
detection algorithms, which are comprehensive and exploit some of the most interesting ideas and techniques that
have been developed over the last years. These base algorithms use different techniques such as modularity, label
propagation, and random walk. Some of these algorithms guide their clustering by employing objective functions
and some does not.
Base method set includes CNM[19], Walktrap[54], CONCLUDE[22], Copra[35], Oslom[45], LPM[56],
MCL[23], Infomap[57], Louvain[16]. The implementation code for all the algorithms is publicly available in
[3, 7, 9, 8, 11, 6, 1, 10, 4] respectively.
here is a short introduction of the base methods. CNM is based on maximization of modularity. Walktrap uses
a measure of similarities between vertices based on random walks using modularity optimization. CONCLUDE
generates random, non-backtracking walks of finite length to compute the importance of edge centralities.
Copra is an extension of the label propagation technique. Oslom is based on the local optimization of a fitness
function expressing the statistical significance of clusters with respect to random fluctuations. LPM simulates the
spreading of labels based on the simple rule that at each iteration a given vertex takes the most frequent label in its
neighborhood. MCL simulates a peculiar process of flow diffusion in a graph. Infomap uses a random walk as a
proxy for information flow on a network and minimizes a map equation over all the network clusters. The goal of
Louvain is the optimization of modularity, by means of a hierarchical approach.

3.3. Fast projection method

In the following, a bipartite network is defined and our fast projection method (that is applicable on bipartite
networks) is explained. Then our algorithm is presented. A bipartite network is a graph whose nodes are divided
into two disjoint sets such that no two graph nodes within the same set are adjacent. These node sets are called
primary nodes and secondary nodes. In this work, the real nodes of the original network are considered as primary
nodes and, community nodes are considered as secondary nodes in the bipartite network graph. Each community
node is associated with a community that has links to its node members.

In the following steps the construction steps of a bipartite network Gb is presented which is associated with a
simple network graph G. Bipartite graph Gb supposed to be a null graph firstly.

1. Add all the nodes of G to Gb as real nodes
2. Add a community node to Gb for each community detected by each base method applied on G
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Figure 2. Real nodes vi and vj are connected to community nodes C and D

3. connect each community node to all the real nodes of that community
4. assign a weight to each link such that each community node divide weight 1 between its neighbors equally.

Fast projection approach is based on the sampling of important links. In fact most links in a weighted projection
carry redundant information for community detection. Therefore, only the important non-redundant links must
be sampled. Communities are considered as an indication of similarity of real nodes. Therefore, we apply fast
projection technique to identify similar real nodes frequently visited in a sequence by a random walker on a
bipartite network. In this work, to show the directed hidden relation between real nodes, the bipartite network is
compressed by a one-mode projection called fast projection[42]. The projected network is a unipartite network.
The unipartite network only include real nodes. Two nodes of a unipartite network are connected only if they have
at least one common neighbor community node in the associated bipartite network.
In the fast projection technique, random walk is deployed to compress information of a bipartite network Gb and
produce a unipartite one Gu. A random walker starts walking on Gb from a random real node to a community
node, then from the community node to another real node by passing two consecutive links. Therefore, the walker
is forced to pass a community node in each step, which is (one of)the common neighbors of the two real nodes.
Here an illustrative example is explained. let C be a detected community in the original graph G by a base method
and vi and vj be two real nodes belong to C. In the process of building Gb one community node with label C and
two links from C to vi and vj are added to Gb (see fig. 3a). Suppose C consists of five real nodes. Therefore, the
weight of each link from C to the associated real nodes becomes 0.2. After generating Gb fast projection builds
Gu from Gb. While applying fast projection, suppose a two-step random walker starts walking on Gb form vi to C
as the first pass and, from C to vj as the second pass. Therefore, the weight of the candidate link between vi and
vj becomes 0.4 in Gu. It is possible that other candidate link connects vi and vj with a different weight as a result
of another community node say D (detected by another base method). At the end of fast projection, vi and vj are
added to Gu. Moreover, the highest probability between vi and vj from the candidate set is selected as wij . Then
a permanent weighted link is placed between vi and vj in Gu. The weight of this link is wij . Figure 2 clarify these
concepts.
In detail, fast projection associates each community node with the top X real nodes selected by link weights. For
each real node, we take the top X real nodes associated with each of its connected community nodes and include
them in a candidate set. For each node in the candidate set, we compute the two-step random walk probability to
go to other nodes also in the candidate set and create links to the top Y nodes.
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4. Network datasets

To evaluate the performance of our method, two types of datasets are deployed, real and artificial datasets. Zachary
[66], Polbooks [2] and Football [33] datasets are considered as real datasets. The datasets comprise 34, 105 and 115
nodes respectively. These datasets are famous and the most of researches in community detection field are tested
on these networks. We also use the state-of-the-art artificial benchmark graphs with built-in community structures,
i.e., the LFR benchmark [44]. The main reason for using benchmark graphs is the lack of ground truth information
for the communities in real-world networks. LFR graphs are characterized by power law distributions of vertex
degree and community size, features that are frequently observed in real world networks. An LFR graph has a clear
community structure. Thus, it serves as a baseline reference for a network with known and detectable structure.
LFR networks were created with standard LFR code [5]. One of the parameters of LFR networks is network size,
that determines the number of nodes in the network. The other parameter is mixing parameter, that is a measure
of the degree of fuzziness of the clusters. Mixing parameter µ is the ratio of the external degree of each node
(with respect to the node cluster) divided by the total degree of the node, so it varies from 0 to 1. The values of µ
close to zero correspond to well-separated clusters, whereas the values near 1 indicate a system with very mixed
communities (thus hard to identify).

5. Evaluation criteria

The comparison between different clustering algorithms with our approach is done according to two aspects. First,
we are interested in the structures of the clusters that various methods are able to find. Basically, we would like to
understand how well algorithms perform in terms of optimizing the notion of NMI. In other words, maximization
of NMI is the objective of this work. Second, we are interested in the quality of the clusters identified by the
algorithms to clarify the behavior of the methods. These two aspects are explained in the following subsections.

5.1. Comparing community structures

Testing an algorithm on any graph with built-in community structure implies defining a quantitative criterion to
estimate the goodness of the answer given by the algorithm as compared to the real answer that is expected. This
can be done by using suitable similarity measures. For reviews of similarity measures see Refs. [18, 28, 48].

Here Normalized Mutual Information(NMI) is selected, borrowed from information theory [21] which
have proved to be a reliable measure to assess our approach. To evaluate the Shannon information content [47] of a
partition, one starts by considering the community assignments xi and yi, where xi and yi indicate the cluster labels
of vertex i in partition X and mathcal(Y ), respectively. One assumes that the labels x and y are values of two
random variables X and Y , with joint distribution P (x, y) = P (X = x, Y = y) = n(xy)/n, which implies that
P (x) = P (X = x) = nX

x /n and P (y) = P (Y = y) = nY
y /n, where nX

x , nY
y and nxy are the sizes of the clusters

labeled by x, y and of their overlap, respectively. The mutual information I(X,Y ) of two random variables is
defined as

I(X,Y ) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)
(2)

The measure I(X,Y ) tells how much we learn about X if we know Y , and vice versa. Actually
I(X,Y ) = H(X)−H(X|Y ), where H(X) = −

∑
x P (x)logP (x) is the Shannon entropy of X and H(X|Y ) =

−
∑

x, yP (x, y)logP (x|y) is the conditional entropy of X given Y . The mutual information is not ideal as a
similarity measure: in fact, given a partition X , all partitions derived from X by further partitioning (some of) its
clusters would all have the same mutual information with X , even though they could be very different from each
other. In this case the mutual information would simply equal the entropy H(X), because the conditional entropy
would be systematically zero. To avoid that, Danon et al. adopted the normalized mutual information [21]

Inorm(X ,Y) =
2I(X,Y )

H(X) +H(Y )
(3)
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which equals 1 if the partitions are identical. It has an expected value of 0 if the partitions are independent.
The normalized mutual information is currently very often used in tests of community detection algorithms. In our
experiments we use max(H(X), H(Y )) instead of (H(X) +H(Y ))/2 in Eq.3, which is a strict version of NMI.
Therefore, the following version of NMI is implemented in this work.

Inorm(X ,Y) =
I(X,Y )

max(H(X), H(Y ))
(4)

5.2. Quality Scores

In order to investigate more properties of the methods, we analyze the quality of the communities detected by the
base methods and Mitra according to some criteria. In general there are two criteria of interest when thinking about
how good of a cluster a set of nodes is. The first is the number of internal edges between the members of a cluster,
and the second is the number of external edges between members of the cluster and the remainder of the network
[46]. This work follow the trend presented in [46]. In this trend there are two types of objective functions. The first
group combines both criteria (number of edges inside and the number of edges crossing) into a single objective
function; the second group employs only one of the two criteria (e.g., the number of edges cut).

Let G(V,E) be an undirected graph with n = |V | nodes and m = |E| edges. Let S be the set of nodes in the
cluster, where nS is the number of nodes in S, nS = |S|; mS the number of edges in S, mS = |{(u, v) : u ∈ S, v ∈
S}|; and cS , the number of edges on the boundary of S, cS = |{(u, v) : u ∈ S, v /∈ S}|; and d(u) is the degree of
node u. The following functions f(S) are considered to represent the quality of a cluster S.

• Conductance: f(S) = cS
2mS+cS

measures the fraction of total edge volume that points outside the cluster
[59, 40].

• Expansion: f(S) = cS
nS

measures the number of edges per node that point outside the cluster [55].

• Internal density: f(S) = 1− mS

nS(nS−1)/2 is the internal edge density of the cluster S [55].

• Cut Ratio: f(S) = cS
nS(n−nS) is the fraction of all possible edges leaving the cluster [28].

• Normalized Cut: f(S) = cS
2mS+cS

+ cS
2(m−mS+cS) [59].

Although various functions are considered to model community scores, we will primarily work with
conductance, that arguably is the simplest notion of cluster quality. Conductance can be simply thought of
as the ratio between the number of edges inside the cluster and the number of edges leaving the cluster
[59, 40, 46]. Many experiments have shown that Conductance is the best scoring function for networks
with well-separated and non-overlapping communities [65, 46, 26]. More formally, conductance ϕ(S) of a
set of nodes S is ϕ(S) = cS/min(V ol(S), V ol(V S)), where cS denotes the size of the edge boundary,
cS = |{(u, v) : u ∈ S, v /∈ S}|, and V ol(S) = Σu∈Sd(u), where d(u) is the degree of node u. Thus, in particular,
more community-like sets of nodes have lower conductance.

Now the following four notions of community quality are considered that are based on a single one of the two
criteria mentioned at the beginning of this subsection:

• Modularity:
1

4m
(mS − E(mS)), where E(mS) is the expected number of edges between the nodes in set S

in a random graph with the same node degree sequence.

• Modularity ratio: mS/E(mS) is alternative definition of the modularity, where we take the ratio of the
number of internal edges in S and E(mS), the expected number of such edges under the null-model.

• Volume:
∑

uS
d(u) is sum of the degrees of nodes in S.

• Edges cut: cS is number of edges needed to be removed to disconnect nodes in S from the rest of the network.
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The most popular quality function is the modularity of Newman and Girvan [51]. Modularity measures the
number of internal community edges, relative to a null model of a random graph with the same degree distribution.
It is based on the idea that a random graph is not expected to have a cluster structure, so the possible existence
of clusters is revealed by the comparison between the actual density of edges in a subgraph and the density one
would expect to have in the subgraph if the vertices of the graph were attached regardless of community structure.
This expected edge density depends on the chosen null model, i.e. a copy of the original graph keeping some of
its structural properties without a community structure. Although modularity has been shown to have a resolution
limit [29], some of the most popular clustering algorithms use it as an objective function [16, 63]. Modularity is
given by Eq.((5))

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj) (5)

where the sum runs over all pairs of vertices, A is the adjacency matrix, m the total number of edges of the graph,
and ki represents the degree of the node i. The δ-function yields one if vertices i and j are in the same community
(Ci = Cj), zero otherwise.

Since the only contributions to the sum come from vertex pairs belonging to the same cluster, it is a good idea
to group these contributions together and rewrite the sum over the vertex pairs as a sum over the clusters [28]:

Q =

k∑
S=1

[
mS

m
− (

dS
2m

)2] (6)

Here, k is the number of clusters, mS the total number of edges joining vertices of module S and dS the sum of
the degrees of the vertices of S. In Eq.((6)), the first term of each summand is the fraction of edges of the graph
inside the module, whereas the second term represents the expected fraction of edges that would be there if the
graph were a random graph with the same expected degree for each vertex. The reader is referred to Ref. [26] for
a good example of modularity computation.

A higher modularity is often taken as an indication of a better community structure as it is different from the
random null model. As such, the modularity can only be used as a comparative measure [20] and has drawbacks, for
example random networks usually have higher maximum modularity than real-world networks, and the resolution
limit [29]. It can be shown that modularity optimization, i.e. finding the optimal community structure, is an
NP-complete problem [17]. It is also possible to show that modularity has many local maxima [34] making the
identification of a global maximum very difficult.

6. Experimental results

Experimental comparisons of different community detection algorithms have been conducted in this Section. We
compare Louvain, Infomap, CNM, Walktrap, LPM, MCL, Copra, Oslom and CONCLUDE algorithms with our
Mitra algorithm, on real datasets and LFR benchmark graphs. Infomap is used as the last base community detection
method in our implementations. However, as explained in section 3 all the other base methods are usable as the last
base method. In the following, the implementation of LFR benchmarks are explained and, NMI results are then
provided. After that the results of quality scores for real and artificial networks are reported.

6.1. LFR Dataset Implementation

Each LFR network is associated by some parameters such as network size N and mixing parameter µ which
determine the structural properties of the network. We implement our method against the benchmark graphs with
three network sizes N =1000, 5000 and 10000 nodes. Mixing parameter µ get a value in range {0.1, 0.2, ..., 0.9}.
We generate 100 realizations of the LFR benchmark for each value of µ and for each network size, creating 2700
graphs (i.e. 100 samples of each network for each pair of N and µ values). In other words, 900 network samples
are produced for each network size (i.e. 100 samples for each value of µ). All the values in the diagrams and tables
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are averaged over these 100 samples. All the generated networks are undirected and unweighted. Table 1 shows
the parameters used for the generated networks. The construction method of an LFR netwrok is provided in [44].
The selected parameter values are based on the literature [44, 45]. As described later in LFR graphs, node degree
(i.e. the number of edges connect to a node) and community size (i.e. the number of nodes belong to a community)
follow power law distributions. As we show in Table 1, the community sizes are taken from a power law distribution
with exponent β and each node is given a degree taken from a power law distribution with exponent γ. Depending
on the size of the graph N , other parameters vary accordingly (see Table 1). For instance, one possible network
size is 5000. Mixing parameter µ ranges in {0.1, 0.2, ..., 0.9}, β and γ get the constant values for all network
configurations and, the second value column must be assigned to the remained parameters.

Variable Value Description
N 1000 5000 10000 number of nodes in the network
kavg 20 25 50 average degree of nodes
kmax 50 100 150 maximum degree of nodes
cmin 10 20 20 minimum size of a community
cmax 50 100 100 maximum size of a community
µ {0.1, 0.2, ..., 0.9} mixing parameter
β -1 exponent of community size distribution
γ -2 exponent of degree distribution

Table 1. The parameters used for generating artificial networks in the simulation studies using the algorithm from Ref. [44].
The mixing parameter, µ is varied in range {0.1, 0.2, ..., 0.9} for three network sizes.

6.2. NMI results

Experimental results on both real and artificial datasets are presented in this section.

6.2.1. Real datasets results Table 2 reports NMI values for all the base methods, Mitra and the average value
produced by the base methods. All the methods are experimented on Zachary, Polbooks and Football datasets,
some of the famous datasets in community detection field. The datasets contain 34, 105 and 115 nodes respectively.
Average column in the table represents the mean NMI values produced by the base methods. It is observable in
Table 2 that all the methods perform almost the same. The table did not show an interesting priority for Mitra
in comparison with the base methods. However, these data are special cases in the world and, it is necessary to
evaluate our method on more various datasets. Therefore, the artificial datasets are used in the most researches in
our field and we also analyze them in the following part.

6.2.2. LFR dataset results In the following, the comparison between ground truth (reference) partition with the
partitions produced by the base methods is presented, according to NMI. The base methods are Louvain, Infomap,
CNM, Walktrap, LPM, MCL, Copra, Oslom, CONCLUDE. The comparison is applied on LFR benchmark graphs.
All the base methods are applied on original graph (i.e. G) whereas, Mitra is applied on consensus graph (i.e. Gu).
The average curve is the average NMI value of all the base methods. Figures 3-5 show the results for networks
with 1000, 5000 and 10000 nodes respectively. For networks with N = 5000, 10000 nodes, community sizes range

NMI CNM LPM Walktrap Louvain Copra MCL Oslom Infomap Mitra Average
Zachary 0.57 0.83 0.59 0.46 0.31 0.25 0.83 0.59 0.83 0.55
Football 0.66 0.92 0.89 0.85 0.88 0.88 0.89 0.84 0.79 0.85
Polbooks 0.50 0.45 0.51 0.51 0.33 0.57 0.55 0.47 0.42 0.49

Table 2. NMI for real datasets
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(a) NMI for the base methods and Mitra (b) Comparison with average of base methods

Figure 3. NMI versus mixing parameter for N = 1000.

between 20 to 100 nodes, whereas in the diagrams correspond to N = 1000 nodes, the range goes from 10 to 50
nodes (see Table 1).
As an important point, it is observable in Figures 3b, 4b and 5b that for all networks the average curve of base
methods is always under Mitra curve. This means that for these networks, our Mitra is not a simple average
and is better than the average, especially when µ increases and the networks become more complicated. This
conclusion is considerable and shows the base methods reinforced each other by the designed consensus. In other
words, Mitra reinforce the strengths points of the base methods. The distance between the NMI of Mitra and
average NMI of base methods, is close to 0.2 for the most complicated networks, and the difference is even much
more for µ = 0.7. The results show the enhancement of quality (about 0.2) according to NMI values for the most
complicated networks where µ goes from 0.6 to 0.9. Same or greater distance is seen for larger networks. In other
words, Mitra works better for more complicated networks. This seems interestingly considerable and shows the
power of Mitra.

It is observable in NMI diagrams (Figures3a, 4a and 5a) that Oslom, CONCLUDE and MCL show good
performances. However, for greater values of µ, MCL almost assigns each node to a separate community. This
assignment is not informative. Oslom shows this behavior for N = 1000 as well. Another considerable property of
Mitra appears here; Mitra produces solutions with an acceptable structure and the close number of communities to
the ground truth in all the networks. Moreover, the effect of low quality solutions of some base methods, is covered
by Mitra. This shows the superiority of Mitra over the base methods. This is observable, for example, in Figure 3a.
In this case, for N = 1000 and µ = 0.9 the number of ground truth communities is 45. The corresponding number
is 130 for Mitra, but it is 927 for MCL and 1000 for Oslom. This conclusion is also valid for MCL in the cases
of N = 5000 and N = 10000. As another example for MCL in the case of µ = 0.9 and N = 10000, NMI value
is 0.56, but the number of communities is 10000 (each node is in a separate community), whereas the community
number is 1459 for Mitra and 190 for ground truth. CONCLUDE has a close community number to our Mitra
method and a close value of NMI in all the networks in Figures 3-5. To avoid excess explanation and keep the
consistency of this paper, the number of communities are not reported completely.

Now the properties and behavior of the base methods are investigating. To increase the readability of the paper,
Figures .3a, 4a and 5a are referred as NMI diagrams in the following. Generally, it is illustrated in the NMI
diagrams that all the methods start very well and the NMI values are close to 1 for the smaller values of µ, but
all have a decreasing trend and approaching zero for the bigger values of µ. For example in Figure 3a becoming
zero starts from µ=0.6. This behavior is predictable because for the lower values of µ the networks are simpler and
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(a) NMI for the base methods and Mitra (b) Comparison with average of base methods

Figure 4. NMI versus mixing parameter for N = 5000.

almost all methods can find the correct clusters. When µ grows, the networks become more complicated and the
chance of finding the correct clustering decreases.

The comparison of Figures 3-5 illustrates that almost all of the algorithms perform better on the networks of
larger size. For example Oslom is not stable for N=1000 (see Figure 3a), but this method is stable and shows a
good performance in Figures 4a and 5a. For this reason, Oslom is removed from the ensemble for the case of N
= 1000 nodes. As another example, for N=1000 the performance of LPM and Copra heads down to zero starting
from µ = 0.6 (see Figure 3a), but in the cases of N=5000 and 10000 (Figures 4a and 5a), their performances
become zero starting from µ = 0.7 and µ = 0.8 respectively. As illustrated in Figure 3a, most algorithms perform
well except for CNM. The diagrams also show that the performance of MCL decreases faster than the competing
diagrams. Nevertheless, considering NMI results, MCL is performing better than other methods when it comes to
greater values of µ (e.g. when µ = 0.9). As you see, NMI of other methods drop faster down to 0, while NMI of
MCL stays above 0. We can see in the NMI diagrams that CNM always generates an approximately linear curve
that is almost the worst case between the base methods. Moreover, the performances of LPM and Copra become
zero before all the other base algorithms. On the other hand, some methods are able to find communities even for
the most difficult cases and their associated NMI never become zero, e.g. CONCLUDE. CONCLUDE is one of the
best performing methods according to NMI diagrams and it also works well based on the quality scores provided
in later subsection.

It is shown in the NMI diagrams that NMI becomes zero for some methods. In these cases, the method is not able
to find meaningful clusters and in some cases (e.g. Copra) groups all the nodes in one cluster. It is also interesting
that although NMI of Infomap on G becomes zero in some points (i.e. this method is unable to find clusters of G),
Infomap is still able to find a good partition for consensus graph Gu , when applied as the last base method on the
consensus graph. It is notable that most of the observations are similar in Figures 3-5. They only differ in some
details. Therefore, we do not repeat our reasoning again for the larger networks.

Finally we conclude from the comprehensive findings that it is necessary for getting a good consensus result
to employ good base methods. In addition, removing the better quality base methods generates a weak consensus
method. Moreover using a weaker base method as the final algorithm A will produce weak results although the
initial base methods generate sufficiently good quality results.
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(a) NMI for the base methods and Mitra (b) Comparison with average of base methods

Figure 5. NMI versus mixing parameter for N = 10000.

Scores Con Exp Int-den Cut-r N-cut Mod-r Mod E-cut
CNM 0.28 2.58 0.31 0.11 0.38 1.39 0.38 25.33
LPM 0.13 1.19 0.5 0.07 0.23 1 0.36 20
Walktrap 0.21 1.82 0.18 0.08 0.3 1.65 0.37 18.67
Louvain 0.31 2.54 0.03 0.1 0.39 1.94 0.38 21
Copra 0.63 5.3 -0.51 0.17 0.68 3.02 0.31 17.78
MCL 0.88 5.66 -0.05 0.18 0.92 0.67 0.18 12.29
Oslom 0.13 1.19 0.5 0.07 0.23 1 0.36 20
Infomap 0.2 1.7 0.19 0.08 0.28 1.62 0.4 18.67
Mitra 0.13 1.18 0.5 0.07 0.23 1 0.37 20

Table 3. Quality scores for Zachary dataset

6.3. Quality scores results

For further investigation of the properties of methods, in this part we present the quality scores illustrations
associated with all the methods. These functions model community scores. For each benchmark network the
average value of each score is computed for all the communities detected by each community detection method.
This computation is repeated for all 100 samples of network configurations. The mean value produced for these
1000 samples is plotted for each score. Each community score is plotted as a function of µ. Lower value of score
f(S) signifies a more community-like set of nodes. The score results are reported for real and artificial datasets.

6.3.1. Real datasets results As describe later, three real datasets are selected to evaluate. Table 3, Table 4 and
Table 5 show the results quality scores for the real datasets. In these tables, for the first five scores, smaller values
signify a more community-like set of nodes. For modularity and modularity-ratio, greater values represent better
community-like groups. The tables do not represent a super excellence for Mitra. Nevertheless, the tables are
provided to keep consistency of the paper. The table column names are associated with Conductance, Expansion,
Internal-density, cut-ratio, Normalized cut, Modularity ratio, Modularity and Edges-cut respectively pol foot

6.3.2. LFR dataset results Figures 6,7 and 8 consider the quality scores for N =1000, 5000 and 10,000
respectively (see 5.2). In order to increase the clarity of the figures, legends are not repeated in all the illustrations

Stat., Optim. Inf. Comput. Vol. 7, December 2019



878 COMMUNITY DETECTION IN SOCIAL NETWORKS USING CONSENSUS CLUSTERING

Scores Con Exp Int-den Cut-r N-cut Mod-r Mod E-cut
CNM 0.25 1.53 0.56 0.02 0.28 0.88 0.5 18
LPM 0.27 1.65 0.52 0.02 0.31 0.95 0.51 25.2
Walktrap 0.18 1.2 0.64 0.01 0.21 0.72 0.53 19.5
Louvain 0.22 1.45 0.63 0.02 0.25 0.74 0.51 20.5
Copra 0.37 2.26 0.39 0.02 0.4 1.22 0.51 22.89
MCL 0.12 0.82 0.72 0.01 0.15 0.57 0.49 18.67
Oslom 0.22 1.19 0.5 0.01 0.25 1.01 0.49 15.5
Infomap 0.28 1.71 0.51 0.02 0.3 0.98 0.53 18.4
Mitra 0.33 2.43 0.63 0.03 0.38 0.73 0.29 37.5

Table 4. Quality scores for Polbooks dataset

Scores Con Exp Int-den Cut-r N-cut Mod-r Mod E-cut
CNM 0.28 3.02 0.4 0.03 0.32 1.2 0.58 45.14
LPM 0.34 3.5 0.15 0.03 0.36 1.7 0.6 31.67
Walktrap 0.31 3.33 0.17 0.03 0.34 1.65 0.6 33.45
Louvain 0.29 3.15 0.25 0.03 0.32 1.5 0.6 36.2
Copra 0.34 3.64 0.14 0.03 0.37 1.72 0.58 33.33
MCL 0.31 3.33 0.17 0.03 0.34 1.66 0.6 33.45
Oslom 0.32 3.36 0.19 0.03 0.34 1.62 0.6 33.82
Infomap 0.31 3.25 0.2 0.03 0.34 1.6 0.6 35
Mitra 0.32 3.37 0.3 0.03 0.35 1.41 0.3 39.4

Table 5. Quality scores for Football dataset

and only showed in Figures 6g, 7g and 8g (i.e. for modularity). The average value of each function over all
communities is computed for each network sample. As explained before, 100 samples are generated for each
network configuration. For the first five scores, smaller values of score f(S), signify a more community-like set
of nodes. Whereas, for modularity and modularity-ratio, greater values represent better community-like groups.
Ground curve refers to ground-truth (reference solution) in the figures.

It is apparent that all these scores try to capture the same basic intuition. They reward the sets of nodes that
have many internal edges and a few external, pointing to other clusters. It is apparent that the score definitions,
although different in value, are highly correlated [65]. Figures. 6-8 illustrate that for simpler networks (i.e. smaller
µ values), all the methods show a similar behavior. However, for the more complicated networks (i.e. bigger µ
values), the methods produce diverse results and exhibit dispersion. In the following, the focus is on Figures 6-8
for N = 1000, 5000 and 10000 nodes respectively. These figures are referred as score diagrams. The diagrams
illustrate cut-ratio and expansion are more correlated scoring metrics, as well as conductance and normalized-cut.
This inference also confirms the conclusion in Ref. [65]. Consequently, cut-ratio and normalized-cut are not
investigated in the following.

Considering the score diagrams, ground truth and Mitra show very similar trend in all the diagrams for different
network sizes. However, MCL, Copra, Infomap and LPM show different trends. Interestingly, it means Mitra
clusters are similar to the reference clusters. This confirms that Mitra shows a good performance according to
quality scores.

In the score diagrams, conductance has an increasing trend. Although smaller values are preferred, the value
of zero means all the nodes are placed in one class and such clustering is not informative. This is seen in LPM,
Copra and Infomap for higher values of µ, and in CNM for all generated networks of any size. As another point,
MCL and Copra show the worst conductance among all the base methods and their distance to other methods is
considerable in all figures. This means that for MCL and Copra, the ratio between the number of edges inside
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. All the scores of subsection 5.2 for all the methods. N = 1000.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. All the scores of subsection 5.2 for all the methods. N = 5000.

Stat., Optim. Inf. Comput. Vol. 7, December 2019



M. KHEIRKHAHZADEH AND M. ANALOUI 881

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. All the scores of subsection 5.2 for all the methods. N = 10000.
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the cluster and the number of edges leaving the cluster raises quickly. In the case of expansion (Figures 6b, 7b
and 8b), MCL is the worst performing method again. This means that for MCL, the normalized number of edges
pointing outside of the cluster raises quickly. Although MCL is a well performing method according to NMI,
deep investigation of its application and produced results makes the method unfavorable according to the number
of clusters found and the quality of scores. As illustrated in Figures 6c, 7c and 8c internal-density values are
diffused for different methods. Albeit like the other scores, the base methods show a similar behavior. Specially
for simpler networks, CNM has a different manner and its distance to the other methods increases in all of the
networks with N =1000, 5000 and 10000. It is observable that this event occurs more often in larger networks.
In such networks CNM shows a lot of fluctuations in the values. Generally speaking, CNM is not preferred in any
of the networks, according to NMI and internal-density. On the other hand, edges-cut of CNM is very high and
extremely far from the other methods in all of the figures, which is not favorable. Another general observation is
modularity and modularity-ratio tend to decrease roughly monotonically (Figures 6g, 7g, 8g,6f, 7f, 8f). This is not
surprising, as the networks are becoming more complicated gradually and, the algorithms are not able to find the
correct communities. Although the modularity ratio of the methods are clearly different, they show very similar
behavior. This suggests that modularity ratio is not a practical measure to detect a community, and thus may not be
preferred. Considering edges-cut, it is observable that some methods (e.g. Oslom and CNM in Figure 6h) produce
a diverse set of numbers, from a few edges to more than 10000. For example edges-cut is 7500 for CNM and 4200
for Oslom in Figure 8h. This diversity of edges-cut values shows the structure of clusters produced by Oslom and
CNM is different from other methods.
Another important result is for larger networks (e.g. N = 100, 000), Walktrap is not able to finish the execution
and halts. CONCLUDE is also generates a solution in a very long time (almost some days) for these network sizes.
We can also draw conclusions about the general behavior of the base algorithms. According to NMI and quality
scores, it is observable that almost all of the algorithms follow the same trend in their application for lower values
of µ, although they use different definitions for communities and apply different strategies to find them.

7. Conclusion and Future work

In this work, we proposed a new ensemble clustering approach to enhance community detection by employing
bipartite networks. The method is called Mitra. The proposed method fuses results of base community detection
methods and provides a more accurate community structure for a network. We performed an empirical comparison
and evaluated the quality of communities identified by a variety of community detection algorithms. Moreover, we
compared the performance and quality of the methods according to Normalized Mutual Information (NMI) and
extended our study by evaluating some community scores.

We can conclude about the general behavior of our Mitra method. The method is good performing, in the sense
that its performance never becomes zero according to NMI and is far better than the average performance of the
other employed base methods. This conclusion confirms our first assumption that weak points of one base method
are covered by the strengths of the others by using Mitra approach. Therefore, Mitra helps in mitigating the
limitations of base methods. Moreover, the experimental evaluations show Mitra is not a simple average of base
methods and, is far better than the average, especially when networks become more complicated. This conclusion
is interestingly remarkable and shows Mitra reinforces the strengths points of base methods. Furthermore, Mitra
produces solutions with an acceptable structure and the close number of communities to the ground truth in all the
networks. In other word, its behavior is very close, according to trend and value, to the ground-truth.

As the last point, base methods play the same role in Mitra. Therefore, it is appealing to change the priority
of roles of base methods to find a better ensemble method. We are going to investigate this in future. Moreover,
employing more evaluation criteria for quality estimation in community detection methods is our future plan for
continuing this work.
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