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Abstract In this note we give some simple recurrence relations satisfied by single and product moments of k-th upper
record values from the additive Weibull distribution. These relations are deduced for moments of upper record values.
Further, conditional expectation and recurrence relation for single moments are used to characterize the additive Weibull
distribution and some computational works are also carried out.
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1. Introduction

The statistical study of record values in a sequence of independent and identically distributed (iid) continuous
random variables was first carried out by Chandler [5]. For an extensive study in this area one can refer to the
works of Arnold et. al [3], Ahsanullah [1] and Ahsanullah and Nevzorov [2]. Dziubdziela and Kopociński [7] have
generalized the concept of record values of Chandler [5] by random variables of a more generalized nature and
we may call them as generalized record values or k-th record values. Setting k = 1 , we obtain ordinary record
statistics.
Record values and associated statistics are of great importance in several real life problems involving weather,
economic studies, sports and so on. The prediction of a future record value is an interesting problem with many
real life applications. For example the predicted value of the amount of next record level of water that a dam
will capture from rain and hold or discharge is helpful for future planning purposes, predicted intensity of the
next strongest earthquake is essential for disaster management planning, prediction of next level of new record in
athletic events is helpful for subjecting the prospective athletes to rigorous training and practice and so on.
Several applications of k-th record values can be found in the literature, for instance, see the examples cited in
Kamps [11] or Danielak and Raqab [6] in reliability theory. Suppose that a technical system or piece of equipment
is subject to shocks, e.g. peaks of voltages. If the shocks are viewed as realizations of an iid sequence, then the
model of ordinary records is adequate. If it is not the records themselves, but second or third values are of special
interest, then the model of k-th record values is adequate. When record values themselves are viewed as outliers,
then the second or third largest values are of special interest. Record statistics are applied in estimating strength of
materials, predicting natural disasters, sport achievements, etc. For statistical inference based on ordinary records,
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serious difficulties arise if expected values of inter arrival time of records is infinite and occurrences of records are
very rare in practice. This problem is avoided once we consider the model of k-th record statistics.

Let {Xn, n ≥ 1} be a sequence of iid random variables with distribution function (df) F (x) and probability
density function (pdf) f(x). The j−th order statistic of a sample X1, X2, . . . , Xn is denoted by Xj:n. For a fixed
positive integer k , Dziubdziela and Kopociński [7] define the sequences {U (k)

n , n ≥ 1} of k-th upper record times
for the sequence {Xn, n ≥ 1} as follows:
U

(k)
1 = 1

U
(k)
n+1 = min{j > U

(k)
n : Xj:j+k−1 > X

U
(k)
n :U

(k)
n +k−1

}.

The sequence {Y (k)
n , n ≥ 1}, where Y (k)

n = X
U

(k)
n

is called the sequence of generalized upper record values or k-th

upper record values of {Xn, n ≥ 1}. Note that for k = 1, we have Y (1)
n = XUn , n ≥ 1, which are the record values

of {Xn, n ≥ 1} (Ahsanullah [1]). Moreover, we see that Y (k)
0 = 0 and Y

(k)
1 = min(X1, X2, ..., Xk) = X1:k.

The pdf of Y (k)
n and the joint pdf of Y (k)

m and Y
(k)
n are given by (Dziubdziela and Kopociński [7], Grudzień [8])

f
Y

(k)
n

(x) =
kn

(n− 1)!
[−lnF̄ (x)]n−1 [F̄ (x)]k−1 f(x), n ≥ 1, (1)

and
f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!
[−lnF̄ (x)]m−1 f(x)

F̄ (x)

×[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]k−1 f(y), x < y, 1 ≤ m < n, n ≥ 2, (2)
where
F̄ (x) = 1− F (x).
For some recent developments on generalized record values with special reference to those arising from Pareto,
generalized Pareto, Weibull, exponential-Weibull and modified Weibull distributions, see Pawlas and Szynal [16,
17], Khan et. al [13] and Khan and Khan [12] respectively. In this work we mainly focus on the study of generalized
record values arising from the additive Weibull distribution.

A random variable X is said to have a additive Weibull distribution (Lemonte et. al [14]) if its pdf is of the form

f(x) = (αβxβ−1 + θδxδ−1)e−(αxβ+θxδ), x > 0, α > 0, θ > 0 and δ, β > 0 (3)

and the corresponding df is

F (x) = 1− e−(αxβ+θxδ), x > 0, α > 0, θ > 0 and δ, β > 0. (4)

It is easy to see that
f(x) = (αβxβ−1 + θδxδ−1)F̄ (x). (5)

The exponential-Weibull and Weibull distributions are the special cases for δ = 1 or β = 1 and θ = 0 or α = 0,
respectively. The exponential distribution arises when β = 1, θ = 0 or α = 0, δ = 1. The Rayleigh and two-
parameter linear failure rate distributions are obtained when α = 0, δ = 2 or θ = 0, β = 2 and β = 2, δ = 1 or
β = 1, δ = 2, respectively.
The relation in (5) will be exploited in this paper to derive some recurrence relations for the moments of k-th upper
record values from the additive Weibull distribution and to give a characterization of this distribution.

2. Relations for Single Moments

Before coming to the main result we shall prove the following Lemma.
Lemma 2.1. Fix a positive integer k ≥ 1, for n ≥ 1 and j = 0, 1, ...

E(Y (k)
n )

j
− E(Y

(k)
n−1)

j
=

jkn

(n− 1)!

∫ β

α

xj−1[−lnF̄ (x)]n−1[F̄ (x)]kdx. (6)
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Proof. From (1), we have

E(Y (k)
n )

j
− E(Y

(k)
n−1)

j
=

kn

(n− 1)!

∫ β

α

xj [−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

− kn−1

(n− 2)!

∫ β

α

xj [−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)dx

=
kn

(n− 1)!

∫ β

α

xj [−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)

{
− lnF̄ (x)− n− 1

k

}
dx. (7)

Let
h(x) = −1

k
[−lnF̄ (x)]n−1[F̄ (x)]k. (8)

Differentiating both sides of (8), we get

h′(x) = [−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)

{
− lnF̄ (x)− n− 1

k

}
dx.

Thus,

E(Y (k)
n )

j
− E(Y

(k)
n−1)

j
=

kn

(n− 1)!

∫ β

α

xjh′(x)dx. (9)

Now integrating in (9) by parts and using the value of h(x) from (8), we have the result given in (6).
Theorem 2.1. For distribution given in (4). Fix a positive integer k ≥ 1, for n ≥ 1 and j = 0, 1, ...

E(Y (k)
n )

j
=

αβk

(j + β)
{E(Y (k)

n )
j+β

− E(Y
(k)
n−1)

j+β
}+ θδk

(j + δ)
{E(Y (k)

n )
j+δ

− E(Y
(k)
n−1)

j+δ
}. (10)

Proof. From (1) and (5), we have

E(Y (k)
n )

j
=

kn

(n− 1)!

{
αβ

∫ ∞

0

xj+β−1[−lnF̄ (x)]n−1[F̄ (x)]kdx+ θδ

∫ ∞

0

xj+δ−1[−lnF̄ (x)]n−1[F̄ (x)]kdx

}
.

Making use of Lemma 2.1, we establish the result given in (10).

Remarks

i) Setting δ = 1 or β = 1 in (10), we get the recurrence relation for single moments of k-th upper record values
from the exponential-Weibull lifetime distribution as obtained by Khan et. al [13].

ii) Setting θ = 0 or α = 0 in (10), we get the recurrence relation for single moments of k-th upper record values
from the Weibull distribution, which verify the results obtained by Pawlas and Szynal [17].

iii) Putting β = 1 , θ = 0 or α = 0, δ = 1 in (10), we deduce the recurrence relation for single moments of k-th
upper record values from the exponential distribution, established by Pawlas and Szynal [15].

iv) Putting α = 0, δ = 2 or θ = 0, β = 2 in (10), we get the recurrence relation for single moments of k-th upper
record values from the Rayleigh distribution as given by Khan et. al [13].

v) Setting β = 2, δ = 1 or β = 1, δ = 2 in (10), the result for single moments of k-th upper record values is
deduced for linear failure rate distribution as established by Khan et. al [13].
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Corollary 2.1. The recurrence relation for single moments of upper record values from the additive Weibull lifetime
distribution has the form

EXj
Un

=
αβ

j + β
(EXj+β

Un
− EXj+β

Un−1
) +

θδ

j + δ
(EXj+δ

Un
− EXj+δ

Un−1
). (11)

Remarks

i) If δ = 1 or β = 1 in (11), we get the recurrence relation for single moments of record values from the
exponential-Weibull lifetime distribution, obtained by Khan et. al [13].

ii) If θ = 0 or α = 0 in (11), the relation for single moments of record values obtained by Pawlas and Szynal [17]
for Weibull distribution is deduced.

iii) If β = 1 , θ = 0 or α = 0, δ = 1 in (11), we get the recurrence relation for single moments of record values
from exponential distribution as obtained by Balakrishnan and Ahsanullah [4] .

iv) If α = 0, δ = 2 or θ = 0, β = 2 in (11), the recurrence relation for single moments of record values is deduced
for Rayleigh distribution as given by Khan et. al [13].

v) If β = 2, δ = 1 or β = 1, δ = 2 in (11), the recurrence relation for single moments of record values is deduced
for linear failure rate distribution, established by Khan et. al [13].

Numerical computations for the first four moments of upper record values from additive Weibull distribution for
arbitrary chosen values of α, β, θ, δ and various sample size n = 1, 2, ..., 5 are given in Table 2.1.

Table 2.1. First four moments of upper record values
α = 1, β = 1, θ = 1 α = 2, β = 1, θ = 1

n δ = 2 δ = 2
E(X) E(X2) E(X3) E(X4) E(X) E(X2) E(X3) E(X4)

1 0.54564 0.45435 0.47769 0.59025 0.37893 0.24212 0.20521 0.21063
2 0.93205 1.06794 1.41557 2.10089 0.68946 0.62106 0.67101 0.83110
3 1.24176 1.75823 2.76050 4.72074 0.95656 1.08686 1.40716 2.02388
4 1.50624 2.49375 4.46824 8.56976 1.19363 1.61274 2.40879 3.91384
5 1.74049 3.25950 6.50467 13.7311 1.40856 2.18286 3.66646 6.60269

α = 1, β = 2, θ = 2 α = 2, β = 2, θ = 2
n δ = 3 δ = 3

E(X) E(X2) E(X3) E(X4) E(X) E(X2) E(X3) E(X4)

1 0.57912 0.39544 0.30227 0.25173 0.49670 0.29764 0.20235 0.15126
2 0.80575 0.70103 0.64948 0.63459 0.70724 0.54649 0.45350 0.39951
3 0.95933 0.96662 1.01668 1.11094 0.85302 0.77003 0.72996 0.72245
4 1.07952 1.20789 1.39605 1.66202 0.96828 0.97703 1.02296 1.10753
5 1.18002 1.43216 1.78391 2.27632 1.06525 1.17196 1.32804 1.54653

3. Relations for Product Moments

Lemma 3.1. Fix a positive integer k ≥ 1, for 1 ≤ m ≤ n− 2, i, j = 0, 1, ...
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E[(Y (k)
m )i(Y (k)

n )j ]− E[(Y (k)
m )i(Y

(k)
n−1)

j ] =
jkn−1

(m− 1)!(n−m− 1)!

∫ β

α

∫ β

x

xiyj−1

× [−lnF̄ (x)]m−1 f(x)

F̄ (x)
[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]kdydx. (12)

Proof. From (2), we have

E[(Y (k)
m )i(Y (k)

n )j ]− E[(Y (k)
m )i(Y

(k)
n−1)

j ] =
kn

(m− 1)!(n−m− 1)!

×
∫ β

α

∫ β

x

xiyj [−lnF̄ (x)]m−1 f(x)

F̄ (x)
[lnF̄ (x)− lnF̄ (y)]n−m−2

× [F̄ (y)]k−1f(y)

{
[lnF̄ (x)− lnF̄ (y)]− n−m− 1

k

}
dydx. (13)

Let
h(x, y) = −1

k
[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]k (14)

∂

∂y
h(x, y) = [lnF̄ (x)− lnF̄ (y)]n−m−2[F̄ (y)]k−1f(y)

×
{
[lnF̄ (x)− lnF̄ (y)]− n−m− 1

k

}
. (15)

Taking into account the value of (15) in (13), we get

E[(Y (k)
m )i(Y (k)

n )j ]− E[(Y (k)
m )i(Y

(k)
n−1)

j ] =
kn

(m− 1)!(n−m− 1)!

×
∫ β

α

xi[−lnF̄ (x)]m−1 f(x)

F̄ (x)

{∫ β

x

yj
∂

∂y
h(x, y)dy

}
dx. (16)

Now in view of (14) ∫ β

x

yj
∂

∂y
h(x, y)dy =

j

k

∫ β

x

yj−1[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]kdy. (17)

After substituting (17) in (16), the required expression is obtained.

Theorem 3.1. For distribution given in (4) and m ≥ 1 and i, j = 0, 1, ...

E[(Y (k)
m )i(Y

(k)
m+1)

j ] =
αβk

j + β

{
E[(Y (k)

m )i(Y
(k)
m+1)

j+β ]− E(Y (k)
m )i+j+β

}
+

θδk

j + δ

{
E[(Y (k)

m )i(Y
(k)
m+1)

j+δ]− E(Y (k)
m )i+j+δ

}
(18)

and for 1 ≤ m ≤ n− 2, i, j = 0, 1, ...

E[(Y (k)
m )i(Y (k)

n )j ] =
αβk

j + β

{
E[(Y (k)

m )i(Y (k)
n )j+β ]− E[(Y (k)

m )i(Y
(k)
n−1)

j+β ]
}

+
θδk

j + δ

{
E[(Y (k)

m )i(Y (k)
n )j+δ]− E[(Y (k)

m )i(Y
(k)
n−1)

j+δ]
}

(19)
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Proof. From (2) and (5), we have

E[(Y (k)
m )i(Y (k)

n )j ] =
αβkn

(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xiyj+β−1[−lnF̄ (x)]m−1 f(x)

F̄ (x)

×[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]kdydx+
θδkn

(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xiyj+δ−1

×[−lnF̄ (x)]m−1 f(x)

F̄ (x)
[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]kdydx.

Making use of Lemma 3.1, we derive the relation given in (19). Proceeding in a similar manner for the case
n = m+ 1 , the recurrence relation given in (18) can easily be established.

One can also note that Theorem 2.1 can be deduced from Theorem 3.1 by putting i = 0 .

Remarks

i) Setting δ = 1 or β = 1 in (19), we get the recurrence relation for product moments of k-th upper record values
from the exponential-Weibull lifetime distribution as obtained by Khan et. al [13].

ii) Setting θ = 0 or α = 0 in (19), we get the recurrence relation for single moments of k-th upper record values
obtained by Pawlas and Szynal [17] for Weibull distribution is deduced.

iii) Putting β = 1 , θ = 0 or α = 0, δ = 1 in (19), result for product moments of k-th upper record values is
deduced for the exponential distribution as established by Pawlas and Szynal [15].

iv) Putting α = 0, δ = 2 or θ = 0, β = 2 in (19), the result for product moments of k-th upper record values is
deduced for the Rayleigh distribution as given by Khan et. al [13].

v) Setting β = 2, δ = 1 or β = 1, δ = 2 in (19), the result for product moments of k-th upper record values is
deduced for linear failure rate distribution as established by Khan et. al [13].

Corollary 3.1. The recurrence relation for product moments of upper record values from the additive Weibull
distribution has the form

E(Xi
Um

Xj
Un

) =
αβ

j + β
{E(Xi

Um
Xj+β

Un
)− E(Xi

Um
Xj+β

Un−1
)}+ θδ

j + δ
{E(Xi

Um
Xj+δ

Un
)− E(Xi

Um
Xj+δ

Un−1
)} (20)

Remarks

i) If δ = 1 or β = 1 in (20), we obtain the recurrence relation for product moments of record values from the
exponential-Weibull lifetime distribution as established by Khan et. al [13].

ii) If θ = 0 or α = 0 in (20), the result for product moments of record values obtained by Pawlas and Szynal [17]
for Weibull distribution is deduced.

iii) If β = 1 , θ = 0 or α = 0, δ = 1 in (20), the result for product moments of record values obtained by
Balakrishnan and Ahsanullah [4] for the exponential distribution is deduced.

iv) If α = 0, δ = 2 or θ = 0, β = 2 in (20),the recurrence relation for product moments of record values is deduced
for Rayleigh distribution as given by Khan et. al [13].
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v) If β = 2, δ = 1 or β = 1, δ = 2 in (20), the result for product moments of record values is deduced for linear
failure rate distribution as established by Khan et. al [13].

4. Characterizations

Theorem 4.1. Fix a positive integer k ≥ 1 and let j be a non-negative integer. A necessary and sufficient condition
for a random variable X to be distributed with pdf given by (3) is that

E(Y (k)
n )

j
=

αβk

j + β
{E(Y (k)

n )
j+β

− E(Y
(k)
n−1)

j+β
}+ θδk

j + δ
{E(Y (k)

n )
j+δ

− E(Y
(k)
n−1)

j+δ
}. (21)

for n = 1, 2, ....
Proof. The necessary part follows immediately from (10). On the other hand if the recurrence relation (21) is
satisfied, then on using (1), we have

kn

(n− 1)!

∫ ∞

0

xj [−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

=
αβkn+1

(n− 1)!(j + β)

∫ ∞

0

xj+β [−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

− αβkn

(n− 2)!(j + β)

∫ ∞

0

xj+β [−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)dx

+
θδkn+1

(n− 1)!(j + δ)

∫ ∞

0

xj+δ[−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

− θδkn

(n− 2)!(j + δ)

∫ ∞

0

xj+δ[−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)dx. (22)

Integrating the first and third integral on right side of (22) by parts and simplifying the resulting expression, we
find that ∫ ∞

0

xj [−lnF̄ (x)]n−1[F̄ (x)]k−1{f(x)− (αβxβ−1 + θδxδ−1)F̄ (x)}dx = 0. (23)

Now applying a generalization of the Müntz-Szász Theorem (see for example Hwang and Lin [10]) to (23), we
obtain

f(x) = (αβxβ−1 + θδxδ−1)F̄ (x),

which proves that f(x) has the form as in (5).
Remark 4.1. Theorem 4.1 can be used to characterize the exponential-Weibull lifetime and Weibull
distributions by setting δ = 1 or β = 1 and θ = 0 or α = 0, respectively. The exponential distribution when
β = 1, θ = 0 or α = 0 , δ = 1 . The Rayleigh and two-parameter linear failure rate distributions when α = 0
, δ = 2 or θ = 0, β = 2 and β = 2, δ = 1 or β = 1, δ = 2, respectively.
Corollary 4.1. Under the assumptions of Theorem 4.1 with j = 0 the following equations

E(Y (k)
n )δ = E(Y

(k)
n−1)

δ − α

θ
{E(Y (k)

n )β − E(Y
(k)
n−1)

β}+ 1

θk
, n = 1, 2, ...

characterize the additive Weibull distribution.
Remark 4.2. If k = 1 we obtain the following characterization of the additive Weibull distribution

EXδ
Un

= EXδ
Un−1

− α

θ
(EXβ

Un
− EXβ

Un−1
) +

1

θ
, n = 1, 2, ... .
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Now we shall show how the Theorem 4.1 can be used in a characterization of the additive-Weibull distribution in
terms of moments of minimal order statistics. Putting n = 1 in (21), we get

EXj
1:k =

αβk

j + β
EXj+β

1:k +
θδk

j + δ
EXj+δ

1:k ,

for any fixed integer k ≥ 1. This result leads to the following theorem.
Theoram 4.2. Let j be a non-negative integer. A necessary and sufficient condition for a random variable X to
be distributed with pdf given by (3) is that

EXj
1:k =

αβk

j + β
EXj+β

1:k +
θδk

j + δ
EXj+δ

1:k , (24)

for k = 1, 2, ... .
Proof. The necessary part follows immediately from (10).On the other hand if the recurrence relation (24) is
satisfied, then∫ ∞

0

xj [F̄ (x)]k−1f(x)dx =
αβk

j + β

∫ ∞

0

xj+β [F̄ (x)]k−1f(x)dx+
θδk

j + δ

∫ ∞

0

xj+δ[F̄ (x)]k−1f(x)dx (25)

Integrating the integrals on the right-hand side in (25) by parts, we get∫ ∞

0

xj [F̄ (x)]k−1f(x)dx = αβ

∫ ∞

0

xj+β−1[F̄ (x)]kdx+ θδ

∫ ∞

0

xj+δ−1[F̄ (x)]kdx

which further reduces to∫ ∞

0

xj [F̄ (x)]k−1{f(x)− (αβxβ−1 + θδxδ−1)F̄ (x)}dx = 0, k = 1, 2, ... . (26)

Now applying a generalization of the Müntz-Szász Theorem, (see for example Hwang and Lin [10]) to (26), we
obtain

f(x) = (αβxβ−1 + θδxδ−1)F̄ (x)

which proves that
F (x) = 1− e−(αxβ+θxδ), x > 0, α > 0, θ > 0 and δ, β > 0.

Theorem 4.3. Let X be a non-negative random variable having an absolutely continuous df F (x) with F (0) = 0
and 0 ≤ F (x) ≤ 1 for all x > 0 , then

E[ξ(Y (k)
n ) | (Y (k)

l ) = x] = e−(αxβ+θxδ)
( k

k + 1

)n−l

, l = m, m+ 1 (27)

if and only if
F (x) = 1− e−(αxβ+θxδ),

where
ξ(y) = e−(αyβ+θyδ),

Proof. From (2) and (1), we have

E[ξ(Y (k)
n ) | (Y (k)

m ) = x] =
kn−m

(n−m− 1)!

∫ ∞

x

e−(αyβ+θyδ)[lnF̄ (x)− lnF̄ (y)]n−m−1
( F̄ (y)

F̄ (x)

)k−1 f(y)

F̄ (x)
dy. (28)

By setting u = F̄ (y)

F̄ (x)
= e−(αyβ+θyδ)

e−(αxβ+θxδ)
from (4) in (28), we have

E[ξ(Y (k)
n ) | (Y (k)

m ) = x] =
kn−m

(n−m− 1)!
e−(αxβ+θxδ)

∫ 1

0

uk(−lnu)n−m−1du. (29)
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We have Gradshteyn and Ryzhik ([6], p-551)∫ 1

0

(−lnx)µ−1xν−1dx =
Γµ

νµ
, µ > 0, ν > 0. (30)

On using (30) in (29), we have the result given in (27).
To prove sufficient part, we have

kn−m

(n−m− 1)!

∫ ∞

x

e−(αyβ+θyδ)[lnF̄ (x)− lnF̄ (y)]n−m−1[F̄ (y)]k−1f(y)dy = [F̄ (x)]kgn|m(x), (31)

where
gn|m(x) = e−(αxβ+θxδ)

(
k

k+1

)n−m

.

Differentiating (31) both the sides with respect to x , we get

− kn−mf(x)

F̄ (x)(n−m− 2)!

∫ ∞

x

e−(αyβ+θyδ)[lnF̄ (x)− lnF̄ (y)]n−m−2

×[F̄ (y)]k−1f(y)dy = g′n|m(x)[F̄ (x)]k − k gn|m(x)[F̄ (x)]k−1f(x)

or
−k gn|m+1(x)[F̄ (x)]k−1f(x) = g′n|m(x)[F̄ (x)]k − k gn|m(x)[F̄ (x)]k−1f(x).

Therefore,
f(x)

F̄ (x)
= −

g′n|m(x)

k[gn|m+1(x)− gn|m(x)]
= (αβxβ−1 + θδxδ−1),

where
g′n|m(x) = −(αβxβ−1 + θδxδ−1)e−(αxβ+θxδ)

( k

k + 1

)n−m

,

gn|m+1(x)− gn|m(x) =
1

k
e−(αxβ+θxδ)

( k

k + 1

)n−m

,

which proves that
F (x) = 1− e−(αxβ+θxδ), x > 0, α > 0, θ > 0 and δ, β > 0.
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