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Abstract In this paper, Robust Bayesian analysis of the generalized half logistic distribution (GHLD) under an ϵ-
contamination class of priors for the shape parameter λ is considered. ML-II Bayes estimators of the parameters, reliability
function and hazard function are derived under the squared-error loss function (SELF) and linear exponential (LINEX) loss
function by considering the Type II censoring and the sampling scheme of Bartholomew(1963). Both the cases when scale
parameter is known and unknown is considered under Type II censoring and under the sampling scheme of Bartholomew.
Simulation study and analysis of a real data set are presented.
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1. Introduction and preliminaries

Half logistic has been used in many reliability and survival analysis (especially when the data is censored).
Inferences for the half logistic distribution (HLD) have been discussed by several authors. Balakrishnan (1985)
discussed on order statistics from the HLD. Balakrishnan and Puthenpura (1986) introduced the best linear unbiased
estimators of location and scale parameters of the HLD through linear functions of order statistics. Balakrishnan
and Asgharzadeh (2005) gave the inferences for the scaled HLD based on progressively Type II censored samples.
Balakrishnan and Hossain (2007) considered generalized (Type II) version of logistic distribution and derived
some interesting properties of the distribution. Arora, Bhimani and Patel (2010) obtained the maximum likelihood
estimator of the shape parameter in a GHLD based on Type I progressive censoring with varying failure rates.
Asgharzadeh, Rezaie and Abdi (2011) compared the methods of estimation for the HLD. Kim, Kang and Seo
(2011) proposed the Bayes estimators of the shape parameter and reliability function for the GHLD based on
progressively Type II censored data under various loss functions. Seo, Lee and Kang (2012) developed an entropy
estimation method for the upper record values from the GHLD. Azimi (2013) derived the Bayes estimators of
the shape parameter and the reliability function for the GHLD based on Type II doubly censored samples. Seo
and Kang (2014) derived the entropy of GHLD by using the Bayes estimators of an unknown parameter based on
Type II censored samples. They also compared these estimators in terms of the mean square error and the bias.
Recently, Chaturvedi, Kang and Pathak (2016) developed estimation and testing procedures for the powers of the
parameter and the reliability function under Type II censoring and under the sampling scheme of Bartholomew
(1963).
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The robust Bayesian viewpoint, since Good (1950), assumed that the subjective information can be quantified in
terms of a class Γ of possible distributions. The goal is to make inferences or decisions which are robust or flexible
over Γ, i.e., which are relatively insensitive to derivations as the prior distribution varies over Γ. For a brief review
of the literature on robustness in Bayesian model, one may refer to Jeffreys (1961), Box and Tiao (1962), Good
(1965, 1967, 1980), Lindley (1961), Dempster (1976), Box (1980).

Bayesian analysis based on ϵ-contamination class of priors has been extensively studied by Berger (1982,
1983), Berger and Berliner (1983), Chaturvedi (1993, 1998), Chaturvedi, Pati and Tomer (2013). This class is
a sensible class in the light of prior elicitation process for removing prior judgment error. Betro (2009) provides
some numerical procedures for robust Bayesian analysis. For a detailed review on Bayesian robustness one may
refer to Berger et al. (2000).

The randome variable (rv) X is said to follow GHLD if its probability density function (pdf) is given by

f(x;λ, σ) =
λ

σ

(
2e−x/σ

1 + e−x/σ

)λ
1

1 + e−x/σ
, x > 0, λ, σ > 0. (1.1)

The reliability function is

R(t) = P (X > t)

=

(
1 + et/σ

2

)−λ

(1.2)

and the hazard-rate comes out to be

h(t) =
f(t;λ)

R(t)

=
λ

σ
(
1 + e−t/σ

) . (1.3)

Form (1.3), we conclude that the GHLD is fit for the situation when we have increasing failure-rate.
The purpose of the present paper is to give robust Bayesian analysis of parameters, hazard function and reliability

function of GHLD. In Section 2 and 4 respectively, for known scale parameter, we obtained the robust Bayes
estimators of these parametric functions under SELF and LINEX loss functions considering Type II censoring and
the sampling scheme of Bartholomew (1963). In Section3 and 5 respectively, we consider the case when both shape
and scale parameters are unknown. In Section 6, simulation study is performed by using Monte Carlo simulation
method, when scale parameter is known. In Section 7, analysis of a real data set using MCMC and Gibbs sampling
technique is performed, for the case when both the parameters are unknown. Finally, in Section 8, discussion and
some concluding remarks are presented.

2. Robust Bayesian analysis under Type II censoring with known scale parameter

Let n items are put on a life test and the test is terminated after rth failure, so that, (n− r) items survived.
Let us denote by 0 < X(1) ≤ X(2) ≤ . . . ≤ X(r), 0 < r < n, the lifetimes of first r failures. Denoting by Sσ =
r∑
i=1

ln
(

1+e
X(i)/σ

2

)
+ (n− r) ln

(
1+e

X(r)/σ

2

)
and x

¯
= (x(1), x(2), . . . , x(r)), the likelihood function is [Seo, Kim

and Kang (2013)].

l(x
¯
| λ, σ) = n!

(n− r)!

(
λ

σ

)r( r∏
i=1

1

1 + e−x(i)/σ

)
exp(−λSσ). (2.1)

For the prior density, we consider the following ϵ-contamination class of prior distribution for λ [Berger (1985)].

Γ = {π(λ) : π(λ) = (1− ϵ)go(λ | µo) + ϵg(λ | µ); g(λ | µ) ∈ G} (2.2)
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where ϵ (0 ≤ ϵ ≤ 1) is pre-assigned and represents the probability of error in the elicitation of the prior go(λ | µo).
We consider the base prior, a natural conjugate prior, given by the pdf

go(λ | µo) =
µνo
Γ(ν)

λν−1 exp(−µoλ); µo > 0, ν > 0, (2.3)

where (µo, ν) represents the vector of hyper parameters. The contamination class G is the class of all natural
conjugate priors with the vector of hyper parameters (µ, ν), which is given as

G =

{
g(λ | µ) = µν

Γ(ν)
λν−1 exp(−µλ); µ ∈ (µo,∞)

}
. (2.4)

The predictive density corresponding to the prior g(λ | µ) is

m(x
¯
| g) =

∫ ∞

0

l(λ | x
¯
)g(λ | µ)dλ. (2.5)

Using (2.1) and (2.4), we obtain from (2.5) that

m(x
¯
| g) = n!

(n− r)!σr

(
r∏
i=1

1

1 + e−x(i)/σ

)
µν

Γ(ν)

Γ(r + ν)

(Sσ + µ)r+ν
. (2.6)

The predictive density corresponding to the base prior is obtained from (2.6) when µ = µo. Now, using (2.2), the
predictive density corresponding to the generic prior π ∈ Γ is

m(x
¯
| π) = (1− ϵ)m(x

¯
| go) + ϵm(x

¯
| g). (2.7)

In the ML-II process, we choose the value of the unknown hyper parameter µ in a data dependent fashion by
maximizing the predictive density m(x

¯
| π) over the class of all prior π ∈ Γ. Since go is fixed, we have

sup
π∈Γ

m(x
¯
| π) = (1− ϵ)m(x

¯
| go) + ϵ sup

g∈G
m(x

¯
| g) (2.8)

and m(x
¯
| g) is maximized when we replace µ by its maximum likelihood estimator (MLE), which is given by

µ̂ = max

{
µo,

νSσ
r

}
in g(λ | µ). Then we have

g(λ | µ̂) =

{
λν−1

Γ(ν)

(
νSσ

r

)ν
exp

(−νSσ

r λ
)
= ĝ, µo <

νSσ

r ,

g(λ | µo) = go, µo ≥ νSσ

r .

Thus, the ML-II prior density is given by

π̂(λ) = (1− ϵ)go(λ | µo) + ϵĝ(λ | µ̂).

From Berger and Berliner (1983), the ML-II posterior of λ is obtained as

π̂∗(λ) = η̂g∗o(λ) + (1− η̂)ĝ∗(λ), (2.9)

where

g∗o(λ) =
l(λ | x

¯
)go(λ | µo)∫∞

0
l(λ | x

¯
)go(λ | µo)dλ

=
(Sσ + µo)

r+ν

Γ(r + ν)
λr+ν−1 exp(−λ(Sσ + µo)), µo ≥

νSσ
r
. (2.10)
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Similarly, we get

ĝ∗(λ) =

{
λr+ν−1

Γ(r+ν)

(
1 + ν

r

)r+ν
Sr+νσ exp

(
−λSσ(1 + ν

r )
)
, µo <

νSσ

r ,

g∗o(λ), µo ≥ νSσ

r

(2.11)

and

η̂ =
(1− ϵ)m(x

¯
| go)

(1− ϵ)m(x
¯
| go) + ϵm(x

¯
| ĝ)

=


[
1 + ϵ

(1−ϵ)
ννrr

Sr
σµ

ν
o

(Sσ+µo)
r+ν

(r+ν)(r+ν)

]−1

, µo <
νSσ

r ,

(1− ϵ), µo ≥ νSσ

r .
(2.12)

2.1. Under SELF

Now we derive the ML-II estimators of the powers of λ, hazard-rate and reliability function under SELF. We also
derive the expression for posterior variance. It is well known that the Bayes estimator of any parametric function
under SELF is its posterior mean. Also the well known form of SELF for estimating λ through its estimator λ̂ is
given by

L(λ̂) = (λ̂− λ)2

Let us first obtain the Bayes estimator λp (p is finite and non zero) and its posterior variance in the following
theorem.

Theorem 1
The ML-II posterior mean and variance of λp are given, respectively by

Eπ̂∗(λp) =


Γ(r+ν+p)

(r+ν)

{
η̂(Sσ + µo)

−p + (1− η̂)
(
1 + v

r

)−p
S−p
σ

}
, µo <

νSσ

r ,

Γ(r+ν+p)
(r+ν) (Sσ + µo)

−p, µo ≥ νSσ

r

(2.13)

and

Vπ̂∗(λp) =



{
Γ(r+ν+2p)

(r+ν) −
(

Γ(r+ν+p)
(r+ν)

)2}
·
{
η̂(Sσ + µo)

−2p + (1− η̂)
(
1 + v

r

)−2p
S−2p
σ

}
+η̂(1− η̂)

(
Γ(r+ν+p)

(r+ν)

)2 {
(Sσ + µo)

−p −
(
1 + v

r

)−p
S−p
σ

}2

, µo <
νSσ

r ,{
Γ(r+ν+2p)

(r+ν) −
(

Γ(r+ν+p)
(r+ν)

)2}
(Sσ + µo)

−2p, µo ≥ νSσ

r .

(2.14)

Proof
Using (2.9), we have

Eπ̂∗(λp) = η̂Eg∗o (λ
p) + (1− η̂)Eĝ∗(λ

p). (2.15)

For µo ≥ νSσ

r , we obtain

Eg∗o (λ
p) =

(Sσ + µo)
(r+ν)

Γ(r + ν)

∫ ∞

0

λr+p+ν−1e−λ(Sσ+µo)dλ

=
Γ(r + ν + p)

Γ(r + ν)
(Sσ + µo)

−p. (2.16)
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Similarly, for µo < νSr

r , it immediately follows that

Eĝ∗(λ
p) =

Γ(r + ν + p)

Γ(r + ν)

(
1 +

ν

r

)−p
S−p
σ , (2.17)

thus (2.13) follows on substituting (2.16) and (2.17) in (2.15).
In order to obtain the posterior variance of λp, we use the following expression from Berger(1985)

Vπ̂∗(λp) = η̂Vg∗o (λ
p) + (1− η̂)Vĝ∗(λ

p) + η̂(1− η̂)
[
Eg∗o (λ

p)− Eĝ∗(λ
p)
]2
, (2.18)

where

Vg∗o (λ
p) = Eg∗o (λ

2p)−
[
Eg∗o (λ

p)
]2

=

[
Γ(r + ν + 2p)

(r + ν)
−
(
Γ(r + ν + p)

(r + ν)

)2
]
(Sσ + µo)

−2p (2.19)

and

Vĝ∗(λ
p) = Eĝ∗(λ

2p)− [Eĝ∗(λ
p)]

2

=

[
Γ(r + ν + 2p)

(r + ν)
−
(
Γ(r + ν + p)

(r + ν)

)2
]
S−2p
σ

(
1 +

ν

r

)−2p

, (2.20)

now (2.14) follows on using (2.16), (2.17), (2.19) and (2.20) in (2.18).

Corollary 1
The Bayes estimator of λ when p=1 is given by

λ̂ =

{
λ̂o + (1− η̂)(λ̂M − λ̂o)

+, µo <
νSσ

r ,

λ̂o, µo ≥ νSσ

r ,

where λ̂o =
(r+ν)

(Sσ+νo)
, λ̂M = r

Sσ
and (aM − ao)

+ =

{
aM − ao, aM > ao,

0, otherwise.

Corollary 2
The posterior variance of λ when p=1 is given by

Vπ̂∗(λ) =


(r + ν)

{
η̂(Sσ + µo)

−2 + (1− η̂)(1 + v
r )

−2S−2
σ

+η̂(1− η̂)(r + ν)
[
(Sσ + µo)

−1 − (1 + v
r )

−1S−1
σ

]2}
, µo <

νSσ

r ,

(r + ν)(Sσ + µo)
−2, µo ≥ νSσ

r .

(2.21)

Now in the following Theorem, we obtain the ML-II estimator and posterior variance of the hazard rate function,
as follows

Theorem 2
The ML-II estimator of the hazard rate function h(t) is given by

ĥ(t) =

{
ĥo(t) + (1− η̂)(ĥM (t)− ĥo(t))

+, µo <
νSσ

r ,

ĥo(t), µo ≥ νSσ

r ,
(2.22)

where ĥo(t) =
(r+ν)

σ(1+e−t/σ)(Sσ+µo)
and ĥM (t) = r

σ(1+e−t/σ)Sσ
.
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Proof
It follows from the fact that

ĥ(t) = Eπ̂∗(h(t))

=
1

σ(1 + e−t/σ)
Eπ̂∗(λ)

=
1

σ(1 + e−t/σ)

{
η̂Eg∗o (λ) + (1− η̂)Eĝ∗(λ)

}
. (2.23)

Upon using (2.16) and (2.17) with p = 1 in (2.23), we get (2.22).

Theorem 3
The posterior variance of the hazard rate function h(t) is given by

Vπ̂∗(h(t)) =



(r+ν)
σ2(1+e−t/σ)2

{
η̂(Sσ + µo)

−2 + (1− η̂)(1 + v
r )

−2S−2
σ

+η̂(1− η̂)(r + ν)
[
(Sσ + µo)

−1 − (1 + v
r )

−1S−1
σ

]2}
, µo <

νSσ

r ,

(r+ν)
σ2(1+e−t/σ)2

(Sσ + µo)
−2, µo ≥ νSσ

r .

(2.24)

Proof
Using (1.3), we have

Vπ̂∗(h(t)) = Vπ̂∗

(
λ

σ(1 + e−t/σ)

)
=

1

σ2(1 + e−t/σ)2
Vπ̂∗(λ). (2.25)

Now, applying (2.21) in (2.25), we get (2.24).

In Theorem 4 and Theorem 5, we will obtain the ML-II estimator and the posterior variance of the reliability
function R(t), respectively.

Theorem 4
The ML-II estimator of the reliability function R(t) is given by

R̂(t) =

{
R̂o(t) + (1− η̂)(R̂M (t)− R̂o(t))

+, µo <
νSσ

r ,

R̂o(t), µo ≥ νSσ

r ,

where R̂o(t) =
[
1 +

ln((1+et/σ)/2)
(Sσ+µo)

]−(r+ν)

and R̂M (t) =

[
1 +

r ln((1+et/σ)/2)
Sσ(r+ν)

]−(r+ν)

.

Proof
Proceeding in a similar manner as in Theorem 2, we get

R̂(t) = Eπ̂∗(R(t))

= η̂Eg∗o (R(t)) + (1− η̂)Eĝ∗(R(t)).

Let us denote R̂o(t) = Eg∗o (R(t)) and R̂M (t) = Eĝ∗(R(t)), then the above expression can be written as

R̂(t) = η̂R̂o(t) + (1− η̂)R̂M (t). (2.26)
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Upon solving

R̂o(t) =
(Sσ + µo)

(r+ν)

Γ(r + ν)

∫ ∞

0

λr+ν−1 exp
[
−λ
{
ln((1 + et/σ)/2) + Sσ + µo

}]
dλ

=

[
1 +

ln((1 + et/σ)/2)

(Sσ + µo)

]−(r+ν)

(2.27)

and similarly,

R̂M (t) =

[
1 +

r ln((1 + et/σ)/2)

Sσ(r + ν)

]−(r+ν)

, (2.28)

on using (2.27) and (2.28) in (2.26) yield the required result.

Theorem 5
The posterior variance of the reliability function R(t) is given by

Vπ̂∗(R(t)) =


η̂
[
R̂2
o(t)− (R̂o(t))

2
]
+ (1− η̂)

[
R̂2
M (t)− (R̂M (t))2

]
+η̂(1− η̂)

[
R̂o(t)− R̂M (t)

]2
, µo <

νSσ

r ,

R̂2
o(t)− (R̂o(t))

2, µo ≥ νSσ

r ,

(2.29)

where R̂2
o(t) =

[
1 + 2 ln((1+et/σ)/2)

(Sσ+µo)

]−(r+ν)

and R̂2
M (t) =

[
1 + 2r ln((1+et/σ)/2)

Sσ(r+ν)

]−(r+ν)

.

Proof
Let us denote R̂2

o(t) = Eg∗o (R
2(t)) and R̂2

M (t) = Eĝ∗(R
2(t)). By using (2.27) and (2.28) and proceeding in a

similar manner as in the second part of Theorem 1, we get (2.29).

2.2. Under LINEX

Let us now derive the ML-II estimators of λ, hazard-rate and reliability function under LINEX loss function. The
expression for the LINEX loss function is given by

L(∆) = [exp(a∆)− a∆− 1] , a ̸= 0, (2.30)

where ∆ = λ̂− λ. For a = 1, the function is quite asymmetric with overestimation being more serious than
underestimation. When a < 0, (2.30) behaves almost exponential when ∆ < 0 and almost linear when ∆ > 0.
For small values of |a|, the function is almost symmetric and close to SELF, viz.,

L(∆) =
a2∆2

2
.

Under the LINEX loss function (2.30), he ML-II estimator λ is given by

λ̃ = −1

a
lnEπ̂∗ [exp(−aλ)] . (2.31)

Theorem 6
The ML-II estimator of λ is given by

λ̃ =

− 1
a

{
ln τ̃o + ln

[
1 + (1− η̂)

(
τ̃M−τ̃o
τ̃o

)]}
, µo <

νSσ

r ,

− 1
a ln τ̃o, µo ≥ νSσ

r ,
(2.32)

where τ̃o =
[
1 + a

(Sσ+µo)

]−(r+ν)

and τ̃M =
[
1 + ar

Sσ(ν+r)

]−(r+ν)

.
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Proof
Using (2.31),

λ̃ = −1

a
ln
[
η̂Eg∗o [exp(−aλ)] + (1− η̂)Eĝ∗ [exp(−aλ)]

]
. (2.33)

Let us denote τ̃o = Eg∗o [exp(−aλ)] and τ̃M = Eĝ∗ [exp(−aλ)], then the above expression can be rewritten as

λ̃ = −1

a
ln [η̂τ̃o + (1− η̂)τ̃M ] , (2.34)

where

τ̃o =
(Sσ + µo)

(r+ν)

Γ(r + ν)

∫ ∞

0

λr+ν−1 exp [−λ (Sσ + µo + a)] dλ

=

[
1 +

a

(Sσ + µo)

]−(r+ν)

. (2.35)

Similarly,

τ̃M =

{
1 +

ar

Sσ(ν + r)

}−(r+ν)

. (2.36)

Upon rewriting (2.34) with (2.35) and (2.36) yield (2.32).

The expectation of the LINEX loss function for λ̃ with respect to ML-II posterior distribution of λ is

aEπ̂∗(λ− λ̃) = a
[
Eπ̂∗(λ)− λ̃

]
=

{
a
[
λ̂o + (1− η̂)(λ̂M − λ̂o)

+ − λ̃
]
, µo <

νSσ

r ,

a
[
λ̂o − λ̃

]
, µo ≥ νSσ

r .
(2.37)

Next we obtain the ML-II estimator of hazard rate function h(t) respectively. Proceeding in a similar manner as
in Theorem 6 and denoting ϕ̃o(t) = Eg∗o [exp(−ah(t))] and ϕ̃M (t) = Eĝ∗ [exp(−ah(t))], the expressions for ML-II
estimator of h(t) under LINEX can be derived as follows.

Theorem 7
The ML-II estimator of the hazard rate function h(t) is given by

h̃(t) =

− 1
a

{
ln ϕ̃o(t) + ln

[
1 + (1− η̂)

(
ϕ̃M (t)−ϕ̃o(t)

ϕ̃o(t)

)]}
, µo <

νSσ

r ,

− 1
a lnϕo(t), µo ≥ νSσ

r ,
(2.38)

where ϕ̃o(t) =
[
1 + a

σ(1+e−t/σ)(Sσ+µo)

]−(r+ν)

and ϕ̃M (t) =
[
1 + ar

σSσ(ν+r)(1+e−t/σ)

]−(r+ν)

.

The expectation of the LINEX loss function for h̃(t) is obtained as

aEπ̂∗(h(t)− h̃(t)) = a
[
Eπ̂∗(h(t))− h̃(t)

]
=

a
[
ĥo(t) + (1− η̂)(ĥM (t)− ĥo(t))

+ − h̃(t)
]
, µo <

νSσ

r ,

a
[
ĥo(t)− h̃(t)

]
, µo ≥ νSσ

r .

In order to derive the ML-II estimator of the reliability function R(t), let us denote ψ̃o(t) = Eg∗o [exp(−aR(t))]
and ψ̃M (t) = Eĝ∗ [exp(−aR(t))], then the expressions for ML-II estimator of R(t) under LINEX can be derived
as follows.
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Theorem 8
The ML-II estimator of the reliability function R(t) under LINEX is given by

R̃(t) =

− 1
a

{
ln ψ̃o(t) + ln

[
1 + (1− η̂)

(
ψ̃M (t)−ψ̃o(t)

ψ̃o(t)

)]}
, µo <

νSσ

r ,

− 1
a ln ψ̃o(t), µo ≥ νSσ

r ,

where

ψ̃o(t) =
∞∑
k=0

(−a)k
k!

[
1 + k ln((1+et/σ)/2)

(Sσ+µo)

]−(r+ν)

and ψ̃M (t) =
∞∑
k=0

(−a)k
k!

[
1 + kr ln((1+et/σ)/2)

Sσ(r+ν)

]−(r+ν)

.

Further, the posterior expectation for the LINEX loss function of R̃(t) is given by

aEπ̂∗(R(t)− R̃(t)) = a
[
Eπ̂∗(R(t))− R̃(t)

]
(2.39)

=

a
[
R̂o(t) + (1− η̂)(R̂M (t)− R̂o(t))

+ − R̃(t)
]
, µo <

νSσ

r ,

a
[
R̂o(t)− R̃(t)

]
, µo ≥ νSσ

r .
(2.40)

3. Robust Bayesian analysis under Type II censoring with unknown shape and scale parameters

In this section we assume that both the parameters of the generalized half logistic distribution are unknown. We
assume the following prior distribution to carry out the robust Bayesian analysis for the generalized half logistic
distribution by assuming independent priors for both the parameters.

Γ = {π(σ, λ) : π(σ, λ) = (1− ϵ)qo + ϵq} , (3.1)

where qo = go (λ | µo)P (σ) and q = g (λ | µ)P (σ) with go and g as defined in (2.3) and (2.4), respectively. The
density of P (σ), the prior for the scale parameter σ, is assumed to be inverted gamma

P (σ) =
βα

Γ(α)σα+1
exp (−β/σ) , β > 0, α > 0. (3.2)

The predictive density corresponding to the prior π(σ, λ) comes out to be

m(x
¯
| π) = (1− ϵ)m(x

¯
| qo) + ϵm(x

¯
| q), 0 < λ <∞, (3.3)

where

m(x
¯
| q) =

∫ ∞

σ=0

∫ ∞

λ=0

l (λ, σ | x
¯
) g (λ | µ)P (σ)dλdσ

=
n!

(n− r)!

Γ(r + ν)

Γ(ν)

µνβα

Γ(α)

∫ ∞

0

σ−α−r−1 exp(−β/σ)
(Sσ + µ)r+ν

(
r∏
i=1

1

1 + e−x(i)/σ

)
dσ. (3.4)

In order to obtain, the ML-II Bayes estimate of λ and σ under Type II censoring, we need their marginal posterior
under the base prior qo and the generic prior q. But, in the present situation it is not possible to get explicit
expressions for them. We, therefore, apply Gibbs sampler to get the samples from the marginal distributions of
these parameters. For this the full conditionals of λ given σ is given by

π̂∗(λ | σ) = η̂g∗o(λ | σ) + (1− η̂)ĝ∗(λ | σ), 0 < λ <∞. (3.5)

Similarly, by combining the likelihood (2.1) with the prior (3.2), we get the conditional posterior density of
z∗ (σ | λ) as

z∗ (σ | λ) ∝ σ−α−r−1 exp (−λSσ − β/σ)

(
r∏
i=1

1

1 + e−x(i)/σ

)
. (3.6)
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4. Robust Bayesian analysis under the sampling scheme of Bartholomew with known scale parameter

Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the failure times of n items under test from (1.3). Then test begins at time
X(0) = 0 and the system operates till X(1) = x1 when the first failure occurs. The failed item is replaced by a new
one and the system operates till the second failure occurs at timeX(2) = x2 and so on. The experiment is terminated
at time to. Here, X(i) is the time until ith failure measured from time 0.

Lemma 1
If N(to) be the number of failures during the interval [0, to], then

P [N(to) = r | to] =
[
nλ ln((1 + eto/σ)/2)

]r
r!

exp
[
−nλ ln((1 + eto/σ)/2)

]
, (4.1)

Let us consider for the prior density, the same ϵ-contamination class of prior distribution as in Section 2. Then
the predictive density corresponding to the prior g(λ | µ) in the sampling scheme of Bartholomew is given by

m(x
¯
| g) =

∫ ∞

0

P [N(to) = r | to] g(λ | µ)dλ. (4.2)

Using (4.1) and (2.4), we obtain from (4.2) that

m(x
¯
| g) =

(
r + ν − 1

r

)[
µ

n ln((1 + eto/σ)/2)

]ν [
1 +

µ

n ln((1 + eto/σ)/2)

]−(r+ν)

. (4.3)

The predictive density corresponding to the base prior is obtained from (4.3) when µ = µo. Now, as earlier, in
the sampling scheme of Bartholomew the predictive density corresponding to the generic prior π ∈ Γ is given by
(2.7).

As we have already discussed here also we choose the value of the unknown hyper parameter µ in a data
dependent fashion by maximizing the predictive density m(x

¯
| π) over the class of all prior π ∈ Γ. Since go is

fixed, we have

sup
π∈Γ

m(x
¯
| π) = (1− ϵ)m(x

¯
| go) + ϵ sup

g∈G
m(x

¯
| g) (4.4)

and m(x
¯
| g) is maximized when we replace µ by its maximum likelihood estimator (MLE), which is given by

µ̂ = max

{
µo,

νn ln
(
(1 + eto/σ)/2

)
r

}
(4.5)

in g(λ | µ). Then we have

g(λ | µ̂) =


λν−1

Γ(ν)

(
νn ln((1+eto/σ)/2)

r

)ν
exp

(
−νn ln((1+eto/σ)/2)

r λ
)
= ĝ, µo <

νn ln((1+eto/σ)/2)
r ,

g(λ | µo) = go, µo ≥
νn ln((1+eto/σ)/2)

r .

Thus, the ML-II prior density is given by

π̂(λ) = (1− ϵ)go(λ | µo) + ϵĝ(λ | µ̂).

From Berger and Berliner (1983), the ML-II posterior of λ is obtained as

π̂∗(λ) = η̂g∗o(λ) + (1− η̂)ĝ∗(λ), (4.6)
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where for µo ≥
νn ln((1+eto/σ)/2)

r

g∗o(λ) =
P [N(to) = r | to] go(λ | µo)∫∞

0
P [N(to) = r | to] go(λ | µo)dλ

=

[
µo + n ln((1 + eto/σ)/2)

]r+ν
Γ(r + ν)

λr+ν−1 exp
[
−λ
(
µo + n ln

(
(1 + eto/σ)/2

))]
. (4.7)

Similarly, we get

ĝ∗(λ) =


λr+ν−1

Γ(r+ν)

(
1 + ν

r

)r+ν [
n ln

(
(1 + eto/σ)/2

)]r+ν
· exp

[
−λn ln((1 + eto/σ)/2)(1 + ν

r )
]
, µo <

νn ln((1+eto/σ)/2)
r ,

g∗o(λ), µo ≥
νn ln((1+eto/σ)/2)

r

and

η̂ =
(1− ϵ)m(x

¯
| go)

(1− ϵ)m(x
¯
| go) + ϵm(x

¯
| ĝ)

=


[
1 + ϵ

(1−ϵ)
ννrr

[n ln((1+eto/σ)/2)]
r
µν
o

[n ln((1+eto/σ)/2)+µo]
r+ν

(r+ν)(r+ν)

]−1

, µo <
νn ln((1+eto/σ)/2)

r ,

(1− ϵ), µo ≥
νn ln((1+eto/σ)/2)

r .

(4.8)

4.1. Under SELF

Now we state without proofs some results concerning point estimators under the sampling scheme of Bartholomew.
The proofs are on similar lines as in Type II censoring case.

Theorem 9
The ML-II posterior mean and variance of λp under SELF are given, respectively by

Eπ̂∗(λp) =


Γ(r+ν+p)

(r+ν)

{
η̂
[
n ln((1 + eto/σ)/2) + µo

]−p
+ (1− η̂)

·(1 + v
r )

−p [n ln((1 + eto/σ)/2)
]−p }

, µo <
νn ln((1+eto/σ)/2)

r ,

Γ(r+ν+p)
(r+ν)

[
n ln((1 + eto/σ)/2) + µo

]−p
, µo ≥

νn ln((1+eto/σ)/2)
r

and

Vπ̂∗(λp) =



{
Γ(r+ν+2p)

(r+ν) −
(

Γ(r+ν+p)
(r+ν)

)2}{
η̂
[
n ln((1 + eto/σ)/2) + µo

]−2p

+(1− η̂) ·
(
1 + v

r

)−2p [
n ln

(
(1 + eto/σ)/2

)]−2p
}

+η̂(1− η̂)
(

Γ(r+ν+p)
(r+ν)

)2{[
n ln((1 + eto/σ)/2) + µo

]−p
−(1 + v

r )
−p [n ln ((1 + eto/σ)/2

)]−p }2

, µo <
νnln((1+eto )/2)

r ,{
Γ(r+ν+2p)

(r+ν) −
(

Γ(r+ν+p)
(r+ν)

)2}
[n ln

(
(1 + eto/σ)/2

)
+ µo]

−2p, µo ≥
νn ln((1+eto/σ)/2)

r .

Theorem 10
The ML-II estimator of the hazard rate function h(t) under SELF is given by

ĥ(t) =

ĥo(t) + (1− η̂)(ĥM (t)− ĥo(t))
+, µo <

νn ln((1+eto/σ)/2)
r ,

ĥo(t), µo ≥
νn ln((1+eto/σ)/2)

r ,
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where ĥo(t) =
(r+ν)

σ(1+e−t/σ)[n ln((1+eto/σ)/2)+µo]
and ĥM (t) = r

σ(1+e−t/σ)[n ln((1+eto/σ)/2)]
.

Theorem 11
The posterior variance of the hazard rate function h(t) under SELF is given by

Vπ̂∗(h(t)) =



(r+ν)

σ2(1+e−t/σ)
2

{
η̂
[
n ln

(
(1 + eto/σ)/2

)
+ µo

]−2
+ (1− η̂)

·
(
1 + v

r

)−2 [
n ln

(
(1 + eto/σ)/2

)]−2
+ η̂(1− η̂)(r + ν)

·
[[
n ln

(
(1 + eto/σ)/2

)
+ µo

]−1

−
(
1 + v

r

)−1 [
n ln

(
(1 + eto/σ)/2

)]−1
]2}

, µo <
νn ln((1+eto/σ)/2)

r ,

(r+ν)

(1+e−t/σ)
2

[
n ln

(
(1 + eto/σ)/2

)
+ µo

]−2
, µo ≥

νn ln((1+eto/σ)/2)
r .

Theorem 12
The ML-II estimator of the reliability function R(t) under SELF is given by

R̂(t) =

R̂o(t) + (1− η̂)(R̂M (t)− R̂o(t))
+, µo <

νn ln((1+eto/σ)/2)
r ,

R̂o(t), µo ≥
νn ln((1+eto/σ)/2)

r ,

where R̂o(t) =
[
1 +

ln((1+et/σ)/2)
[n ln((1+eto/σ)/2)+µo]

]−(r+ν)

and R̂M (t) =

[
1 +

r ln((1+et/σ)/2)
[n ln((1+eto )/2)](r+ν)

]−(r+ν)

.

Theorem 13
The posterior variance of the reliability function R(t) under SELF is given by

Vπ̂∗(R(t)) =


η̂
[
R̂2
o(t)− (R̂o(t))

2
]
+ (1− η̂)

[
R̂2
M (t)− (R̂M (t))2

]
+η̂(1− η̂)

[
R̂o(t)− R̂M (t)

]2
, µo <

νn ln((1+eto/σ)/2)
r ,

R̂2
o(t)− (R̂o(t))

2, µo ≥
νn ln((1+eto/σ)/2)

r ,

where R̂2
o(t) =

[
1 +

2 ln((1+et/σ)/2)
[n ln((1+eto/σ)/2)+µo]

]−(r+ν)

and R̂2
M (t) =

[
1 +

2r ln((1+et/σ)/2)
[n ln((1+eto/σ)/2)](r+ν)

]−(r+ν)

.

4.2. Under LINEX

Theorem 14
The ML-II estimator of λ under LINEX is given by

λ̃ =

− 1
a

{
ln τ̃o + ln

[
1 + (1− η̂)

(
τ̃M−τ̃o
τ̃o

)]}
, µo <

νn ln((1+eto/σ)/2)
r ,

− 1
a ln τ̃o, µo ≥

νn ln((1+eto/σ)/2)
r ,

where τ̃o =
[
1 + a

[n ln((1+eto/σ)/2)+µo]

]−(r+ν)

and τ̃M =

[
1 + ar

[n ln((1+eto/σ)/2)](ν+r)

]−(r+ν)

.

Theorem 15
The ML-II estimator of the hazard rate function h(t) under LINEX is given by

h̃(t) =

− 1
a

{
ln ϕ̃o(t) + ln

[
1 + (1− η̂)

(
ϕ̃M (t)−ϕ̃o(t)

ϕ̃o(t)

)]}
, µo <

νn ln((1+eto/σ)/2)
r ,

− 1
a ln ϕ̃o(t), µo ≥

νn ln((1+eto/σ)/2)
r ,
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where

ϕ̃o(t) =

[
1 + a

σ(1+e−t/σ)
[
n ln((1+eto )/2)+µo

]]−(r+ν)

and ϕ̃M (t) =

[
1 + ar

σ[n ln((1+eto/σ)/2)](ν+r)(1+e−t/σ)

]−(r+ν)

.

Theorem 16
The ML-II estimator of the reliability function R(t) under LINEX is given by

R̃(t) =

− 1
a

{
ln ψ̃o(t) + ln

[
1 + (1− η̂)

(
ψ̃M (t)−ψ̃o(t)

ψ̃o(t)

)]}
, µo <

νn ln((1+eto/σ)/2)
r ,

− 1
a ln ψ̃o(t), µo ≥

νn ln((1+eto/σ)/2)
r ,

where ψ̃o(t) =
∞∑
k=0

(−a)k
k!

[
1 +

k ln((1+et/σ)/2)
[n ln((1+eto/σ)/2)+µo]

]−(r+ν)

and ψ̃M (t) =
∞∑
k=0

(−a)k
k!

[
1 +

kr ln((1+et/σ)/2)
[n ln((1+eto/σ)/2)](r+ν)

]−(r+ν)

.

5. Robust Bayesian analysis under the sampling scheme of Bartholomew censoring with unknown shape
and scale parameters

Under the same set up as in Section 3, the predictive density corresponding to the prior π(σ, λ) under the sampling
scheme of Bartholomew comes out to be

m(x
¯
| π) = (1− ϵ)m(x

¯
| qo) + ϵm(x

¯
| q), 0 < λ <∞, (5.1)

where

m(x
¯
| q) =

∫ ∞

σ=0

∫ ∞

λ=0

P [N(to) = r | to] g (λ | µ)P (σ)dλdσ

=
Γ(r + ν)

Γ(ν)r!

µνβα

Γ(α)

∫ ∞

0

[
n ln

(
(1 + eto/σ)/2

)]r
σ−α−1 exp(−β/σ)[

n ln
(
(1 + eto/σ)/2

)
+ µ
]r+ν dσ. (5.2)

Again, to obtain, the ML-II Bayes estimate of λ and σ under the sampling scheme of Bartholomew, we need their
marginal posterior under the base prior qo and the generic prior q. But, it is not possible to get explicit expressions
for them. We, therefore, apply Gibbs sampler to get the samples from the marginal distributions of these parameters.
For this the full conditionals of λ given σ is given by

π̂∗(λ | σ) = η̂g∗o(λ | σ) + (1− η̂)ĝ∗(λ | σ), 0 < λ <∞. (5.3)

Similarly, by combining the likelihood (2.1) with the prior (3.2), we get the conditional posterior density of
z∗ (σ | λ) as

z∗
(
σ | λ

)
∝ σ−α−1 exp

[
− β/σ − λn ln

(
(1 + eto/σ)/2

)][
nλ ln

(
(1 + eto/σ)/2

)]r
. (5.4)

6. Simulation study

6.1. When scale parameter is known

In order to obtain the ML-II Bayes estimates of λ under Type II censoring, we have generated 1000 samples
using Monte Carlo simulation method, each of size 50 from GHLD with λ = 2 and σ = 1.2. For each sample we
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arranged the data in ascending order and considered a sample of first 25 and 30 observations, respectively. We
have considered the values of the hyper-parameters of the base prior to be (µo = 0.5, ν = 4) and (µo = 1.5, ν = 4)
and obtained the ML-II Bayes estimates of λ under SELF and LINEX loss functions. We used the software R
(www.r-project.org) for the computations of functions in the various expressions.

For various values of ϵ the average ML-II posterior mean, posterior risk and average ML-II posterior variance
under SELF and LINEX for λ by considering Type II censoring for r = 25 and 30 is presented in Table 1.

Table 1. Average ML-II posterior mean (posterior risk) under SELF and LINEX (a = 0.01) of λ.

SELF LINEX

r ↓ ϵ ↓ µo → 0.5 1.5 0.5 1.5

25

0.0 2.3441(0.2211) 2.1452 (0.16) 2.3431(1.1e-05) 2.1446 (8e-06)

0.1971 0.1642

0.2 2.1824 (0.2297) 2.1306 (0.1669) 2.1815 (1.1e-05) 2.13 (8e-06)

0.184 0.1632

0.4 2.1449 (0.2159) 2.1177 (0.1725) 2.1441 (1.1e-05) 2.117 (9e-06)

0.1735 0.1617

0.6 2.1272 (0.207) 2.1059 (0.1771) 2.1263 (1e-05) 2.1053 (9e-06)

0.1673 0.1601

0.8 2.1166 (0.2009) 2.0952 (0.181) 2.1158 (1e-05) 2.0946 (9e-06)

0.1632 0.1582

1 2.1096 (0.1966) 2.0853 (0.1843) 2.1088 (1e-05) 2.0847 (9e-06)

0.1602 0.1563

30

0.0 2.2639 (0.1542) 2.1267 (0.1301) 2.2631 (8e-06) 2.1262 (7e-06)

0.1553 0.1369

0.2 2.1258 (0.1584) 2.1143 (0.135) 2.125 (8e-06) 2.1137 (7e-06)

0.1456 0.1361

0.4 2.0957 (0.1498) 2.1031 (0.1391) 2.095 (7e-06) 2.1025 (7e-06)

0.1384 0.135

0.6 2.0819 (0.1446) 2.0928 (0.1425) 2.0812 (7e-06) 2.0923 (7e-06)

0.1343 0.1338

0.8 2.0738 (0.1411) 2.0834 (0.1454) 2.0732 (7e-06) 2.0829 (7e-06)

0.1317 0.1324

1 2.0686 (0.1387) 2.0747 (0.1479) 2.0679 (7e-06) 2.0742 (7e-06)

0.1299 0.131

Note: The second row represents the average ML-II posterior variance.

To investigate R(t) and h(t) under Type II censoring, we have generated 1000 samples using Monte Carlo
simulation method, each of size 50 from GHLD with λ = 2 and σ = 1. For r = 25, we obtained the ML-II Bayes
estimates of R(t) and h(t) under SELF and LINEX loss functions, with the same values of the hyper-parameters
as considered earlier.

In Table 2, R(t), the average ML-II posterior mean and average variance for different values of t, uo and ϵ under
SELF and Type II censoring are presented and in Table 3, h(t), the average ML-II posterior mean and average
ML-II posterior variance for different values of t, uo and ϵ under SELF and Type II censoring are presented. Also
the average ML-II posterior mean for different values of t under LINEX by considering Type II censoring for R(t)
and h(t) are presented in Table 4 and Table 5.
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Table 2. Average ML-II posterior mean and average variance under SELF for R(t).

ϵ → 0 0.2 0.4 0.6 0.8 1

t R(t) µo ↓

0.1 0.90258 0.5 0.8881 0.8955 0.8971 0.8979 0.8984 0.8987

4.00E-04 4.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04

1.5 0.8967 0.8974 0.898 0.8986 0.8991 0.8995

3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04

0.5 0.57015 0.5 0.5271 0.5515 0.5568 0.5592 0.5607 0.5616

0.0038 0.0038 0.0037 0.0036 0.0035 0.0035

1.5 0.5555 0.5579 0.5601 0.562 0.5638 0.5654

0.0036 0.0036 0.0036 0.0035 0.0035 0.0035

0.9 0.3342 0.5 0.2973 0.3245 0.3301 0.3326 0.3341 0.335

0.0042 0.0046 0.0045 0.0044 0.0044 0.0044

1.5 0.3212 0.324 0.3265 0.3287 0.3307 0.3326

0.0044 0.0044 0.0044 0.0044 0.0044 0.0044

1.5 0.13312 0.5 0.1153 0.1351 0.1389 0.1405 0.1415 0.1421

0.0021 0.0026 0.0026 0.0026 0.0026 0.0025

1.5 0.1334 0.1357 0.1377 0.1395 0.1411 0.1426

0.0024 0.0025 0.0025 0.0025 0.0026 0.0026

Note: The first row represents the average ML-II posterior mean and second row represents the average variance.

Table 3. Average ML-II posterior mean and average variance under SELF for h(t).

ϵ → 0 0.2 0.4 0.6 0.8 1

t h(t) µo ↓

0.1 1.04996 0.5 1.212 1.1266 1.1075 1.0986 1.0933 1.0899

0.0525 0.0489 0.046 0.0444 0.0434 0.0426

1.5 1.1157 1.1078 1.1007 1.0943 1.0884 1.083

0.0443 0.044 0.0436 0.0431 0.0426 0.0421

0.5 1.24492 0.5 1.4516 1.3507 1.3276 1.3166 1.3102 1.3059

0.0753 0.0702 0.0662 0.0638 0.0623 0.0612

1.5 1.3407 1.3317 1.3237 1.3164 1.3097 1.3036

0.0642 0.0638 0.0632 0.0626 0.0619 0.0611

0.9 1.4219 0.5 1.6348 1.5194 1.4937 1.4817 1.4746 1.47

0.0957 0.089 0.0839 0.081 0.079 0.0777

1.5 1.5119 1.5013 1.4918 1.4832 1.4753 1.4681

0.0815 0.0809 0.0802 0.0793 0.0784 0.0774

1.5 1.63515 0.5 1.8889 1.7563 1.7266 1.7126 1.7043 1.6989

0.128 0.1192 0.1124 0.1084 0.1058 0.1039

1.5 1.7574 1.7455 1.735 1.7254 1.7167 1.7087

0.1103 0.1096 0.1087 0.1076 0.1064 0.1051

Note: The first row represents the average ML-II posterior mean and second row represents the average variance.
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Table 4. Average ML-II posterior mean under LINEX loss function for R(t) for a = 0.01.

t 0.1 0.5 0.9 1.5
R(t) 0.90258 0.57015 0.3342 0.13312
µo → 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5
ϵ ↓
0 0.8891 0.8971 0.5306 0.5514 0.2977 0.3233 0.1178 0.1307

0.2 0.8965 0.8978 0.5551 0.5537 0.325 0.3261 0.1381 0.1329
0.4 0.8982 0.8984 0.5603 0.5558 0.3305 0.3286 0.1419 0.1348
0.6 0.8989 0.8989 0.5628 0.5577 0.3331 0.3309 0.1436 0.1366
0.8 0.8994 0.8994 0.5642 0.5593 0.3345 0.3329 0.1445 0.1381
1 0.8997 0.8999 0.5651 0.5609 0.3355 0.3348 0.1451 0.1396

Table 5. Average ML-II posterior mean under LINEX loss function for h(t) for a = 0.01.

t 0.1 0.5 0.9 1.5
h(t) 1.04996 1.24492 1.4219 1.63515

µo → 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5
ϵ ↓
0 1.2028 1.1158 1.4475 1.3298 1.6413 1.5107 1.8793 1.738

0.2 1.1174 1.1079 1.3468 1.3207 1.526 1.5 1.7467 1.7256
0.4 1.0986 1.1009 1.3239 1.3126 1.5002 1.4905 1.7173 1.7147
0.6 1.0898 1.0945 1.313 1.3052 1.4881 1.4819 1.7035 1.705
0.8 1.0847 1.0887 1.3066 1.2985 1.481 1.474 1.6954 1.6961
1 1.0813 1.0834 1.3024 1.2923 1.4763 1.4668 1.6901 1.6879

Table 6. Average ML-II posterior mean (posterior risk) under SELF and LINEX (a = 0.01) of λ.

SELF LINEX
to ↓ ϵ ↓ µo → 0.5 1.5 0.5 1.5

0.3

0.0 2.4076 (0.2456) 2.1356 (0.1947) 2.4059 (1.2e-05) 2.1345 (1e-05)
0.3372 0.2624

0.2 2.1043 (0.3303) 2.1006 (0.2218) 2.1029 (1.6e-05) 2.0995 (1.1e-05)
0.2932 0.2591

0.4 2.0429 (0.3113) 2.0725 (0.2406) 2.0416 (1.6e-05) 2.0714 (1.2e-05)
0.2641 0.2535

0.6 2.0143 (0.2986) 2.0485 (0.2549) 2.013 (1.5e-05) 2.0475 (1.3e-05)
0.248 0.247

0.8 1.9975 (0.2901) 2.0275 (0.2663) 1.9963 (1.4e-05) 2.0265 (1.3e-05)
0.2377 0.24

1 1.9864 (0.284) 2.0086 (0.2756) 1.9853 (1.4e-05) 2.0076 (1.4e-05)
0.2305 0.2329

0.5

0.0 2.2658 (0.1712) 2.0847 (0.1502) 2.2649 (9e-06) 2.0839 (8e-06)
0.1889 0.1604

0.2 2.0836 (0.2054) 2.0642 (0.1626) 2.0827 (1e-05) 2.0635 (8e-06)
0.1718 0.159

0.4 2.0479 (0.1974) 2.0471 (0.1717) 2.0471 (1e-05) 2.0464 (9e-06)
0.1612 0.1569

0.6 2.0317 (0.1923) 2.0323 (0.1787) 2.0309 (1e-05) 2.0316 (9e-06)
0.1556 0.1544

0.8 2.0224 (0.1889) 2.0191 (0.1843) 2.0217 (9e-06) 2.0184 (9e-06)
0.1521 0.1517

1 2.0164 (0.1865) 2.0072 (0.1889) 2.0156 (9e-06) 2.0065 (9e-06)
0.1498 0.1489

Note: The second row represents the average ML-II posterior variance.
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In order to see the performance of estimators under the sampling scheme of Bartholomew, we generated 1000
samples each of size 50 from GHLD with λ = 2 and σ = 1.2. For each sample by fixing the time to = 0.3 and
to = 0.5, we have calculated r and then the estimates under SELF and LINEX loss functions. Since the results
were following the same trend, therefore only the ML-II Bayes estimates of λ are presented in Table 6.

6.2. When scale parameter is unknown

Algorithm
This algorithm combines the Metropolis-Hastings with the Gibbs sampling scheme under the gamma proposal
distribution.

1. Start with initial guess σ(0).

2. Set i = 1.

3. Generate λ(i) from π̂∗(λ | σ(i−1)) using (3.5).

4. Generated σ(i) from z∗ (σ | λ) using the Metropolis-Hasting algorithm with the proposal distribution q(σ) ≡
inverted gamma(α, β).

4.1. Let w = σ(i−1)

4.2. Generate prop from the proposal distribution q.

4.3. Let p(w, prop) = min
{
1, z

∗(prop|λ)q(w)
z∗(w|λ)q(prop)

}
.

4.4. Generate u from Uniform(0, 1). If u ≤ p(w, z) then accept the proposal and set σi = z; otherwise, set
σi = w.

5. Set i = i+ 1;

6. Repeat Steps 3-5, N times to obtain the posterior sample.

7. Real data study

Now we provide real data analysis to see how the model works in practice. We consider the failure log times to
breakdown of an insulating fluid testing experiment (Nelson, 1982 and see Table 8). This data has been utilized by
many authors, such as Balakrishnan and Kannan (2001), Balakrishnan et al. (2004), and Kim et al. (2011). Seo,
Kim and Kang (2013), applying Kolmogorov test, showed that the data follow GHLD.

Table 7. Failure log times to breakdown of an insulating fluid testing experiment.

0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.8718 1.9947

2.08069 2.11263 2.48989 3.45789 3.48186 3.52371 3.60305 4.28895

In order to apply Type II censoring scheme, we obtain first 12 lifetimes from the data and rest 4 observations are
considered as censored. We consider the values of the hyper parameters of the base prior to be (µo = 4, ν = 4) and
(µo = 8, ν = 4). As in this case both the shape and scale parameters are unknown, therefore we use the algorithm
given in Section 6.2.

In order to obtain ML-II Bayes estimates under SELF and LINEX loss functions, we use Gibbs sampling
technique. We observe from (2.10) and (2.11) that g∗o(λ | σ) and g∗(λ | σ) both follow gamma distribution,
therefore we obtain sample values form conditional posterior of λ using rgamma( ) function available in R.
However the conditional posterior for σ does not follow any standard distribution. We therefore use Metropolis-
Hastings algorithm to generate sample values for σ. We use inverted gamma distribution as proposal density. To
obtain sample values from the proposal density, we use inverted gamma function available in MCMCpack in R.
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We run MCMC chain with a randomly chosen value of σ and generate 50000 observations. To diminish the
effect of the starting distribution, we discard the first 10000 observations and focus on the remaining 40000. The
diagnostic plots for λ and σ for different values of ϵ and µo = 4 and µo = 8 are given in Figure 1 and 2, respectively.

Figure 1. Diagnostic plots for λ and σ for µo = 4

Figure 2. Diagnostic plots for λ and σ for µo = 8

The trace plot shows that the mean of the Markov chain is constant over the graph and is stabilized. The chain is
able to traverse the support of the target distribution, and the mixing is good. The trace plot shows that the Markov
chain appears to have reached a stationary distribution.
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Figure 3. Auto-correlation plots for λ and σ for µo = 4

Figure 4. Auto-correlation plots for λ and σ for µo = 8

Using auto-correlation plots given in Figure 3 and in Figure 4 for µo = 4 and µo = 8 we conclude that we should
pick every 50th observation. Therefore, to provide relatively independent samples for improvement of prediction
accuracy, we calculate the Bayesian MCMC estimates by the means of every sampled values after discarding the
first 10000 values from 50000.

In Figure 1, 2, 3 and 4, respectively, graph 1 and 2 are plotted for ϵ = 0.0, graph 3 and 4 are plotted for ϵ = 0.2,
graph 5 and 6 are plotted for ϵ = 0.4, graph 7 and 8 are plotted for ϵ = 0.6, graph 9 and 10 are plotted for ϵ = 0.8,
graph 11 and 12 are plotted for ϵ = 1.0.
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Table 8. ML-II posterior mean under SELF and LINEX for λ and σ.

SELF LINEX

λ̂ σ̂ λ̃ σ̃

ϵ ↓ µo → 4 8 4 8 4 8 4 8

0.0 0.91869 0.51275 1.79257 1.14045 0.91566 0.512 1.78243 1.13721

0.2 0.76429 0.50146 1.57316 1.1182 0.76268 0.50087 1.56654 1.11537

0.4 0.65742 0.48062 1.37591 1.08599 0.65632 0.48019 1.37081 1.08364

0.6 0.57724 0.46549 1.25019 1.05408 0.57646 0.46507 1.24636 1.05183

0.8 0.48223 0.44926 1.08714 1.01904 0.48166 0.44884 1.08427 1.01698

1.0 0.43215 0.42207 1.00947 1.00275 0.43166 0.42156 1.00701 1.00008

Table 9. Bayes estimates under SELF for ϵ = 0.4.

R(t) Z(t)

µo → 4 8 4 8

t ↓
1 0.75538 0.7589 0.32974 0.32732

2 0.52889 0.5329 0.39207 0.38868

4 0.23609 0.24134 0.44094 0.43129

6 0.1027 0.10766 0.45371 0.44066

8 0.04537 0.04902 0.4574 0.44297

10 0.02074 0.0231 0.45858 0.44361

15 0.00398 0.00461 0.45919 0.4439

20 0.00167 0.00182 0.45926 0.44392

8. Discussion and conclusion

From Table 1, we conclude that the posterior risk is decreasing as number of failures i.e., r is increasing. Also
from Table 1-3, it can be seen that ML-II posterior variance under SELF for λ, R(t) and h(t) is decreasing as
epsilon is increasing. From Table 1-7, it can be seen that as epsilon is increasing ML-II estimators under the two
considered base priors under SELF and LINEX loss functions by considering Type II censoring or the sampling
scheme of Bartholomew comes near i.e., for, ϵ = 0 we get the Bayes estimate under the base prior. As the value of
ϵ increases the estimator tends to include more part of the data dependent prior. All the estimates are showing that
ML-II estimator are robust with respect to the change in base. From Table 6, it can be seen that under SELF and
the sampling scheme of Bartholomew as termination time to is increasing the posterior risk and ML-II posterior
variance decreases. It is also seen from Table 6, that under LINEX loss function and the sampling scheme of
Bartholomew as termination time to is increasing the posterior risk decreases. From Table 1 and Table 6 we also
conclude that under the sampling scheme of Bartholomew posterior risk and ML-II posterior variance are higher as
compare to Type II censoring scheme. Thus we can say Type II censoring scheme provides better estimates. Also,
as the posterior risk under LINEX loss function are lesser than the posterior risk under SELF, therefore LINEX
loss function is better than SELF.
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