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Abstract The aim of this paper is to present in a concise and integrated way of the bootstrap approach to statistical testing of
hypotheses about the variance of fuzzy random variable. In this approach, first a notion of fuzzy random variables is recalled.
Then, we will consider hypothesis-tests for the (crisp-valued) variance of fuzzy data in a population. For this purpose, the
α-pessimistic values of the imprecise observations are used for defining a new notion of distance measure between fuzzy
data, which is then used to make a procedure for testing the statistical hypotheses. Based on this argument, the application
of bootstrap techniques in dealing with these testing problems will be introduced. The procedure develops a non-parametric
approach to testing statistical hypotheses based on one-sample and two-sample fuzzy data.
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1. Introduction

The bootstrap techniques contained in the literature are simple and straight-forward methods for calculating
approximated biases, standard deviations, confidence intervals, and so forth, in almost any non-parametric
estimation problem [8, 31]. As a common conclusion, we can state that bootstrap techniques are very valuable
in dealing with testing about means and variances of imprecise concepts such as fuzzy random variables, since

1. there are not stochastic models in the literature which can be really widely applicable to describe imprecise
quantities involved in practical situations,

2. most of the parameters in general asymptotic approaches could be unknown, the accuracy of bootstrap
approaches is greater than that of asymptotic ones.

On the other hand, researchers in economics, engineering, environment science, the social science, medical science,
business, management, and many other fields deal daily with the complexities of modeling uncertain data. Classical
methods are not always successful dealing with uncertain data, because the uncertainties appearing in these
domains may be of various types, such as probability theory [4], fuzzy set theory [36], intuitionistic fuzzy set
theory [2], vague set theory [10], interval mathematics [14], and other mathematical tools are well know and
often useful approaches to describing uncertainty. Therefore, in the studies proposed by Montenegro et al. [25],
González-Rodrı́guez et al. [13], and Gil et al. [11] it has been stated that the well-known bootstrap techniques are a
valuable tool in testing statistical hypotheses about the means and variances of fuzzy random variables, when these
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variables are supposed to take on a finite number of different values and these values being fuzzy subsets of the
one-dimensional Euclidean space (see also, [1, 7, 32, 37, 35]).

Therefore, the proposed paper provides the bootstrap approach to statistical testing of hypotheses about the
variance of fuzzy random variable. For this purpose, the α-pessimistic values of the imprecise observations are used
for defining the new notion of fuzzy random variables as well as a new notion of distance measure between fuzzy
data. The procedure develops a non-parametric approach to testing statistical hypotheses based on one-sample and
two-sample fuzzy data.

The paper is organized as follows: In the next section, some basic concepts of fuzzy set theory and uncertainty
theory are recalled. In this section also a new definition of distance measure between fuzzy numbers is defined. In
Section 3, a new definition of fuzzy random variable proposed by Hesamian and Chachi [15] is recalled. In Section
4, the non-parametric approach to testing statistical hypotheses based on one-sample and two-sample fuzzy data is
provided. Numerical examples are also given in this section to clarify the proposed testing method. Finally, a brief
conclusion is provided in Section 5.

2. Preliminary concepts

In this section, first, we shall review the basic definitions and terminologies of the fuzzy set theory and uncertainty
theory which are necessary for our paper (for further details, the reader is referred to [21, 22, 33, 38]). Then, a new
definition of distance measure between fuzzy numbers is defined.

A fuzzy set Ã of the universal set X is defined by its membership function Ã : X → [0, 1]. In this paper, we
consider R (the real line) as the universal set. We denote by Ã[α] = {x ∈ R : Ã(x) ≥ α} the α-level set (α-cut) of
the fuzzy set Ã of R, for every α ∈ (0, 1], and Ã[0] is the closure of the set {x ∈ R : Ã(x) > 0}. A fuzzy set Ã of R
is called a fuzzy number if for every α ∈ [0, 1], the set Ã[α] is a non-empty compact interval. We denote by F(R),
the set of all fuzzy numbers of R.

The imprecision or vagueness can be treated by means of a particular kind (family) of fuzzy numbers, the LR-
fuzzy numbers. These are very useful in practice since they can be characterized by means of three real numbers:
the center, the left spread, and the right spread. The term LR is due to the left (L) and the right (R) shape of
the membership function referred to the fuzzy set. Typically, the LR fuzzy number Ñ = (n, l, r)LR with central
value n ∈ R, left and right spreads l ∈ R+, r ∈ R+, decreasing left and right shape functions L : R+ → [0, 1],
R : R+ → [0, 1], with L(0) = R(0) = 1, has the following membership function

Ñ(x) =

{
L(n−x

l ) if x ≤ n,
R(x−n

r ) if x ≥ n.

We can easily obtain the α-cut of Ñ as follows

Ñ [α] = [n− L−1(α)l, n+R−1(α)r], α ∈ [0, 1].

A special type of LR-fuzzy numbers is the so-called triangular fuzzy numbers. The membership function and the
α-cut of triangular fuzzy number Ã = (a, l, r)T is given by

Ã(x) =


0 x < a− l,
x−a+l

l a− l ≤ x < a,
a+r−x

r a ≤ x ≤ a+ r,
0 x > a+ r.

Ã[α] = [n− l(1− α), n+ r(1− α)], α ∈ [0, 1].

For the algebraic operations of LR-fuzzy numbers, we have the following result on the basis of Zadeh’s extension
principle. Let M̃ = (m, lm, rm)LR and Ñ = (n, ln, rn)LR be two triangular fuzzy numbers and λ be a real number.
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Then

λ⊗ M̃ =

 (λm, λlm, λrm)LR if λ > 0,
I{0} if λ = 0,
(λm, |λ|rm, |λ|lm)RL if λ < 0,

M̃ ⊕ Ñ = (m+ n, lm + ln, rm + rn)LR,

where I{0} stands for the indicator function of the crisp zero.
In the following, we introduce an index to compare fuzzy number Ã ∈ F(R) and crisp value x ∈ R. The index

will be used for defining a new notion of fuzzy random variable.

Definition 1 ([23])
Let Ã ∈ F(R) and x ∈ R. The index C : F(R)×R −→ [0, 1], which is defined by

C{Ã ≤ x} =
supy≤x Ã(y) + 1− supy>x Ã(y)

2
,

shows the credibility degree that Ã is less than or equal to x. Similarly, C{Ã > x} = 1− C{Ã ≤ x} shows the
credibility degree that Ã is greater than x (see also [22]).

Definition 2
Let Ã ∈ F(R) and α ∈ [0, 1], then Ãα = inf{x ∈ Ã[0] : C{Ã ≤ x} ≥ α}, is called the α-pessimistic value of Ã. It
is clear that Ãα is a non-decreasing function of α ∈ (0, 1] (for more details, see [21, 26]).

Example 1
Suppose that Ã = (a, l, r)LR is a LR-fuzzy number, and let x ∈ R, then

C{Ã ≤ x} =

{
1
2L(

a−x
l ) if x ≤ a,

1− 1
2R(x−a

r ) if x ≥ a.

We can easily obtain the α-pessimistic values of Ã as follows

Ãα =

{
a− lL−1(2α) for 0.0 < α ≤ 0.5,
a+ rR−1(2(1− α)) for 0.5 ≤ α ≤ 1.0.

In the following, based on the notion of α-pessimistic value of fuzzy sets, a new definition of metrics between
fuzzy numbers is defined. In the literature one can find many useful metrics between fuzzy numbers and a few ones
between fuzzy values. Valuable references on this point can be found in [5].

Definition 3
The distance measure is defined as the mapping D : F(R)⊗F(R) → [0,∞) such that it associates with two fuzzy
numbers Ã, B̃ ∈ F(R) the value D(Ã, B̃) such that

D(Ã, B̃) =

∫ 1

0

(Ãα − B̃α)
2dα.

One can conclude that the mapping D : F(R)⊗F(R) → [0,∞) satisfies the following conditions

1. For any Ã, B̃ ∈ F(R), D(Ã, B̃) = 0 if and only if Ã = B̃.
2. For any Ã, B̃ ∈ F(R), D(Ã, B̃) = D(B̃, Ã).
3. For any Ã, B̃, C̃ ∈ F(R), D(Ã, C̃) ≤ D(Ã, B̃) +D(B̃, C̃).
4. For any Ã, B̃, C̃ ∈ F(R), such that Ã ⊆ B̃ ⊆ C̃, then D(Ã, C̃) ≥ max{D(Ã, B̃), D(B̃, C̃)}.
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As an example, we can easily obtain the distance between two LR-fuzzy numbers Ã = (a, l1, r1)LR and
B̃ = (b, l2, r2)LR as follows

D(Ã, B̃) = (a− b)2 +
(l1 − l2)

2

2

∫ 1

0

(
L−1(α)

)2
dα+

(r1 − r2)
2

2

∫ 1

0

(
R−1(α)

)2
dα

−(a− b)(l1 − l2)

∫ 1

0

L−1(α) dα+ (a− b)(r1 − r2)

∫ 1

0

R−1(α) dα.

For symmetric fuzzy numbers Ã = (a, l, l)L and B̃ = (b, r, r)L we have

D(Ã, B̃) = (a− b)2 + (l − r)2
∫ 1

0

(
L−1(α)

)2
dα.

3. Fuzzy random variables

In the context of random experiments whose outcomes are not numbers (or vectors in Rp) but they are expressed
in inexact terms, the concept of fuzzy random variable turns out to be useful. Random fuzzy numbers (or, more
generally, random fuzzy sets [5]) is a well-stated and supported model within the probabilistic setting for the
random mechanisms generating fuzzy data. They integrate randomness and fuzziness, so that the first one affects
the generation of experimental data, whereas the second one affects the nature of experimental data which are
assumed to be intrinsically imprecise. The notion of random fuzzy set can be formalized in several equivalent
ways. Thus, in this regard, different notions of fuzzy random variable have been introduced and investigated from
different points of view in the literature, e.g. see, [5, 6, 12, 15, 17, 18, 19, 20, 24, 27, 28, 29, 30].

Definition 4 ([15])
Suppose that a random experiment is described by a probability space (Ω,A,P), where Ω is a set of all possible
outcomes of the experiment, A is a σ-algebra of subsets of Ω and P is a probability measure on the measurable
space (Ω,A). The fuzzy-valued mapping X̃ : Ω → F(R) is called a fuzzy random variable if for any α ∈ [0, 1],
the real-valued mapping X̃α : Ω → R is a real-valued random variable on (Ω,A,P). Throughout this paper, we
assume that all random variables have the same probability space (Ω,A,P).

Remark 1
Kwakernaak [19, 20] introduced the notion of fuzzy random variables which has been later formalized in a clear
way by Kruse and Meyer [18]. In this approach, the fuzzy random variable is viewed as a fuzzy perception
(observation or report) of a classical real-valued random variable which is equivalent as: given a probability space
(Ω,A,P), a mapping X̃ : Ω → F(R) is said to be a fuzzy random variable if for all α ∈ (0, 1] the two real-valued
mappings X̃L

α : Ω → R and X̃U
α : Ω → R are real-valued random variables (see also [6, 27, 28]).

One can easily show that the following relations are also held between the definition of fuzzy random variable
proposed in this paper and Kwakernaak and Kruse’s definition (see also, Example 1)

X̃α =

{
X̃L

2α for 0.0 < α ≤ 0.5,

X̃U
2(1−α) for 0.5 ≤ α ≤ 1.0,

X̃[α] = [X̃α
2
, X̃1−α

2
], α ∈ (0, 1].

The first above relation shows that the information contained in the two-dimensional variable (X̃L
α , X̃

U
α ) is

summarized in the one-dimensional variable X̃α making the computational procedures in the problems more easier.
These relations confirms that this kind of definition of fuzzy random variables is equivalent to that of Kwakernaak
and Kruse’s definition.

Using classical techniques in Probability Theory, some aspects and results associated to a random variable were
extended to this new environment (see e.g. [6, 15, 29, 30, 37]).
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Definition 5 ([15])
Two fuzzy random variables X̃ and Ỹ are said to be independent if X̃α and Ỹα are independent, for all α ∈ [0, 1]. In
addition, we say that two fuzzy random variables X̃ and Ỹ are identically distributed if X̃α and Ỹα are identically
distributed, for all α ∈ [0, 1]. Similar arguments can be used for more than two fuzzy random variables. We also
say that X̃1, . . . , X̃n is a fuzzy random sample if X̃i’s are independent and identically distributed fuzzy random
variables. We denote by x̃1, . . . , x̃n the observed values of fuzzy random sample X̃1, . . . , X̃n.

In analyzing fuzzy data two main types of summary measures/parameters may be distinguished:

1. fuzzy-valued summary measures, like the mean value of a fuzzy random variable or the median of a fuzzy
random variable as measures for the central tendency of their distributions [3, 9, 34];

2. real-valued summary measures, like the variance of a fuzzy random variable as a measure for the mean
error/dispersion of the distributions of the fuzzy random variable, or the covariance as a measure of the
(absolute) linear dependence/association of a fuzzy random variable [6, 16, 29].

The above summary measures for the fuzzy random variable as well as some properties of them are formalized as
follows:

Definition 6
Given a probability space (Ω,A,P) and an associated fuzzy random variable X̃ : Ω → F(R) such that for any
α ∈ [0, 1], the real-valued variable X̃α : Ω → R on (Ω,A,P) has finite mean (i.e. X̃α ∈ L1(Ω,A,P)), the mean
value of X̃ is the fuzzy value Ẽ(X̃) ∈ F(R) such that for all α ∈ [0, 1]

Ẽ(X̃)α = E(X̃α) =

∫
Ω

X̃α dP.

Proposition 1
Ẽ is additive (i.e., equivariant under the sum of fuzzy random variables), that is, for fuzzy random variables X̃ and
Ỹ associated with the same probability space (Ω,A,P) and such that X̃α, Ỹα ∈ L1(Ω,A,P), we have that

Ẽ(X̃ ⊕ Ỹ ) = Ẽ(X̃)⊕ Ẽ(Ỹ ),

Ẽ(λ⊗ X̃) = λ⊗ Ẽ(X̃), λ ∈ R.

Definition 7
The variance of a fuzzy random variable X̃ is defined as

ν(X̃) = E
[
D(X̃, Ẽ(X̃))

]
= E

(∫ 1

0

(
X̃α − E(X̃α)

)2
dα

)
=

∫
Ω

∫ 1

0

(
X̃α − E(X̃α)

)2
dα dP

=

∫ 1

0

∫
Ω

(
X̃α − E(X̃α)

)2
dP dα

=

∫ 1

0

V ar(X̃α) dα.

Proposition 2
Let X̃ = (X̃1, X̃2, . . . , X̃n) be a fuzzy random sample, and S2

n(X̃) = 1
n−1

∑n
i=1 D

(
X̃i,

¯̃
X
)

be the crisp variance

value of the fuzzy sample X̃, where ¯̃
X = 1

n ⊕n
i=1 X̃i is the fuzzy sample mean value. Then S2

n(X̃) is an unbiased
estimator of the parameter ν(X̃) (population variance), i.e. E[S2

n(X̃)] = ν(X̃); and limn→∞ S2
n(X̃) = ν(X̃).
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Proof

E[S2
n] =

1

n− 1

n∑
i=1

∫ 1

0

E[X̃iα − ¯̃
Xα]

2dα

=
1

n− 1

n∑
i=1

∫ 1

0

E[X̃iα − E(X̃iα) + E(X̃iα)−
¯̃
Xα]

2 dα

=
1

n− 1

n∑
i=1

[
ν(X̃i) +

∫ 1

0

V ar(
¯̃
Xα) dα− 2

∫ 1

0

1

n
V ar(X̃iα) dα

]

=
1

n− 1

n∑
i=1

[
ν(X̃i) +

1

n
ν(X̃i)−

2

n
ν(X̃i)

]
= ν(X̃).

4. Bootstrap methods for testing hypotheses about the variance

In the following, using the general bootstrap methodology, we follow the application of the bootstrap in fuzzy
environment and propose an approach to testing hypotheses on the basis of the evidence supplied by a set of
sample fuzzy data. The treatment of the bootstrap method described here comes from Efron and Tibshirani [8] (see
also [31]). The interested reader is referred to that text for more information on the underlying theory behind the
bootstrap.

4.1. One-sample test of hypotheses

In this section we describe on way to get bootstrap hypothesis testing about the variance of fuzzy random variables
based on one-sample fuzzy data. Suppose that we have fuzzy random sample X̃ = (X̃1, X̃2, . . . , X̃n), and we want
to test the following hypotheses

H0 : the variance of population is σ2
0 ,

H1 : the variance of population is not σ2
0 .

The bootstrap is a method of Monte Carlo simulation where no parametric assumptions are made about the
underlying population that generated the random sample X̃ = (X̃1, X̃2, . . . , X̃n). Instead, we use the sample as
an estimate of the population. This estimate is called the empirical distribution Fn where each X̃i (i = 1, . . . , n)
has probability mass 1

n . Thus, each X̃i (i = 1, . . . , n) has the same likelihood of being selected in a new sample
taken from Fn. When we use Fn as our pseudo-population, then we resample with replacement from the original
sample X̃ = (X̃1, X̃2, . . . , X̃n). We denote the new sample obtained in this manner by X̃∗b = (X̃∗b

1 , X̃∗b
2 , . . . , X̃∗b

n ).
We use the notation X̃∗b (b = 1, . . . , B) for the bth bootstrap data set. These B bootstrap replicates provide us
with an estimate of the distribution of the test statistic which will be introduced later. But, we need a distribution
that estimates the population of treatment times under H0. Note first that the empirical distribution (i.e., putting
probability 1

n on each member of X̃) is not an appropriate estimate for the population distribution because it does
not obey H0. Somehow we need to obtain an estimate of the population distribution that has variance σ2

0 . A simple
way is to transfer the empirical distribution so that it has the desired variance. In other word, we use as our estimated
null distribution the empirical distribution on the values

X̃c =

(
σ0X̃1

Sn(X̃)
, . . . ,

σ0X̃n

Sn(X̃)

)
,
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because under the hypothesis H0 one can easily show that the sample variance of X̃c is σ2
0 (i.e., S2

n(X̃c) = σ2
0). In

testing the null hypothesis H0 at the nominal significance level γ ∈ [0, 1], the following test statistic is proposed

T (X̃) =
(n− 1)S2

n(X̃)

σ2
0

.

To get estimate of the distribution of the test statistic T (X̃) under null hypothesis H0, we obtain B bootstrap
samples by sampling with replacement from the original sample X̃c = (X̃c1, . . . , X̃cn). We denote the new samples
obtained in this manner by X̃∗1

c , X̃∗2
c , . . ., X̃∗B

c . For every bootstrap sample X̃∗b
c (b = 1, . . . , B), we calculate the

same statistic to obtain the bootstrap replications of T (X̃), as follows

T (X̃∗b
c ) =

(n− 1)S2
n(X̃

∗b
c )

σ2
0

, b = 1, . . . , B.

Once we have the B bootstrapped values T (X̃∗b
c ) from above equation, we can use them to understand the estimated

distribution for T (X̃). We use the estimated distribution in the next step to estimate the quantiles needed for testing
hypotheses. The γ

2 -th quantile, denoted by t γ
2

of the T (X̃), is estimated by

γ

2
=

number of (T (X̃∗b
c ) ≤ t̂ γ

2
)

B
.

We are now ready to test the hypotheses. This is given by “the null hypothesis H0 is rejected whenever
T (X̃) < t̂ γ

2
or T (X̃) > t̂1− γ

2
, otherwise, it is accepted”.

Algorithm 1. The steps for the proposed bootstrap methodology of testing hypotheses for one-sample are given
here:

1. Given a random sample X̃=(X̃1, X̃2, . . ., X̃n), calculate X̃c=(X̃c1, X̃c2, . . ., X̃cn), and T (X̃) =
(n−1)S2

n(X̃)

σ2
0

.

2. Sample with replacement from the sample X̃c to get X̃∗1
c , X̃∗2

c , . . ., X̃∗B
c .

3. Calculate the same statistic using the bootstrap samples in step 2 to get T (X̃∗b
c ) =

(n−1)S2
n(X̃

∗b
c )

σ2
0

, b =

1, . . . , B.
4. Use the bootstrap replicates T (X̃∗1

c ), T (X̃∗2
c ), . . ., T (X̃∗B

c ) to estimate the distribution of T (X̃).
5. Compute the estimated bootstrap quantiles t̂ γ

2
and t̂1− γ

2
.

6. The hypothesis H0 is rejected whenever T (X̃) < t̂ γ
2

or T (X̃) > t̂1− γ
2

.

Example 2
Suppose that we have taken the fuzzy random sample given in Table 1 from a population. Based on this data set,
we want to test the following hypotheses

H0 : the variance of population is σ2
0 ,

H1 : the variance of population is not σ2
0 ,

at significance level γ = 0.05 for the different values of σ2
0 given in Table 2.

By following the steps in Algorithm 1 with B = 10000 bootstrap replications, one can obtain the bootstrap
replicates of T (x̃∗1

c ), T (x̃∗2
c ), . . ., T (x̃∗B

c ). By sorting these values we can easily estimate any γ-quantile of the
estimated distribution of the test statistic T (X̃). This says that, for example, the estimated t̂0.025 is the 250th largest
value of the T (x̃∗b

c ) (because B × γ
2 = 10000× 0.025 = 250), and the estimated t̂0.975 is the 9750th largest value

of the T (x̃∗b
c ). The estimated quantiles t̂0.025 and t̂0.975 for testing different values of σ2

0 are obtained as given in
Table 2. The histograms in Figure 1 show the estimated distributions of the test statistic T (X̃) for different values
of σ2

0 given in Table 2. Finally, at the nominal significance level 0.05, the test result of the null hypothesis H0 based
on the fuzzy random sample given in Table 1 is given in Table 2.
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Table 1. Data set in Example 2

x̃1 = (0.23, 0.04, 0.07)T x̃16 = (1.78, 0.04, 0.06)T
x̃2 = (0.76, 0.05, 0.02)T x̃17 = (1.99, 0.08, 0.09)T
x̃3 = (0.98, 0.12, 0.09)T x̃18 = (2.25, 0.04, 0.04)T
x̃4 = (1.14, 0.06, 0.09)T x̃19 = (2.45, 0.01, 0.08)T
x̃5 = (1.46, 0.10, 0.07)T x̃20 = (2.57, 0.07, 0.02)T
x̃6 = (1.69, 0.05, 0.12)T x̃21 = (0.64, 0.11, 0.07)T
x̃7 = (1.95, 0.05, 0.11)T x̃22 = (0.94, 0.09, 0.04)T
x̃8 = (2.17, 0.03, 0.05)T x̃23 = (1.08, 0.10, 0.06)T
x̃9 = (2.40, 0.08, 0.12)T x̃24 = (1.37, 0.08, 0.06)T
x̃10 = (2.51, 0.10, 0.14)T x̃25 = (1.64, 0.02, 0.08)T
x̃11 = (0.41, 0.03, 0.08)T x̃26 = (1.83, 0.09, 0.05)T
x̃12 = (0.86, 0.08, 0.04)T x̃27 = (2.04, 0.11, 0.06)T
x̃13 = (1.02, 0.03, 0.10)T x̃28 = (2.36, 0.05, 0.09)T
x̃14 = (1.23, 0.03, 0.14)T x̃29 = (2.49, 0.13, 0.05)T
x̃15 = (1.53, 0.13, 0.15)T x̃30 = (2.61, 0.08, 0.06)T

Table 2. Test result for testing different values of σ2
0 in Example 2 (see also Figure 1)

σ2
0 T (x̃) t̂0.025 t̂0.025 Result

0.28 50.61 18.48 38.51 reject H0

0.38 37.20 18.50 38.51 accept H0

0.48 29.58 18.50 38.51 accept H0

0.68 20.81 18.52 38.51 accept H0

0.90 15.73 18.54 38.54 reject H0

1.50 9.36 18.54 38.54 reject H0

4.2. Two-sample test of hypotheses

In this section we present a bootstrap approach to the two-sample test of equality of variances. In this way,
let (ΩX ,AX ,PX) and (ΩY ,AY ,PY ) be two probability spaces, and let X̃ = (X̃1, X̃2, . . . , X̃n) and Ỹ =

(Ỹ1, Ỹ2, . . . , Ỹm) be two independent fuzzy random variables associated with these spaces, respectively. Also let
σ2
X and σ2

Y be the corresponding population variances. The goal of this section is testing the hypotheses

H0 : the variances of the two populations are equal, (i.e.
σ2
X

σ2
Y

= 1),

H1 : the variances of the two populations are not equal, (i.e.
σ2
X

σ2
Y

̸= 1),

on the basis of the available sample fuzzy information. To get bootstrap populations with a common variance from
the available sample information in this case, one can multiply to each sample X̃ and Ỹ the ratios 1

Sn(X̃)
and

1

Sm(Ỹ)
, respectively. In other words, one can define new fuzzy random variables

X̃c =

(
X̃1

Sn(X̃)
, . . . ,

X̃n

Sn(X̃)

)
,

Ỹc =

(
Ỹ1

Sm(Ỹ)
, . . . ,

Ỹm

Sm(Ỹ)

)
.
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Figure 1. The histograms of the estimated distributions of the test statistic T (X̃) for different values of σ2
0 given in Table 2

in Example 2.

Under the hypothesis H0 one can easily show that the ratio of sample variances of X̃c and Ỹc is 1 (i.e., S2
n(X̃c)

S2
m(Ỹc)

= 1).

Therefore, resampling from these new populations is considered. In testing the null hypothesis H0 :
σ2
X

σ2
Y

= 1 at the
nominal significance level γ ∈ [0, 1], the following test statistic is proposed

T (X̃, Ỹ) =
(n− 1)S2

n(X̃)

(m− 1)S2
m(Ỹ)

.

The null hypothesis H0 should be rejected whenever T (X̃, Ỹ) < t γ
2

or T (X̃, Ỹ) > t1− γ
2

where tγ is the 100(1−
γ)% quantile of the bootstrap distribution of the test statistic T (X̃, Ỹ). Similar to the conclusions obtained for
the one-sample test for the variance in previous section, the approach to be considered in the following will deal
with the same. Therefore, to get estimate of the distribution of the test statistic T (X̃, Ỹ) under null hypothesis H0,
we obtain B bootstrap samples by sampling with replacement from the original samples X̃c, and Ỹc. For every
bootstrap sample (X̃∗b

c , Ỹ∗b
c ) (b = 1, . . . , B), we calculate the same statistic to obtain the bootstrap replications of

T (X̃, Ỹ), as follows

T (X̃∗b
c , Ỹ∗b

c ) =
(n− 1)S2

n(X̃
∗b
c )

(m− 1)S2
m(Ỹ∗b

c )
, b = 1, . . . , B.

Once we have the B bootstrapped values T (X̃∗b
c , Ỹ∗b

c ) from above equation, we can use them to understand the
estimated distribution for T (X̃, Ỹ). We use the estimated distribution in the next step to estimate the quantiles
needed for testing hypotheses. The γ

2 -th quantile of T (X̃, Ỹ) under null hypothesis H0 is estimated by

γ

2
=

number of (T (X̃∗b
c , Ỹ∗b

c ) ≤ t̂ γ
2
)

B
.

Algorithm 2. The steps for the proposed bootstrap methodology of testing hypotheses for two-sample fuzzy data
set are given here:
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Table 3. Fuzzy random sample of size 15 from a population in Example 3

ỹ1 = (2.45, 0.04, 0.02)T ỹ9 = (2.00, 0.08, 0.07)T
ỹ2 = (1.04, 0.10, 0.05)T ỹ10 = (2.02, 0.11, 0.02)T
ỹ3 = (1.09, 0.04, 0.01)T ỹ11 = (1.28, 0.10, 0.00)T
ỹ4 = (0.51, 0.07, 0.08)T ỹ12 = (0.95, 0.12, 0.09)T
ỹ5 = (2.40, 0.07, 0.06)T ỹ13 = (2.04, 0.01, 0.04)T
ỹ6 = (1.96, 0.11, 0.03)T ỹ14 = (0.68, 0.02, 0.05)T
ỹ7 = (1.34, 0.01, 0.08)T ỹ15 = (0.89, 0.09, 0.01)T
ỹ8 = (1.43, 0.08, 0.09)T

Table 4. The estimated quantiles of the bootstrap distribution of T (X̃, Ỹ) in Example 3 (see also Figure 2)

γ 0.005 0.025 0.05 0.10 0.90 0.95 0.975 0.995

t̂γ 1.43 1.67 1.79 1.98 3.16 4.16 5.10 6.98

1. Given two random samples X̃=(X̃1, X̃2, . . ., X̃n), and Ỹ=(Ỹ1, Ỹ2, . . ., Ỹm), calculate

X̃c =

(
X̃1

Sn(X̃)
, . . . ,

X̃n

Sn(X̃)

)
,

Ỹc =

(
Ỹ1

Sm(Ỹ)
, . . . ,

Ỹm

Sm(Ỹ)

)
,

T (X̃, Ỹ) =
(n− 1)S2

n(X̃)

(m− 1)S2
m(Ỹ)

.

2. Sample with replacement from the samples X̃c and Ỹc to get X̃∗1
c , X̃∗2

c , . . ., X̃∗B
c , and Ỹ∗1

c , Ỹ∗2
c , . . ., Ỹ∗B

c .
3. Calculate the same statistic using the bootstrap samples in step 2 to get T (X̃∗b

c , Ỹ∗b
c ) =

(n−1)S2
n(X̃

∗b
c )

(m−1)S2
m(Ỹ∗b

c )
,

b = 1, . . . , B.
4. Use the bootstrap replicates T (X̃∗1

c , Ỹ∗1
c ), T (X̃∗2

c , Ỹ∗2
c ), . . ., T (X̃∗B

c , Ỹ∗B
c ), to estimate the distribution of

T (X̃, Ỹ) under null hypothesis H0.
5. Compute the estimated bootstrap quantiles t̂ γ

2
and t̂1− γ

2
.

6. The hypothesis H0 is rejected whenever T (X̃, Ỹ) < t̂ γ
2

, or T (X̃, Ỹ) > t̂1− γ
2

.

Example 3
Suppose that we have taken two fuzzy random samples of size n = 30 (Table 1) and m = 15 (Table 3) from two
populations and we want to test the equality of variances of the two populations at significance level γ ∈ [0, 1].

By following the steps in Algorithm 2 with B = 20000 bootstrap replications, one can obtain the estimated
quantiles of the bootstrap distribution of T (X̃, Ỹ) under null hypothesis as given in Table 4. Now we can easily
test the hypotheses of interest at significance level γ ∈ [0, 1] by checking the inequalities T (x̃, ỹ) < t̂ γ

2
, and

T (x̃, ỹ) > t̂1− γ
2

. The histogram for the bootstrap replicates of T (x̃∗1
c , ỹ∗1

c ), T (x̃∗2
c , ỹ∗2

c ), . . ., T (x̃∗B
c , ỹ∗B

c ) is shown
in Figure 2, showing the estimated distributions of the test statistic T (X̃, Ỹ).

5. Conclusions

In this paper we considered hypothesis-tests for the (crisp-valued) variance of a fuzzy random variable in a
population. For this purpose, we made use of a new definition of fuzzy random variables and a new metric for

Stat., Optim. Inf. Comput. Vol. 5, September 2017



198 BOOTSTRAP APPROACH TO THE ONE-SAMPLE AND TWO-SAMPLE TEST OF VARIANCES OF AN FRV

Figure 2. The estimated distributions of the test statistic T (X̃, Ỹ) in Example 3.

fuzzy numbers. Using the general bootstrap methodology, we followed the application of the bootstrap in fuzzy
environment and proposed an approach to testing hypotheses on the basis of the evidence supplied by a set of
sample fuzzy data. It should be pointed out that the proposed procedure in this paper can be applied in practice
with no limitations.

The distribution of the test statistic in this paper under the alternative hypothesis can be obtained by means of
either asymptotic or bootstrap techniques, which seems that the study of the power function of the tests proposed in
this paper can be a potential research for future studies. The bootstrap approach to test the multi-sample hypothesis
of variances is another topic for further research in the future, as well as discussing the adequacy of the tests through
a simulation comparative study.
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