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1. Introduction and Preliminaries

In this paper, we introduce four generalized second-order parametric duality models and prove a variety of weak,
strong, and strict converse duality theorems using the notion of second-order (F , β, ϕ, ζ, ρ, θ,m)-univex functions
for the following discrete minmax fractional programming problem:

(P ) Minimize max
1≤i≤p

fi(x)

gi(x)

subject to Gj(x) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r, x ∈ X ,
where X is an open convex subset of Rn (n-dimensional Euclidean space), fi, gi, i ∈ p ≡ {1, 2, . . . , p},
Gj , j ∈ q, and Hk, k ∈ r, are real-valued functions defined on X , and for each i ∈ p, gi(x) > 0 for all x
satisfying the constraints of (P ).

The problems of this nature are more frequently referred to as ”generalized fractional programming problems” to
the context of mathematical programming. These problems provide realistic models for some significant real-world
problems (more notably encountered in multiobjective programming, approximation theory, goal programming,
location planning and economics), while their mathematical tractability empowers equivalent parametric nonlinear
programming problems with nonfractional objective functions.

Recently, Verma and Zalmai [10] established some second-order parametric necessary optimality conditions
as well as numerous second-order sufficient optimality conditions for a discrete minmax fractional programming
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problem applying various second-order (ϕ, η, ρ, θ,m)-invexity assumptions. This second-order invexity generalizes
the concepts of invexity, pseudoinvexity, and quasiinvexity, originally defined by Hanson [3]. The second-order
invexity is also referred to as ”sonvexity” in the literature.

In the present paper, we plan to introduce new classes of second-order (F , β, ϕ, ζ, ρ, θ,m)-univex functions,
which generalize most of the existing notions of second-order univex functions. The second-order univex functions
are also referred to as ”sounivex functions” in the literature. Here, we shall utilize two partitioning schemes due to
Mond and Weir [6] and Yang [13], in conjunction with the generalized versions of the new classes of second-order
(F , β, ϕ, ζ, ρ, θ,m)-univex functions to formulate four generalized duality models for (P ) and prove appropriate
duality theorems. The duality models and the related duality theorems established in this paper generalize those
presented in [10 - 12] and others. To the best of our knowledge, all of these duality results are new in the
area of discrete minmax fractional programming. In fact, it seems that results of this type, which are based on
second-order necessary and sufficient optimality conditions, have not yet appeared in any shape or form for any
type of mathematical programming problems. For extensive lists of publications dealing with second-order and
higher-order duality results for various categories of nonlinear programming problems, which are essentially based
on first-order optimality conditions and different kinds of generalized convexity concepts, we refer the reader
([2]-[5], [7], [9]-[12], [15], [16]).

All the parametric duality results established in this paper can easily be modified (and specialized) for each one
of the following three classes of nonlinear programming problems to the context (P ):

(P1) Minimize
x∈F

f1(x)

g1(x)
;

(P2) Minimize
x∈F

max
1≤i≤p

fi(x);

(P3) Minimize
x∈F

f1(x),

where F (assumed to be nonempty) is the feasible set of (P ), that is,

F = {x ∈ X : Gj(x) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r}.

The paper is organized as follows: In Section 1, we introduce a few basic definitions and recall some auxiliary
results that will be used in the sequel. In Section 2, we utilize a partitioning scheme due to Mond and Weir [6], and
formulate two general second-order parametric duality models for (P ) and prove weak, strong, and strict converse
duality theorems using various generalized (F , β, ϕ, ζ, ρ, θ,m)-sounivexity assumptions. In Section 3, we shall
make use of another partitioning method due to Yang [13] and construct another pair of general second-order
parametric duality models with different constraint structures and discuss several second-order duality results
under a variety of generalized (F , β, ϕ, ζ, ρ, θ,m)-sounivexity assumptions. Finally, in Section 4 we present some
remarks on our main results aiming at some future research endeavors arising from certain modifications of the
principal minmax model formulated in the present investigation.

We next introduce some generalized versions of the sounivexity (Zalmai [15]) and others in the literature. Let
f : X → R be a twice differentiable function. Suppose that ∥ · ∥ denotes a norm on Rn, and ⟨a, b⟩ is the inner
product of the vectors a and b.

Definition 1.1. The function f is said to be (strictly) (F , β, ϕ, ρ, ζ, θ,m)-sounivex at x∗ ∈ X if there
exist functions β : X ×X → R+ \ {0}, ϕ : R → R, ρ : X ×X → R, θ, ζ : X ×X → Rn, a sublinear function
F(x, x∗; ·) : Rn → R, and a positive integer m such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ F

(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨ζ(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥m.
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The function f is said to be (strictly) (F , β, ϕ, ρ, ζ, θ,m)-sounivex on X if it is (strictly) (F , β, ϕ, ρ, θ,m)-
sounivex at each x∗ ∈ X .

Definition 1.2. The function f is said to be (strictly) (F , β, ϕ, ρ, θ,m)-pseudosounivex at x∗ ∈ X if there
exist functions β : X ×X → R+ \ {0}, ϕ : R → R, ρ : X ×X → R, θ, ζ : X ×X → Rn, a sublinear function
F(x, x∗; ·) : Rn → R, and a positive integer m such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨ζ(x, x∗),∇2f(x∗)z⟩ ≥ −ρ(x, x∗)∥θ(x, x∗)∥m

⇒ ϕ
(
f(x)− f(x∗)

)
(>) ≥ 0.

The function f is said to be (strictly) (F , β, ϕ, ρ, ζ, θ,m)-pseudosounivex on X if it is (strictly)
(F , β, ϕ, ρ, ζ, θ,m)-pseudosounivex at each x∗ ∈ X .

Definition 1.3. The function f is said to be (prestrictly) (F , β, ϕ, ρ, ζ, θ,m)-quasisounivex at x∗ ∈ X if there
exist functions β : X ×X → R+ \ {0}, ϕ : R → R, ρ : X ×X → R, θ, ζ : X ×X → Rn, a sublinear function
F(x, x∗; ·) : Rn → R, and a positive integer m such that for each x ∈ X and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(<) ≤ 0

⇒ F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨ζ(x, x∗),∇2f(x∗)z⟩ ≤ −ρ(x, x∗)∥θ(x, x∗)∥m.

The function f is said to be (prestrictly) (F , β, ϕ, ρ, ζ, θ,m)-quasisounivex on X if it is (prestrictly)
(F , β, ϕ, ρ, ζ, θ,m)-quasisounivex at each x∗ ∈ X .

From the above definitions it is clear that if f is (F , β, ϕ, ρ, ζ, θ,m)-sounivex at x∗, then it is both
(F , β, ϕ, ρ, ζ, θ,m)-pseudosounivex and (F , β, ϕ, ρ, ζ, θ,m)-quasisounivex at x∗ ∈ X , if f is (F , β, ϕ, ρ, θ,m)-
quasisounivex at x∗ ∈ X , then it is prestrictly (F , β, ϕ, ρ, θ,m)-quasisounivex at x∗ ∈ X , and if f is strictly
(F , β, ϕ, ρ, ζ, θ,m)-pseudosounivex at x∗ ∈ X , then it is (F , β, ϕ, ρ, ζ, θ,m)-quasisounivex at x∗ ∈ X .

We observe that in some contexts during proving the duality theorems, it may be easier to apply certain
alternative but equivalent forms of the above definitions by considering the contrapositive statements. For example,
(F , β, ϕ, ρ, ζ, θ,m)-quasisounivexity can be defined in the following equivalent way:

The function f is said to be (F , β, ϕ, ρ, ζ, θ,m)-quasisounivex at x∗ ∈ X if there exist functions β : X ×
X → R+ \ {0}, ϕ : R → R, ρ : X ×X → R, θ, ζ : X ×X → Rn, a sublinear function (x, x∗; ·) : Rn → R, and
a positive integer m such that for each x ∈ X and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+

1

2
⟨ζ(x, x∗),∇2f(x∗)z⟩ > −ρ(x, x∗)∥θ(x, x∗)∥m

⇒ ϕ
(
f(x)− f(x∗)

)
> 0.

As the generalized sounivexity of functions generalizes most of the convex functions, including generalized
invexity, pseudoinvexity and quasiinvexity by identifying appropriate choices of F , β, ϕ, ρ, ζ, θ, and m. For
example, if let F

(
x, x∗;∇f(x∗)

)
= ⟨∇f(x∗), η(x, x∗)⟩ and β(x, x∗) ≡ 1, where η is a given function from

X ×X to Rn, then we obtain the definitions of (ϕ, η, ρ, ζ, θ,m)-sonvex, (ϕ, η, ρ, ζ, θ,m)-pseudosonvex, and
(ϕ, η, ρ, ζ, θ,m)-quasisonvex functions introduced recently in [10]. For example, let f : X → R be a twice
differentiable function.

Definition 1.4. The function f is said to be (strictly) (ϕ, η, ζ, ρ, θ,m)-sonvex at x∗ if there exist functions
ϕ : R → R, η, ζ : X ×X → Rn, ρ : X ×X → R, and θ : X ×X → Rn, and a positive integer m such that for
each x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ ⟨∇f(x∗), η(x, x∗)⟩+ 1

2
⟨ζ(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥m.
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Definition 1.5. The function f is said to be (strictly) (ϕ, η, ρ, θ,m)-sonvex at x∗ if there exist functions ϕ :
R → R, η : X ×X → Rn, ρ : X ×X → R, and θ : X ×X → Rn, and a positive integer m such that for each
x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ ⟨∇f(x∗), η(x, x∗)⟩+ 1

2
⟨z,∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥m.

We next present an example on some generalized versions of the sounivexity (Zalmai [15]) and others in the
literature.

Example 1. Let f : X → R be a twice differentiable function with the norm ∥ · ∥ on Rn and inner product ⟨a, b⟩
of the vectors a and b. Then the function f is said to be (strictly) (F , β, ϕ, ρ, ξ, θ,m)-sounivex at x∗ if there
exist functions β : X ×X → R+ \ {0}, ϕ : R → R, ρ : X ×X → R, θ, ξ : X ×X → Rn, a sublinear function
F(x, x∗; ·) : Rn → R, and a positive integer m such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗) +

1

2
⟨z,∇2f(x∗)z⟩

)
(>) ≥ F

(
x, x∗;β(x, x∗)∇f(x∗)

)
+ ⟨ξ(x, x∗),∇2f(x∗)z⟩

+ρ(x, x∗)∥θ(x, x∗)∥m.

We conclude this section by recalling a set of second-order necessary optimality conditions for (P ).

Theorem 1.1. [15] Let x∗ be an optimal solution of (P), let λ∗ = φ(x∗) ≡
max1≤i≤p fi(x

∗)/gi(x
∗)}, and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r, are twice

continuously differentiable at x∗, and that the second-order Guignard constraint qualification holds at x∗. Then
for each z∗ ∈ C(x∗), there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,

∑p
i=1 ui = 1}, v∗ ∈ Rq

+ ≡ {v ∈ Rq : v ≥ 0}, and
w∗ ∈ Rr such that

p∑
i=1

u∗
i [∇fi(x

∗)− λ∗∇gi(x
∗)] +

q∑
j=1

v∗j∇Gj(x
∗) +

r∑
k=1

w∗
k∇Hk(x

∗) = 0,

⟨
z∗,

{ p∑
i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩
≥ 0,

u∗
i [fi(x

∗)− λ∗gi(x
∗)] = 0, i ∈ p,

v∗jGj(x
∗) = 0, j ∈ q,

where C(x∗) is the set of all critical directions of (P) at x∗, that is,

C(x∗) = {z ∈ Rn : ⟨∇fi(x
∗)− λ∇gi(x

∗), z⟩ = 0, i ∈ A(x∗), ⟨∇Gj(x
∗), z⟩ ≤ 0, j ∈ B(x∗),

⟨∇Hk(x
∗), z⟩ = 0, k ∈ r},

A(x∗) = {j ∈ p : fj(x
∗)/gj(x

∗) = max
1≤i≤p

fi(x
∗)/gi(x

∗)}, and B(x∗) = {j ∈ q : Gj(x
∗) = 0}.

For brevity, we shall henceforth refer to x∗ as a normal optimal solution of (P ) if it is an optimal solution and
satisfies the second-order Guignard constraint qualification.

In the remainder of this paper, we shall assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r, are
twice continuously differentiable on the open set X . Moreover, we shall assume, without loss of generality, that
gi(x) > 0, i ∈ p, and φ(x) ≥ 0 for all x ∈ X .
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2. Duality Model I

In this section, we discuss several families of duality results under various generalized (F , β, ϕ, ρ, ζ, θ,m)-
sounivexity hypotheses imposed on certain combinations of the functions involved in the considered optimization
problem. This is accomplished by employing a certain partitioning scheme which was originally proposed in [6]
for the purpose of constructing generalized dual problems for nonlinear programming problems. For this we need
some additional notation.

Let {J0, J1, . . . , JM} and {K0,K1, . . . ,KM} be partitions of the index sets q and r, respectively; thus, Jµ ⊆ q
for each µ ∈ M ∪ {0}, Jµ ∩ Jν = ∅ for each µ, ν ∈ m ∪ {0} with µ ̸= ν, and ∪m

µ=0Jµ = q. Obviously, similar
properties hold for {K0,K1, . . . ,KM}. Moreover, if M1 and M2 are the numbers of the partitioning sets of q and
r, respectively, then M = max{M1,M2} and Jµ = ∅ or Kµ = ∅ for µ > min{M1,M2}.

In addition, we use the real-valued functions ξ → Φi(ξ, v, w, λ), i ∈ p, ξ → Φ(ξ, u, v, w, λ), and ξ →
Λt(ξ, v, w) defined, for fixed λ, u, v, and w, on X as follows:

Φi(ξ, v, w, λ) = fi(ξ)− λgi(ξ) +
∑
j∈J0

vjGj(ξ) +
∑
k∈K0

wkHk(ξ), i ∈ p,

Φ(ξ, u, v, w, λ) =

p∑
i=1

ui[fi(ξ)− λgi(ξ)] +
∑
j∈J0

vjGj(ξ) +
∑
k∈K0

wkHk(ξ),

Λt(ξ, v, w, ) =
∑
j∈Jt

vjGj(ξ) +
∑
k∈Kt

wkHk(ξ), t ∈ M.

Making use of the sets and functions defined above, we can now formulate our first pair of second-order
parametric duality models for (P ).

Consider the following two problems:

(DI) Maximize λ
subject to

p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y) = 0, (2.1)

⟨
z,
{ p∑

i=1

ui[∇2fi(y)− λ∇2gi(y)] +

q∑
j=1

vj∇2Gj(y) +

r∑
k=1

wk∇2Hk(y)
}
z
⟩
≥ 0, (2.2)

fi(y)− λgi(y) +
∑
j∈J0

vjGj(y) +
∑
k∈K0

wkHk(y) ≥ 0, i ∈ p, (2.3)

∑
j∈Jt

vjGj(y) +
∑
k∈Kt

wkHk(y) ≥ 0, t ∈ M, (2.4)

y ∈ X, z ∈ C(y), u ∈ Rp, u ≥ 0,

p∑
i=1

ui = 1, v ∈ Rq
+, w ∈ Rr, λ ∈ R+; (2.5)

(D̃I) Maximize λ

subject to (2.2) - (2.5) and

F
(
x, y;

p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y)
)
≥ 0 for all x ∈ F, (2.6)
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where F(x, y; ·) is a sublinear function from Rn to R.

The feasible set F(DI) (assumed to be nonempty) of (DI) is defined as:

F(DI) =
{
y ∈ X : z ∈ Rn; u ∈ Rp, u ≥ 0,

p∑
i=1

ui = 1; v ∈ Rq
+, vi ≥ 0;w ∈ Rr; λ ∈ R+

}
.

Comparing (DI) and (D̃I), we see that (D̃I) is relatively more general than (DI) in the sense that any feasible
solution of (DI) is also feasible for (D̃I), but the converse is not necessarily true. Furthermore, we observe that
(2.1) is a system of n equations, whereas (2.6) is a single inequality. Clearly, from a computational point of view,
(DI) is preferable to (D̃I) because of the dependence of (2.6) on the feasible set of (P ).

Despite these apparent differences, it turns out that the statements and proofs of all the duality theorems for
(P )− (DI) and (P )− (D̃I) are almost identical and, therefore, we shall consider only the pair (P )− (DI).

In the proofs of our duality theorems, we shall make frequent use of the following auxiliary result which provides
an alternative expression for the objective function of (P ).

Lemma 1. [10] For each x ∈ X ,

φ(x) = max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

.

The next two theorems show that (DI) is a dual problem for (P ).

Theorem 2.1. (Weak Duality) Let x and y be arbitrary feasible solutions of (P) and (DI), respectively. Furthermore,
assume that any one of the following four sets of hypotheses is satisfied:

(a) (i) ξ → Φ(ξ, u, v, w, λ) is (F , β, ϕ̄, ρ̄, ζ, θ,m)-pseudosounivex at y and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;
(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, ϕ̃t is increasing, and

ϕ̃t(0) = 0;

(iii) ρ̄(x, y) +
∑M

t=1 ρ̃t(x, y) ≥ 0;
(b) (i) ξ → Φ(ξ, u, v, w, λ) is prestrictly (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at y and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρt, ζ, θ,m)-quasisounivex at y, ϕ̃t is increasing, and
ϕ̃t(0) = 0;

(iii) ρ̄(x, y) +
∑M

t=1 ρ̃t(x, y) > 0;
(c) (i) ξ → Φ(ξ, u, v, w, λ) is prestrictly (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at y and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, ϕ̃t is increasing,
and ϕ̃t(0) = 0;

(iii) ρ̄(x, y) +
∑M

t=1 ρ̃t(x, y) ≥ 0;
(d) (i) ξ → Φ(ξ, u, v, w, λ) is prestrictly (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at y and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M1, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, for each t ∈ M2 ̸=
∅, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, and for each t ∈ M, ϕ̃t is
increasing and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii) ρ̄(x, y) +
∑M

t=1 ρ̃t(x, y) ≥ 0.

Then φ(x) ≥ λ.

Proof
(a): Since F(x, y; ·) is sublinear, it is clear that (2.1) and (2.2) can be expressed as follows:
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268 NEW CLASS OF DUALITY MODELS IN DISCRETE MINMAX FRACTIONAL PROGRAMMING

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

vj∇Gj(y)+

∑
k∈K0

wk∇Hk(y)
})

+ F
(
x, y;β(x, y)

M∑
t=1

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

≥ 0. (2.7)

1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

vj∇2Gj(y)+

∑
k∈K0

wk∇2Hk(y)
}
z
⟩
+

1

2

⟨
ζ(x, y),

M∑
t=1

[ ∑
j∈Jt

vj∇2Gj(y) +
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≥ 0. (2.8)

Since for each t ∈ M ,

Λt(x, v, w) =
∑
j∈Jt

vjGj(x) +
∑
k∈Kt

wkHk(x)

≤ 0 (by the primal feasibility of x)

≤
∑
j∈Jt

vjGj(y) +
∑
k∈Kt

wkHk(y)

(by (2.4) and the dual feasibility of y)
= Λt(y, v, w),

it implies

ϕ̃t

(
Λt(x, v, w)− Λt(y, v, w)

)
≤ 0.

Thus, it follows from (ii) that

F
(
x, y;β(x, y)

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

[ ∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −ρ̃t(x, y)∥θ(x, y)∥m.

Summing over t ∈ M and using the sublinearity of F(x, y; ·), we obtain

F
(
x, y;β(x, y)

M∑
t=1

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

M∑
t=1

[ ∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −

M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m. (2.9)
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Combining (2.7) - (2.9), and using (iii) we get

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

vj∇Gj(y) +
∑
k∈K0

wk∇Hk(y), η(x, y)
})

+
1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

vj∇2Gj(y) +
∑
k∈K0

wk∇2Hk(y)
}
z
⟩

≥
M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m ≥ −ρ̄(x, y)∥θ(x, y)∥m. (2.10)

By (i), the above inequality implies that

ϕ̄
(
Φ(x, u, v, w, λ)− Φ(y, u, v, w, λ)

)
≥ 0.

But ϕ̄(a) ≥ 0 ⇒ a ≥ 0, and hence we get

Φ(x, u, v, w, λ) ≥ Φ(y, u, v, w, λ) ≥ 0,

where the second inequality follows from (2.3) and the dual feasibility of y. Since x ∈ F, the above inequality
reduces to

p∑
i=1

ui[fi(x)− λgi(x)] ≥ 0. (2.11)

Now using (2.11) and Lemma 2.1, we see that

φ(x) = max
a∈U

∑p
i=1 aifi(x)∑p
i=1 aigi(x)

≥
∑p

i=1 uifi(x)∑p
i=1 uigi(x)

≥ λ.

(b): The proof is similar to that of part (a).

(c): Suppose to the contrary that φ(x) < λ. This implies that

fi(x)− λgi(x) < 0, i ∈ p. (2.12)

Since

Φ(x, u, v, w, λ) =

p∑
i=1

ui[fi(x)− λgi(x)] +
∑
j∈J0

ujGj(x) +
∑
k∈K0

wkHk(x)

≤
p∑

i=1

ui[fi(x)− λgi(x)] (by the primal feasibility of x)

< 0 (by (2.12))
≤ Φ(y, u, v, w, λ) (by (2.3)),

it follows from the properties of ϕ̄i that

ϕ̄i

(
Φ(x, u, v, w, λ)− Φ(y, u, v, w, λ)

)
< 0.

Applying (i), the above inequality implies that

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

uj∇Gj(y) +
∑
k∈K0

wk∇Hk(y), η(x, y)
})

+
1

2

⟨
ζ(x, y),

[ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

uj∇2Gj(y) +
∑
k∈K0

wk∇2Hk(y)
]
z
⟩

≤ −ρ̄(x, y)∥θ(x, y)∥m. (2.13)
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As seen in the proof of Theorem 2.1, our assumptions in (ii) lead to

F
(
x, y;β(x, y)

M∑
t=1

[ ∑
j∈Jt

uj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

M∑
t=1

[ ∑
j∈Jt

uj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −

M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m,

which when combined with (2.7) and (2.8) results in

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

uj∇Gj(y) +
∑
k∈K0

wk∇Hk(y), η(x, y)
})

+

1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

uj∇2Gj(y) +
∑
k∈K0

wk∇2Hk(y)
}
z
⟩

≥
M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m.

In view of (iii), this inequality contradicts (2.13). Hence, φ(x) ≥ λ.

(d): The proof is similar to that of part (c).

Theorem 2.2. (Strong Duality) Let x∗ be a normal optimal solution of (P), let λ∗ = φ(x∗), and assume that any
one of the four sets of conditions specified in Theorem 2.1 is satisfied for all feasible solutions of (DI). Then for each
z∗ ∈ C(x∗), there exist u∗ ∈ U, v∗ ∈ Rq

+, and w∗ ∈ Rr such that x∗ is an optimal solution of (DI) and φ(x∗) = λ∗.

Proof
Since x∗ is a normal optimal solution of (P ), by Theorem 2.1, for each z∗ ∈ C(x∗), there exist u∗, v∗, w∗, and
λ∗(= φ(x∗)), as specified above, such that x∗ is a feasible solution of (DI). If, for each z∗ ∈ C(x∗), there exist
u∗, v∗, w∗, and λ∗(= φ(x∗)), as specified above, x∗ were not optimal, then there would exist a feasible solution
x̃ such that λ̃ > λ∗ = φ(x∗) which contradicts Theorem 2.1. Therefore, x∗ is an optimal solution of (DI) with
respect to z∗ ∈ C(x∗), u∗, v∗, w∗, and λ∗(= φ(x∗)).

Theorem 2.3. (Strict Converse Duality) Let x∗ be a normal optimal solution of (P), and let x̃ be an optimal solution
of (DI) with respect to z̃, ũ, ṽ, w̃, λ̃. Furthermore assume that any one of the following four sets of conditions holds:

(a) The assumptions specified in part (a) of Theorem 2.1 are satisfied for the feasible solution x̃ of (DI),
ϕ̄(a) > 0 ⇒ a > 0, and the function ξ → Φ(ξ, ũ, ṽ, w̃, λ̃) is strictly (F , β, ϕ̄, ρ̄, ζ, θ,m)-pseudosounivex at
x̃.

(b) The assumptions specified in part (b) of Theorem 2.1 are satisfied for the feasible solution x̃ of (DI),
ϕ̄(a) > 0 ⇒ a > 0, and the function ξ → Φ(ξ, ũ, ṽ, w̃, λ̃) is (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at x̃.

(c) The assumptions specified in part (c) of Theorem 2.1 are satisfied for the feasible solution x̃ of (DI),
ϕ̄(a) > 0 ⇒ a > 0, and the function ξ → Φ(ξ, ũ, ṽ, w̃, λ̃) is (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at x̃.

(d) The assumptions specified in part (d) of Theorem 2.1 are satisfied for the feasible solution x̃ of (DI),
ϕ̄(a) > 0 ⇒ a > 0, and the function ξ → Φ(ξ, ũ, ṽ, w̃, λ̃) is (F , β, ϕ̄, ρ̄, ζ, θ,m)-quasisounivex at x̃.

Then x̃ = x∗ and φ(x∗) = λ̃.

Proof
Since x∗ is a normal optimal solution of (P ), by Theorem 2.1, there exist ũ, ṽ, w̃, and λ̃ such that x̃ (with respect
to z̃, ũ, ṽ, w̃, λ̃) is a feasible solution of (DI) and φ(x∗) = λ∗.

Stat., Optim. Inf. Comput. Vol. 5, September 2017



R.U. VERMA AND T. ANTCZAK 271

(a): Suppose to the contrary that x̃ ̸= x∗. Now proceeding as in the proof of part (a) of Theorem 2.1 (with x
replaced by x∗ and y by x̃, we arrive at the strict inequality

p∑
i=1

ũi[fi(x)− λ̃gi(x)] > 0.

Using this inequality along with Lemma 2.1, as in the proof of Theorem 2.1, we get φ(x∗) > λ̃ which contradicts
the fact that φ(x∗) = λ∗ ≤ λ̃. (b) - (d) : The proofs are similar to that of part (a).

In Theorems 2.1 - 2.3, various generalized (F , β, ϕ, ρ, ζ, θ,m)-sounivexity conditions were imposed on the
function ξ → Φ(ξ, u, v, w, λ), which is the weighted sum of the functions ξ → Φi(ξ, v, w, λ), i ∈ p. In the next few
theorems, we shall assume that the individual functions ξ → Φi(ξ, v, w, λ), i ∈ p, satisfy appropriate generalized
(F , β, ϕ, ρ, ζ, θ,m)-sounivexity hypotheses.

Theorem 2.4. (Weak Duality) Let x and y be arbitrary feasible solutions of (P) and (DI), respectively. Furthermore,
assume that any one of the following seven sets of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ {i ∈ p : ui > 0}, ξ → Φi(ξ, v, w, λ) is (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-pseudosounivex at y, ϕ̄i

is strictly increasing, and ϕ̄i(0) = 0;
(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, ϕ̃t is increasing, and

ϕ̃t(0) = 0;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(b) (i) for each i ∈ I+, ξ → Φi(ξ, v, w, λ) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-quasisounivex at y, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ m, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, ϕ̃t is increasing,
and ϕ̃t(0) = 0;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(c) (i) for each i ∈ I+, ξ → Φi(ξ, v, w, λ) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-quasisounivex at y, ϕ̄i is strictly
increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ)-quasisounivex at y, ϕ̃t is increasing, and ϕ̃t(0) =
0;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) > 0;

(d) (i) for each i ∈ I1+, ξ → Φi(ξ, v, w, λ) is (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-pseudosounivex at y, for each i ∈
I2+, ξ → Φi(ξ, v, w, λ) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-quasisounivex at y, and for each i ∈ I+, ϕ̄i

is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;
(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, ϕ̃t is increasing,

and ϕ̃t(0) = 0;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(e) (i) for each i ∈ I1+ ̸= ∅, ξ → Φi(ξ, v, w, λ) is (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-pseudosounivex at y, for each i ∈
I2+, ξ → Φi(ξ, v, w, λ) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ)-quasisounivex at y, and for each i ∈ I+, ϕ̄i is
strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;

(ii) for each t ∈ M, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, ϕ̃t is increasing, and
ϕ̃t(0) = 0;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(f) (i) for each i ∈ I+, ξ → Φi(ξ, v, λ, t̄, s̄) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-quasisounivex at y, ϕ̄i is
strictly increasing, and ϕ̄i(0) = 0;
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(ii) for each t ∈ M1 ̸= ∅, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, for each t ∈
M2, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, and for each t ∈ M, ϕ̃t is increasing
and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(g) (i) for each i ∈ I1+, ξ → Φi(ξ, v, w, λ) is (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-pseudosounivex at y, for each i ∈
I2+, ξ → Φi(ξ, v, w, λ) is prestrictly (F , β, ϕ̄i, ρ̄i, ζ, θ,m)-quasisounivex at y, and for each i ∈ I+, ϕ̄i

is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a partition of I+;
(ii) for each t ∈ M1, ξ → Λt(ξ, v, w) is strictly (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-pseudosounivex at y, for each t ∈

M2, ξ → Λt(ξ, v, w) is (F , β, ϕ̃t, ρ̃t, ζ, θ,m)-quasisounivex at y, and for t ∈ M, ϕ̃t is increasing and
ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) ≥ 0;

(iv) I1+ ̸= ∅, M1 ̸= ∅, or
∑

i∈I+
uiρ̄i(x, y) +

∑M
t=1 ρ̃t(x, y) > 0.

Then φ(x) ≥ λ.

Proof
(a) : Suppose to the contrary that φ(x) < λ. This implies that

fi(x)− λgi(x) < 0, i ∈ p. (2.14)

Keeping in mind that u ≥ 0, we see that for each i ∈ I+,

Φi(x, v, λ) = fi(x)− λgi(x) +
∑
j∈J0

ujGj(x) +
∑
k∈K0

wkHk(x)

≤ fi(x)− λgi(x) (by the primal feasibility of x)
< 0 (by (2.14))
≤ Φi(y, v, λ) (by (2.3)),

and so it follows from the properties of ϕ̄i that

ϕ̄i

(
Φi(x, v, λ)− Φi(y, v, λ)

)
< 0.

Hence, by (i), for each i ∈ I+, the above inequality implies that

F
(
x, y;β(x, y)

{
∇fi(y)− λ∇gi(y) +

∑
j∈J0

uj∇Gj(y) +
∑
k∈K0

wk∇Hk(y)
})

+
1

2

⟨
ζ(x, y),

[
∇2fi(y)− λ∇2gi(y) +

∑
j∈J0

uj∇2Gj(y) +
∑
k∈K0

wk∇2Hk(y)
]
z
⟩

< −ρ̄i(x, y)∥θ(x, y)∥m.

Since u ≥ 0, ui = 0 for each i ∈ p\I+,
∑p

i=1 ui = 1, and F(x, y; ·) is sublinear, the above inequalities yield

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

uj∇Gj(y) +
∑
k∈K0

wk∇Hk(y), η(x, y)
})

+

1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

uj∇2Gj(y) +
∑
k∈K0

wk∇2Hk(x
∗)
}
z
⟩

< −
∑
i∈I+

uiρ̄i(x, y)∥θ(x, y)∥m. (2.15)
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As seen in the proof of Theorem 2.1, our assumptions in (ii) lead to

F
(
x, y;β(x, y)

M∑
t=1

[ ∑
j∈Jt

uj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

M∑
t=1

[ ∑
j∈Jt

uj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −

M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m,

which when combined with (2.7) and (2.8) results in

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈J0

uj∇Gj(y) +
∑
k∈K0

wk∇Hk(, y), η(x, y)
})

+

1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈J0

uj∇2Gj(y)

+
∑
k∈K0

wk∇2Hk(y)
}
z
⟩
≥

M∑
t=1

ρ̃t(x, y)∥θ(x, y)∥m.

In view of (iii), this inequality contradicts (2.15). Hence, φ(x) ≥ λ.

(b) - (g) : The proofs are similar to that of part (a).

Theorem 2.5. (Strong Duality) Let x∗ be a normal optimal solution of (P) and assume that any one of the seven
sets of conditions set forth in Theorem 2.4 is satisfied for all feasible solutions of (DI). Then for each z∗ ∈ C(x∗),
there exist u∗, v∗, w∗, and λ∗ such that x∗ is an optimal solution of (DI) and φ(x∗) = λ∗.

Proof
The proof is similar to that of Theorem 2.2.

3. Duality Model II

In this section we discuss two additional duality models for (P ). In these duality formulations, we utilize a partition
of p in addition to those of q and r. This partitioning scheme, which is a slightly extended version of the one
initially proposed by Mond and Weir [6], was used by Yang [13] for formulating a generalized duality model
for a multiobjective fractional programming problem. In our duality theorems, we impose appropriate generalized
(F , β, ϕ, ρ, ζ, θ,m)-sounivexity requirements on certain combinations of the problem functions.

Let {I0, I1, . . . , Iℓ} be a partition of p such that L = {0, 1, 2, . . . , ℓ} ⊂ M = {0, 1, . . . ,M}, and let the real-
valued function ξ → Πt(ξ, u, v, w, λ) be defined, for fixed u, v, w, and λ, on X by

Πt(ξ, u, v, w, λ) =
∑
i∈It

ui[fi(x)− λgi(x)] +
∑
j∈Jt

vjGj(x) +
∑
k∈Kt

wkHk(x), t ∈ M.

Consider the following two problems:

(DII) Maximize λ
subject to

p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y) = 0, (3.1)
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⟨
z,
{ p∑

i=1

ui[∇2fi(y)− λ∇2gi(y)] +

q∑
j=1

vj∇2Gj(y) +

r∑
k=1

wk∇2Hk(y)
}
z
⟩
≥ 0, (3.2)

∑
t∈It

ui[fi(y)− λgi(y)] +
∑
j∈Jt

vjGj(y) +
∑
k∈Kt

wkHk(y) ≥ 0, t ∈ M, (3.3)

∑
j∈Jt

vjGj(y) +
∑
k∈Kt

wkHk(y) ≥ 0, t ∈ L\M, (3.4)

y ∈ X, z ∈ C(y), u ∈ Rp, u ≥ 0,

p∑
i=1

ui = 1, v ∈ Rq
+, w ∈ Rr, λ ∈ R+; (3.5)

(D̃II) Maximize λ

subject to (3.2) - (3.5) and

F
(
x, y;

p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y)
)
≥ 0 for all x ∈ F,

where F(x, y; ·) is a sublinear function from Rn to R.

The feasible set F(DII) (assumed to be nonempty) of (DII) is defined as:

F(DII) =
{
y ∈ X : z ∈ Rn; u ∈ Rp, u ≥ 0,

p∑
i=1

ui = 1; v ∈ Rq
+, vi ≥ 0;w ∈ Rr; λ ∈ R+

}
.

The comments and observations made earlier about the relationship between (DI) and (D̃I) are, of course, also
valid for (DII) and (D̃II).

The following two theorems show that (DII) is a dual problem for (P ).

Theorem 3.1. (Weak Duality) Let x and y be arbitrary feasible solutions of (P) and (DII), respectively.
Furthermore, assume that any one of the following seven sets of hypotheses is satisfied:

(a) (i) for each t ∈ L, ξ → Πt(ξ, u, v, w, λ) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, ϕt is
increasing, and ϕt(0) = 0;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v, w) is (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is increasing, and
ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, y) ≥ 0 for all x ∈ F;
(b) (i) for each t ∈ L, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is

increasing, and ϕt(0) = 0;
(ii) for each t ∈ M \ L, ξ → Λt(ξ, v, w) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, ϕt is

increasing, and ϕt(0) = 0;
(iii)

∑
t∈M ρt(x, y) ≥ 0 for all x ∈ F;

(c) (i) for each t ∈ L, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is
increasing, and ϕt(0) = 0;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v, w) is (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is increasing, and
ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, y) > 0 for all x ∈ F;
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(d) (i) for each t ∈ L1, ξ → Πt(ξ, u, v, w, λ) is strictly (F , β, ϕt, ρt, θ,m)-pseudosounivex at y, for each t ∈
L2, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, and for each t ∈ L, ϕt

is increasing and ϕt(0) = 0, where {L1,L2} is a partition of L;
(ii) for each t ∈ M \ L, ξ → Λt(ξ, v, w) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, ϕt is

increasing, and ϕt(0) = 0;
(iii)

∑
t∈M ρt(x, y) ≥ 0 for all x ∈ F;

(e) (i) for each t ∈ L1 ̸= ∅, ξ → Πt(ξ, u, v, w, λ) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, for
each t ∈ L2, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, and for each
t ∈ L, ϕt is increasing and ϕt(0) = 0, where {L1,L2} is a partition of L;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v, w) is (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is increasing, and
ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, y) ≥ 0 for all x ∈ F;
(f) (i) for each t ∈ L, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, ϕt is

increasing, and ϕt(0) = 0;
(ii) for each t ∈ (M\L)1 ̸= ∅, ξ → Λt(ξ, v, w) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, for

each t ∈ (M\L)2, ξ → Λt(ξ, v, w) is (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, and for each t ∈ L, ϕt

is increasing and ϕt(0) = 0, where {(M\L)1, (M\L)2} is a partition of M\L;
(iii)

∑
t∈M ρt(x, y) ≥ 0 for all x ∈ F;

(g) (i) for each t ∈ L1, ξ → Πt(ξ, u, v, w, λ) is (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, for each t ∈
L2, ξ → Πt(ξ, u, v, w, λ) is prestrictly (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, and for each t ∈ L, ϕt

is increasing and ϕt(0) = 0, where {L1,L2} is a partition of L;
(ii) for each t ∈ (M\L)1, ξ → Λt(z, v, w) is strictly (F , β, ϕt, ρt, ζ, θ,m)-pseudosounivex at y, for each

t ∈ (M\L)2, ξ → Λt(ξ, v, w) is (F , β, ϕt, ρt, ζ, θ,m)-quasisounivex at y, and for each t ∈ M \ L, ϕt

is increasing and ϕt(0) = 0, where {(M\L)1, (M\L)2} is a partition of M\L;
(iii)

∑
t∈M ρt(x, y) ≥ 0 for all x ∈ F;

(iv) L1 ̸= ∅, (M\L)1 ̸= ∅, or
∑

t∈M ρt(x, y) > 0.

Then φ(x) ≥ λ.

Proof
(a) : Suppose to the contrary that φ(x) < λ. This implies that

fi(x)− λgi(x) < 0, i ∈ p.

Since u ≥ 0 and u ̸= 0, we see that for each t ∈ L,∑
i∈It

ui[fi(x)− λgi(x)] ≤ 0. (3.6)

Now using this inequality, we see that for each t ∈ L,

Πt(x, u, v, w, λ) =
∑
i∈It

ui[fi(x)− λgi(x)] +
∑
j∈Jt

vjGj(x) +
∑
k∈Kt

wkHk(x)

≤
∑
i∈It

ui[fi(x)− λgi(x)] (by the primal feasibility of x)

≤ 0 (by (3.6))

≤
∑
i∈It

ui[fi(y)− λgi(y)] +
∑
j∈Jt

vjGj(y) +
∑
k∈Kt

wkHk(y)

(by (3.3))
= Πt(y, u, v, w, λ),
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and hence
ϕt

(
Πt(x, u, v, w, λ)−Πt(y, u, v, w, λ)

)
≤ 0.

Hence, by (i), for each t ∈ L, the above inequality implies that

F
(
x, y;β(x, y)

{∑
i∈It

ui[∇fi(y)− λ∇gi(y)] +
∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
})

+
1

2

⟨
ζ(x, y),

{∑
i∈It

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
}
z
⟩
< −ρt(x, y)∥θ(x, y)∥m.

Summing over t ∈ L and using the sublinearity of F(x, y; ·), we obtain

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +
∑
t∈L

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
]})

+
1

2

⟨
ζ(x, y),

∑
t∈L

{∑
i∈It

ui[∇2fi(y)− λ∇2gi(y)] +
∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
}
z
⟩
< −

∑
t∈L

ρt(x, y)∥θ(x, y)∥m. (3.7)

Proceeding as in the proof of Theorem 2.1, we find that for each t ∈ M\L,

Λt(x, v, w) ≤ Λt(y, v, w),

and so
ϕt

(
Λt(x, v, w)− Λt(y, v, w)

)
≤ 0,

which in view of (ii) implies that

F
(
x, y;β(x, y)

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

[ ∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −ρt(x, y)∥θ(x, y)∥m.

Summing over t ∈ M\L and using the sublinearity of F(x, y; ·), we get

F
(
x, y;β(x, y)

∑
t∈M\L

[ ∑
j∈Jt

vj∇Gj(y) +
∑
k∈Kt

wk∇Hk(y)
])

+
1

2

⟨
ζ(x, y),

∑
t∈M\L

[ ∑
j∈Jt

vj∇2Gj(y)

+
∑
k∈Kt

wk∇2Hk(y)
]
z
⟩
≤ −

∑
t∈M\L

ρt(x, y)∥θ(x, y)∥m. (3.8)

Now combining (3.7) and (3.8) and using (iii), we obtain

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y)
})

+
1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +

q∑
j=1

vj∇2Gj(y)

+

r∑
k=1

wk∇2Hk(y)
}
z
⟩
< −

∑
t∈M

ρt(x, y)∥θ(x, y)∥m ≤ 0. (3.9)
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Now multiplying (3.1) by β(x, y), applying the sublinear function F(x, y; ·) to both sides of the resulting equation,
and then adding the equation to (3.2), we get

F
(
x, y;β(x, y)

{ p∑
i=1

ui[∇fi(y)− λ∇gi(y)] +

q∑
j=1

vj∇Gj(y) +

r∑
k=1

wk∇Hk(y)
})

+
1

2

⟨
ζ(x, y),

{ p∑
i=1

ui[∇2fi(y)− λ∇2gi(y)] +

q∑
j=1

vj∇2Gj(y) +

r∑
k=1

wk∇2Hk(y)
}
z
⟩
≥ 0,

which contradicts (3.9). Therefore, we conclude that φ(x) ≥ λ.
(b) - (g) : The proofs are similar to that of part (a).

Theorem 3.2. (Strong Duality) Let x∗ be a normal optimal solution of (P) and assume that any one of the seven
sets of conditions set forth in Theorem 3.1 is satisfied for all feasible solutions of (DII). Then for each z∗ ∈ C(x∗),
there exist u∗, v∗, w∗, and λ∗ such that x∗ is an optimal solution of (DII) and φ(x∗) = λ∗.

Proof
The proof is similar to that of Theorem 2.2.

4. Concluding Remarks

It seems that the results presented in this paper will prove useful in investigating other related classes on
nonlinear programming problems and applying similar generalized convexity concepts to nonlinear fractional
programming problems, including finite and semiinfinite aspects, for example, a class of semiinfinite minmax
fractional programming problems.
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