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1. Introduction, problem description and preliminaries

The term of entropy was used for the first time in 1865 in Thermodynamics by Rudolf Clausius [7]. Later, scientists
such as Ludwig Boltzmann, Josiah Willard Gibbs and James Clerk Maxwell gave to this concept a statistical basis.
In Probability Theory, the degree of uncertainty to a random variable can also be evaluated using the entropy.
Consequently, the entropy can be used in the study of some risk assessment problems arising in different fields.

The purpose of this paper is to develop, using the classical multiobjective optimization theory, a simultaneous
optimization model involving Shannon entropy and spatial Shannon entropy subject to appropriate and meaningful
constraints. Moreover, by considering the qualitative concept of utility, we extend our model to the case of Beliş-
Guiaşu entropy and spatial Beliş-Guiaşu entropy. Practically, in both cases, we derive an approximation on the
distribution of population densities and the arrangement of urban activities over a set of n locations.

Now, let us introduce our study problem. According to Batty [4], following Batty [3], we shall represent a city as
a set of locations. Also, we assume that: (1) there are n locations, identified by i, with i = 1, ..., n; (2) each location
is a point or an area where urban activities can take place; (3) in each location there exists a number of units of

urban activity; (4) the location identified by i has the size (area) ai and, therefore, A =

n∑
i=1

ai is the total size (area)

of the city. Denote by

N =

n∑
i=1

Ni (1)

the total number of units of urban activity (the total amount of urban activity), where Ni, represents the number of
units of urban acitiviy associated with location i, i = 1, n. If we start with N1, the number of allocations of N1(i.e.,
the number of locations with N1 units of urban activity) if given by

CN1

N =
N !

N1!(N −N1)!
, (2)
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the number of locations with N2 units of urban activity if given by

CN2

N−N1
=

(N −N1)!

N2!(N −N1 −N2)!
(3)

and so on. Making the product
CN1

N · CN2

N−N1
· ... · CNn

N−N1−...−Nn−1
, (4)

we find the total number of arrangements

W =
N !∏n

i=1 Ni!
, (5)

considered as a measure of complexity (W depends by allocations) of the city.

Remark 1.1
i) If the total amount of urban activity N is allocated to Ni, with i ∈ {1, ..., n} fixed, then the measure of

complexity W is equal to 1.

ii) If Ni =
N

n
, i = 1, n, then W varies with respect to the total amount of urban activity N and the number of

locations n.

By maximizing the measure of complexity W (more precisely, the logarithm of W ), we shall find the most
enjoyable arrangement of units of urban activity in that it would provide the greatest possibility of distinct
individual activities associated with the locations i. Usually, such maximizations are subject to appropriate and
meaningful constraints. By a direct computation, using Stirling’s formula, we get

lnW ≈ N + ln(N !)−
n∑

i=1

Ni lnNi. (6)

Taking into account that Ni is a frequency that can be trasformed into a probability pi =
Ni

N
, by substituting the

number of units of urban acitiviy associated with location i in the previous relation (6) and dropping the constant
terms, we find that the number of arrangements W is proportional to Shannon entropy (measure of uncertainty,
Shannon [14])

H = −
n∑

i=1

pi ln pi. (7)

Consequently, to maximize lnW is equivalent with the well-known process of maximizing H .

Remark 1.2
i) When the total amount of urban activity N is equally distributed to locations, that is Ni =

N

n
, i = 1, n, then

pi =
1

n
and H = lnn is at a maximum. Also, let us remark that H varies with n.

ii) If the total amount of urban activity N is allocated to Ni, i ∈ {1, ..., n} fixed, that is N = Ni, i ∈ {1, ..., n}
fixed, then pi = 1 and pj = 0, j ∈ {1, ..., n}, i ̸= j, and H = 0 is at a minimum.

Further, we consider the spatial entropy (for more details, the reader is directed to Batty [3], Batty et al. [5])

S = −
n∑

i=1

pi ln
pi
Ai

, (8)

which takes into account the numbers Ai =
ai
A

, where ai and A are introduced at the beginning of this section. Let

us notice that
n∑

i=1

Ai = 1 and assume that
pi
Ai

is subunitary (otherwise, we must minimize S instead of maximize

it).
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210 OPTIMIZATION ON THE DISTRIBUTION OF POPULATION DENSITIES

Considering the previous mathematical context, the main aim of this paper is to study the following vector
(bi-objective) optimization problem

(V OP ) max
pi

(
−

n∑
i=1

pi ln pi, −
n∑

i=1

pi ln
pi
Ai

)
(9)

subject to

n∑
i=1

pi = 1 (10)

n∑
i=1

piPi = P (11)

n∑
i=1

pici = C (12)

n∑
i=1

pi ln ai = A, (13)

where pi is the probability of finding a place i which has Pi population residing there and ci the travel cost from the
central business district to the zone i. The constraint (10) is a normalization constraint on the probabilities, (11) is
a constraint on the mean population of places, (12) is a constraint on the average travel cost incurred by population
and, finally, (13) is a constraint on the average ”logarithmic” size of locations.

The second objective of this work is to investigate a similar problem which involves the qualitative concept of
utility. The models proposed here can be regarded as an approximation on (i) the distribution of population densities
and (ii) the arrangement of urban activities over a set of n locations.

Next, in order to develop our theory, we will enunciate some elements of multiobjective optimization. Consider
the following convention between two vectors, u = (u1, ..., us) , v = (v1, ..., vs) in Rs

u = v ⇔ ui = vi, u ≤ v ⇔ ui ≤ vi, (14)

u < v ⇔ ui < vi, u ≼ v ⇔ u ≤ v, u ̸= v, i = 1, s,

and the following vector minimization problem

(P ) min f(x) (15)

subject to
x ∈ X := {x ∈ Rn| g(x) ≤ 0} ,

where f : Rn → Rs and g : Rn → Rm are vector-valued functions, defined by f(x) = (f1(x), f2(x), ..., fs(x)) and
g(x) = (g1(x), g2(x), ..., gm(x)), with fi : R

n → R, i ∈ {1, ..., s}, and gj : R
n → R, j ∈ {1, ...,m}, continuously

differentiable functions on Rn. Denote by ▽fi(x) and ▽gj(x) the gradients of fi and gj at x ∈ Rn, respectively,

and by ⟨x, y⟩ =
s∑

i=1

xiyi the inner product of x ∈ Rs and y ∈ Rs.

Definition 1.1
A point x0 ∈ X is said to be an efficient solution to problem (P ) if there is no x ∈ X such that f(x) ≼ f(x0).
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Definition 1.2
A point x0 ∈ X is said to be a weak efficient solution to problem (P ) if there is no x ∈ X such that f(x) < f(x0).

Obviously, if x0 ∈ X is an efficient solution to problem (P ) then x0 is a weak efficient solution to problem (P ).
However, the converse relation does not hold, in general, and practically the concept of efficient solution is more
desirable than that of weak efficient solution.

Theorem 1.1
(Necessary efficiency conditions for (P )) Let x0 ∈ X be any feasible solution to (P ) and suppose that the

generalized Guignard constraint qualification holds at x0 ∈ X . If x0 ∈ X is an efficient solution to (P ), then there
exist the vectors λ ∈ Rs and µ ∈ Rm such that

s∑
i=1

λi ▽ fi(x
0) +

m∑
j=1

µj ▽ gj(x
0) = 0, (16)

⟨µ, g(x0)⟩ = 0,

λ > 0, µ ≥ 0.

Remark 1.3
If the vector minimization problem (P ) contains, in addition, constraints of the type h(x) = 0, with h : Rn → Rl

a continuously differentiable function, then there exists a vector α ∈ Rl such that the first condition in (16) becomes

s∑
i=1

λi ▽ fi(x
0) +

l∑
k=1

αk ▽ hk(x
0) +

m∑
j=1

µj ▽ gj(x
0) = 0. (17)

Let ρ be a real number, C ⊆ Rn, and b : C × C → [0,∞) a function.

Definition 1.3
A differentiable function ϕ : C → R is said to be [strictly] (ρ, b)-quasiinvex at x0 ∈ C with respect to η and θ

if there exist the vector functions η : C × C → Rn and θ : C × C → Rq such that for any x ∈ C, [x ̸= x0], the
following implication holds

ϕ(x) ≤ ϕ(x0) =⇒ b(x, x0)η(x, x0)▽ ϕ(x0) [<] ≤ −ρb(x, x0) ∥ θ(x, x0) ∥2 . (18)

In the above definition, if we replace ” ≤ ” with ” = ”, we obtain the definition of monotonic (ρ, b)-quasiinvexity
at x0 with respect to η and θ.

In the following theorem, we establish, under (ρ, b)-quasiinvexity assumptions, sufficient optimality conditions
for (P ).

Theorem 1.2
(Sufficient efficiency conditions for (P )) Let x0 ∈ X be any feasible solution to (P ) and let there exist the

vectors λ ∈ Rs and µ ∈ Rm such that the conditions (16) are satisfied. If:
(i) each function fi(x), i = 1, s, is (ρ1i , b)-quasiinvex at x0 with respect to η and θ and there exists at least an

index k ∈ {1, ..., s} such that fk(x) is strictly (ρ1k, b)-quasiinvex at x0 with respect to η and θ;
(ii) each function gj(x), j = 1,m, is monotonic (ρ2j , b)-quasiinvex at x0 with respect to η and θ;

(iii)
s∑

i=1

λiρ
1
i +

m∑
j=1

µjρ
2
j ≥ 0,

then x0 ∈ X is an efficient solution to (P ).
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212 OPTIMIZATION ON THE DISTRIBUTION OF POPULATION DENSITIES

Remark 1.4
If the vector minimization problem (P ) contains, in addition, constraints of the type h(x) = 0, with h : Rn → Rl

a continuously differentiable function, then the conditions (i) and (iii) from Theorem 1.2 change as follows:
(i’) each function fi(x), i = 1, s, is (ρ1i , b)-quasiinvex at x0 with respect to η and θ;
(i”) each function hk(x), k = 1, l, is (ρ3k, b)-quasiinvex at x0 with respect to η and θ;
(i”’) one of the functions given in (i’), (i”) is strictly (ρ, b)-quasiinvex at x0 with respect to η and θ, where ρ = ρ1i

or ρ3k,
and, respectively

(iii’)
s∑

i=1

λiρ
1
i +

m∑
j=1

µjρ
2
j +

l∑
k=1

αkρ
3
k ≥ 0.

For more details, other notions and their connections, the reader is addressed to Yu [20], Treanţă and Udrişte
[16], Arana et al. [2], Verma [18], Treanţă [17].

2. Main results

Let us observe that our bi-objective optimization problem (9), subject to (10)− (13), can be rewritten as follows

(V OP ) min
pi

(
n∑

i=1

pi ln pi,

n∑
i=1

pi ln pi −
n∑

i=1

pi lnAi

)

subject to

n∑
i=1

pi = 1,

n∑
i=1

piPi = P ,

n∑
i=1

pici = C,

n∑
i=1

pi ln ai = A.

Taking into account the general context formulated in the previous section (see Theorem 1.1 and Remark 1.3),
now we are in a position to establish and prove the first part of our main results.

Theorem 2.1
If p = (pi), i = 1, n, is a normal efficient solution in (V OP ), then there exist the scalars λ1, λ2, α, β, γ, δ with

λ1 > 0, λ2 > 0, λ1 + λ2 = 1, satisfying

pi = exp [−1− α− (1− λ1) lnA− βPi − γci − (λ1 + δ − 1) ln ai] , (19)

or, equivalently,
pi = K exp [−βPi − γci − (λ1 + δ − 1) ln ai] ,

where K = exp [−1− α− (1− λ1) lnA] is a constant of proportionality which ensures that the probabilities sum is

1. Moreover, the ”negative” measures of complexity H1 = −H =

n∑
i=1

pi ln pi and S1 = −S =

n∑
i=1

pi ln
pi
Ai

, which

are at a minimum for the given set of constraints, simplify to

H1 = −1− α− (1− λ1) lnA− βP − γC − (λ1 + δ − 1)A, (20)

S1 = −1− α+ λ1 lnA− βP − γC − (λ1 + δ)A.
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Proof
Having in mind the general mathematical framework formulated in Theorem 1.1 and Remark 1.3 of section 1,

we introduce the Lagrangian

L (pi;λ1, α, β, γ, δ) =

n∑
i=1

pi ln pi + (λ1 − 1)

n∑
i=1

pi lnAi + α

(
n∑

i=1

pi − 1

)

+β

(
n∑

i=1

piPi − P

)
+ γ

(
n∑

i=1

pici − C

)
+ δ

(
n∑

i=1

pi ln ai −A

)
and, by imposing the necessary conditions of efficiency, we get

1 + ln pi + (λ1 − 1) lnAi + α+ βPi + γci + δ ln ai = 0,

or, equivalently,
pi = exp [−1− α− (1− λ1) lnA− βPi − γci − (λ1 + δ − 1) ln ai]

= K exp [−βPi − γci − (λ1 + δ − 1) ln ai] ,

where K = exp [−1− α− (1− λ1) lnA] is a constant of proportionality which ensures that the probabilities sum
is 1.

If we substitute the probability in (19) into the ”negative” Shannon entropy H1 =

n∑
i=1

pi ln pi and into the

”negative” spatial Shannon entropy S1 =

n∑
i=1

pi ln
pi
Ai

, by a direct computation, we obtain the ”negative” measures

of complexity in (20) and the proof is complete.

Over the past years, in order to correlate the quantitative concept of information with the qualitative concept
of utility, many researchers (see, for instance, Beliş and Guiaşu [6], Longo [12], Kapur [9], [10]) have introduced
several weighted information measures. Given the context in which we are, these weighted measures of information
become very important (they take into account both the probabilities with which certain random events occur and,
also, some qualitative characteristics of these events). Thus, according to Beliş and Guiaşu [6], let ui be the weight
associated to an elementary event with probability pi (in our case, an elementary event is the finding of a place
i which has Pi population residing there and ci the travel cost from the central business district to the zone i).
Consider the weight ui as a finite, positive real number representing the relevance, the significance or the utility
of the occurrence of an event with probability pi. If ui > uj , then the event with weight ui (and probability pi) is
strictly more significant, more useful or more relevant than the event with weight uj (and probability pj), where
i, j ∈ {1, ..., n}, i ̸= j.

Using the previous utilities (weights), let us introduce the following weighted bi-objective optimization problem

(V OP )∗ min
pi

(
n∑

i=1

uipi ln pi,

n∑
i=1

uipi ln pi −
n∑

i=1

uipi lnAi

)
(21)

subject to

n∑
i=1

pi = 1,

n∑
i=1

uipi = P̃ ,

n∑
i=1

piPi = P , (22)

n∑
i=1

pi ln ai = A,

n∑
i=1

uipi ln ai = Ã,

n∑
i=1

pici = C.
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Remark 2.1
i) The above minimum is computed for fixed utility distributions.

ii) There are two additional constraints in (V OP )∗ compared to (V OP ): the constraint
n∑

i=1

uipi = P̃ on the

relevance of the weights ui (of course, if u1 = u2 = · · · = un := u, we get P̃ = u and further, if u = 1, we find the
first constraint in (V OP )∗; therefore, for generality, we shall consider the weights ui as different, finite, positive

real numbers) and the constraint
n∑

i=1

uipi ln ai = Ã on the weighted average ”logarithmic” size of locations.

Now, we shall formulate and prove the second part of our main results.

Theorem 2.2
If p = (pi), i = 1, n, is a normal efficient solution in (V OP )∗, then there exist the scalars λ1, λ2, α, β, γ, δ, θ and

τ , with λ1, λ2 > 0, λ1 + λ2 = 1, satisfying

pi = exp [−ui − ui (λ1 − 1 + θ) ln ai − ui (1− λ1) lnA− α− βui − γPi − δ ln ai − τci] /ui. (23)

Moreover, the ”negative” measures of complexity H∗
1 =

n∑
i=1

uipi ln pi and S∗
1 =

n∑
i=1

uipi ln
pi
Ai

, which are at a

minimum for the given set of constraints, simplify to

H∗
1 = [(λ1 − 1) lnA− 1− β] P̃ − (λ1 − 1− θ) Ã− α− γP − τC − δA, (24)

S∗
1 = (λ1 lnA− 1− β) P̃ − (λ1 − θ) Ã− α− γP − τC − δA.

Proof
The proof follows in the same manner as in Theorem 2.1. Consider the Lagrangian

L (pi;λ1, α, β, γ, δ, θ, τ) =

n∑
i=1

uipi ln pi + (λ1 − 1)

n∑
i=1

uipi lnAi + α

(
n∑

i=1

pi − 1

)

+β

(
n∑

i=1

uipi − P̃

)
+ γ

(
n∑

i=1

piPi − P

)
+ δ

(
n∑

i=1

pi ln ai −A

)

+θ

(
n∑

i=1

uipi ln ai − Ã

)
+ τ

(
n∑

i=1

pici − C

)
.

Applying the necessary conditions of efficiency, by a direct computation, we find

ui + ui ln pi + ui (λ1 − 1) lnAi + α+ βui + γPi + δ ln ai + θui ln ai + τci = 0,

which, equivalently written, is (23). Replacing the probability in (23) into the ”negative” Beliş-Guiaşu entropy

H∗
1 =

n∑
i=1

uipi ln pi and into the ”negative” spatial Beliş-Guiaşu entropy S∗
1 =

n∑
i=1

uipi ln
pi
Ai

, by a direct

computation, we obtain the ”negative” measures of complexity in (24) and the proof is complete.

Further, let us consider the following notations:

f1(p) =

n∑
i=1

pi ln pi, f2(p) =

n∑
i=1

pi ln pi −
n∑

i=1

pi lnAi, (25)
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h1(p) =

n∑
i=1

pi − 1, h2(p) =

n∑
i=1

piPi − P ,

h3(p) =

n∑
i=1

pici − C, h4(p) =

n∑
i=1

pi ln ai −A.

As it can be verified, all of these functions are (ρ, 1)-quasiinvex at p0, for ρ ≤ 0 and any vector function θ = θ(p, p0)
(see Definition 1.3), with respect to:

η1(p, p0) =
(
η11(p, p

0), · · · , η1n(p, p0)
)
=

(
p1 ln p1 − p01 ln p

0
1

1 + ln p01
, · · · , pn ln pn − p0n ln p

0
n

1 + ln p0n

)
, (26)

η2(p, p0) =
(
η21(p, p

0), · · · , η2n(p, p0)
)
=

p1 ln
p1

A1
− p01 ln

p0
1

A1

1 + ln
p0
1

A1

, · · · ,
pn ln

pn

An
− p0n ln

p0
n

An

1 + ln
p0
n

An

 ,

ηr(p, p0) =
(
ηr1(p, p

0), · · · , ηrn(p, p0)
)
=
(
p1 − p01, · · · , pn − p0n

)
, r = 3, 4, 5, 6,

where η1 is the vector function associated with f1, η2 is the vector function associated with f2, η3 is the vector
function associated with h1, and so on.

The following result formulates some sufficient conditions of efficiency for our vector minimization problem
(V OP ).

Theorem 2.3
Let p0 = (p0i ), i = 1, n, be any feasible solution to (V OP ) and let there exist the scalars λ1, λ2, α, β, γ, δ with

λ1 > 0, λ2 > 0, λ1 + λ2 = 1, satisfying

p0i = exp [−1− α− (1− λ1) lnA− βPi − γci − (λ1 + δ − 1) ln ai] .

If at least one of the functions defined in (25) is strictly (ρ, b)-quasiinvex at p0 with respect to η and θ, and

λ1ρ
1
1 + λ2ρ

1
2 + αρ31 + βρ32 + γρ33 + δρ34 ≥ 0,

then p0 is an efficient solution to (V OP ).

Proof
First, we have to mention that the real numbers ρ1i , i = 1, 2, and ρ3k, k = 1, 4, introduced in our theorem, have

the same siqnificance as in Remark 1.4 of section 1.
As we have previously established, the functions given in (25) are (ρ, 1)-quasiinvex at p0, for ρ ≤ 0 and any

vector function θ = θ(p, p0), with respect to the vector functions η = η(p, p0) formulated in (26), respectively.
As well, we notice that, if we consider ρ < 0 and θ ̸= 0, then we obtain strictly (ρ, 1)-quasiinvexity at p0 with
respect to η and θ for our functions in (25). Consequently, we have at least one function in (25) which is strictly
(ρ, b)-quasiinvex at p0 with respect to η and θ.

Further, taking into account Theorem 1.2 and Remark 1.4 of section 1 (see conditions (iii) and (iii′)), the proof
is complete.

In a similar way, one can find a characterization result of sufficient conditions regarding the weighted bi-objective
optimization problem (V OP )∗.

As it can be verified, all of the following functions

f1(p) =

n∑
i=1

uipi ln pi, f2(p) =

n∑
i=1

uipi ln pi −
n∑

i=1

uipi lnAi, (27)

h1(p) =

n∑
i=1

pi − 1, h2(p) =

n∑
i=1

uipi − P̃ ,
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h3(p) =

n∑
i=1

piPi − P , h4(p) =

n∑
i=1

pi ln ai −A,

h5(p) =

n∑
i=1

uipi ln ai − Ã, h6(p) =

n∑
i=1

pici − C,

are (ρ, 1)-quasiinvex at p0, for ρ ≤ 0 and any vector function θ = θ(p, p0), with respect to

η1(p, p0) =
(
η11(p, p

0), · · · , η1n(p, p0)
)
=

(
p1 ln p1 − p01 ln p

0
1

1 + ln p01
, · · · , pn ln pn − p0n ln p

0
n

1 + ln p0n

)
, (28)

η2(p, p0) =
(
η21(p, p

0), · · · , η2n(p, p0)
)
=

p1 ln
p1

A1
− p01 ln

p0
1

A1

1 + ln
p0
1

A1

, · · · ,
pn ln

pn

An
− p0n ln

p0
n

An

1 + ln
p0
n

An

 ,

ηr(p, p0) =
(
ηr1(p, p

0), · · · , ηrn(p, p0)
)
=
(
p1 − p01, · · · , pn − p0n

)
, r = 3, 8,

respectively. Also, if we consider ρ < 0 and θ ̸= 0, then we obtain strict (ρ, 1)-quasiinvexity at p0 with respect to η
and θ for our functions in (27).

Theorem 2.4
Let p0 = (p0i ), i = 1, n, be any feasible solution to (V OP )∗ and let there exist the scalars λ1, λ2, α, β, γ, δ, θ and

τ , with λ1, λ2 > 0, λ1 + λ2 = 1, satisfying

p0i = exp [−ui − ui (λ1 − 1 + θ) ln ai − ui (1− λ1) lnA− α− βui − γPi − δ ln ai − τci] /ui.

If at least one of the functions defined in (27) is strictly (ρ, b)-quasiinvex at p0 with respect to η and θ, and

λ1ρ
1
1 + λ2ρ

1
2 + αρ31 + βρ32 + γρ33 + δρ34 + θρ35 + τρ36 ≥ 0,

then p0 is an efficient solution to (V OP )∗.

Proof
The proof follows in the same manner as in Theorem 2.3.

Remark 2.2
i) If we consider Ai = ai, i = 1, n, (see section 1) in the bi-objective minimization problem (V OP ), then we

get

min
pi

(
n∑

i=1

pi ln pi,

n∑
i=1

pi ln pi −A

)
(29)

subject to

n∑
i=1

pi = 1,

n∑
i=1

piPi = P ,

n∑
i=1

pici = C,

where we used the constraint
n∑

i=1

pi ln ai =

n∑
i=1

pi lnAi = A. Therefore, our constrained multi-objective

optimization problem (V OP ) become a single-objective optimization problem because the two objective functions
differ by a constant.

ii) If we take Ai = ai, i = 1, n, and remove the constraint
n∑

i=1

pi ln ai = A in the minimization problem (V OP ),

then we obtain

min
pi

(
n∑

i=1

pi ln pi,

n∑
i=1

pi ln pi −
n∑

i=1

pi ln ai

)
(30)
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subject to

n∑
i=1

pi = 1,

n∑
i=1

piPi = P ,

n∑
i=1

pici = C,

a freestanding constrained bi-objective minimization problem. By imposing the necessary conditions of efficiency,
we get

pi = exp [−1− α− βPi − γci − (λ1 − 1) ln ai] (31)

= K exp [−βPi − γci − (λ1 − 1) ln ai] ,

where K = exp [−1− α] is a constant of proportionality which ensures that the probabilities sum is 1. The

associated ”negative” measures of complexity H1 = −H =

n∑
i=1

pi ln pi and S1 = −S =

n∑
i=1

pi ln
pi
ai

, which are

at a minimum for the given set of constraints, simplify to

H1 = −1− α− βP − γC − (λ1 − 1)

n∑
i=1

pi ln ai, (32)

S1 = −1− α− βP − γC − λ1

n∑
i=1

pi ln ai.

Also, let us notice that the assumption Ai = ai, i = 1, n, ensures that the fraction
pi
Ai

always remains subunitary.

iii) Let us consider the second objective function in (V OP ), f2(p) =
n∑

i=1

pi ln pi −
n∑

i=1

pi lnAi. Taking into

account the constraints
n∑

i=1

pi ln ai = A,

n∑
i=1

pi = 1 and the relation Ai =
ai
A
, i = 1, n (see section 1), we find

f2(p) =

n∑
i=1

pi ln pi −
n∑

i=1

pi ln ai +

n∑
i=1

pi lnA (33)

= f1(p)−A+ lnA = f1(p) + const.,

that is, the two objective functions differ by a constant and (V OP ) become a single-objective optimization
problem. Consequently, the general case is obtained when we consider Ai = ai, i = 1, n, and remove the constraint
n∑

i=1

pi ln ai = A in the minimization problem (V OP ) (see ii)).

iv) Similar remarks as above can be formulated for (V OP )∗.

3. Conclusions

In the present work, using the classical multiobjective optimization theory, we have investigated a simultaneous
optimization of the information measures given in (7) and (8) and of the weighted measures of information given

by Beliş-Guiaşu entropy H∗ = −
n∑

i=1

uipi ln pi and spatial Beliş-Guiaşu entropy S∗ = −
n∑

i=1

uipi ln
pi
Ai

. However,

what is of more significant here is the kind of distribution that we have obtained. Practically, we have derived an
approximation on the distribution of population densities and the arrangement of urban activities over a set of n
locations. For other different ideas but connected to this topic (information theory), the reader is directed to Wilson
[19], Preda [13], Anas [1], Halliwell and Mercer [8], Liese and Vajda [11], Srivastava [15].
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