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POT approach for estimation of extreme risk measures of EUR/USD returns
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Abstract Leadbeter et al (M.R.,G.Leadbetter, G.Lindgren,and H.Rootzen, Extremes and Related Properties of Random
Sequences and Processes, Springer Series in Statistics. Springer-Verlag: New York, 1983.) have generalized the extreme
value theory of i.i.d. in the case of the stationary process, where it have defined an extremal index θ ∈]0, 1[ for measuring the
degree of dependence at the extremes, this parameter measures how the extremes cluster together and 1/θ is interpreted as
the average size of these clusters. Using this parameter and the Peak Over Threshold method which involves the Generalized
Pareto Distribution we estimate in this work the extreme quantile and the conditional tail expectation for EUR/USD returns.
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1. Introduction

The risk assessment have assumed important profiles in many financial institutions. Value-at-Risk (VaR) is probably
one of the most widely used measures of risk. If X is a random variable of loss with continuous df F (x), and p
be a probability level such that 0 < p < 1, the Value-at-Risk at probability level p, denoted by V aRp(X), is the
p-quantile of X . That is

V aRp(X) = F−1(p).

The probability level p is usually taken to be close to 1 (say, 0.95, 0.99 or 0.999).

A drawback of VaR is that it only makes use of the cut-off point corresponding to the probability level p and
does not use any information about the tail distribution beyond this point, it has also been criticized for lacking a
certain property that desirable risk measures should meet to be a coherent risk measure (see Artzner et al [1].

The conditional tail expectation (CTE) corrects for this. The idea of the CTE is to measure the average severity
of the loss when the extreme loss does occurs, where the extreme loss is represented by the VaR. Formally, the
CTE of the random variable X at probability level p is defined as

CTEp(X) = E[X|X > V aRp(X)]

Let the order statistic X1:n ≤ X2:n ≤ . . . ≤ Xn:n associated to the sample (X1, X2, . . . , Xn) of X . The empirical
estimate of V aRp(X) is
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V̂ aR
emp

p (X) = X[np]:n, (1)

and the empirical estimate of CTEp(X) is

ĈTE
emp

p (X) =
1

1− p

 1

n

n∑
k=[np]+1

Xk:n +

(
[np]

n
− p

)
X[np]:n


(see Rachev et al [8]), where [x] is the integer part of x.

The approach of using V̂ aR
emp

p is a poor method in the tail of the distribution where data become sparse and it

is impossible to obtain an out-of-sample VaR estimate with V̂ aR
emp

p .
We can extrapolate VaR and CTE from a high threshold using the POT (Peak Over Threshold) method based on

extreme value theory in order to characterize the tail of loss.
The extreme values are based on the assumption that the data are i.i.d. random variables. However, in reality

extremal events tend to occur in clusters because of the serial dependence in the data. It is interesting to extend the
POT method to cases in which the data form a strictly stationary time series. The basic concept of the extension is
the extremal index which is a measure of tail dependence.

2. POT method

The modelling of extremes may be done in two different ways: modelling the maximum of a collection of random
variables, and modelling the largest values over some high threshold.

The Fisher-Tippett theorem is one of two fundamental theorems in EVT (Extreme Value theory). It plays the
same role as the Central Limit Theorem plays in the studies of sums of a random variables.

Theorem 1 (Fisher-Tippett [5])
Let (Xn) be a sequence of i.i.d. random variables with distribution F . Let Mn = max (X1, . . . , Xn). If there exist
norming constants cn > 0 and dn ∈ R and some non-degenerate distribution function G such that

Mn − dn
cn

D−→ G, (2)

then G is one of the following three types :

(i) Gumbel
Λ(x) = exp(−e−x), x ∈ R,

(ii) Fréchet

Φα(x) =

{
0, x ≤ 0
exp(−x−α), x > 0, α > 0,

(iii) Weibull

Ψα(x) =

{
exp(−(−x)α) x ≤ 0, α > 0
1, x > 0.

It is possible to combine these three laws in a single form using the parametrization of Jenkinson and von Mises.
The unified form is as follows:

Gξ(x) =

{
exp(−(1 + ξx)−1/ξ) if ξ ̸= 0
exp(− exp(−x)) if ξ = 0
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where the parameter ξ is called a shape parameter or an extreme value index and the support of Gξ(x)
corresponds to

x > −ξ−1 for ξ > 0,
x < −ξ−1 for ξ < 0,
x ∈ R for ξ = 0.

However, account must be taken of the location µ ∈ R and scale σ > 0 of the distribution. By including these
parameters, this formulation can be synthesized in the form of the distribution family, called the Generalized
Extreme Value (GEV) distribution.

Gξ,µ,σ(x) =

{
exp(−(1 + ξ(x− µ)/σ)−1/ξ) if ξ ̸= 0
exp(− exp(−(x− µ)/σ)) if ξ = 0

(3)

where 1 + ξ(x− µ)/σ > 0. We distingue the following three cases ξ = α−1 > 0 corresponds to the distribution
of Fréchet, ξ = 0 corresponds to the distribution of Gumbel and ξ = −α−1 < 0 corresponds to the distribution of
Weibull.

The more modern approach to modelling extreme events is to attempt to focus not only the largest (maximum)
events, but on all events greater than some large preset threshold. This is referred to as peaks over threshold
(POT) modelling, for this method we will discuss about the parametric approach based on the generalized Pareto
distribution (GPD) given by

Hξ,β(x) =

{
1− (1 + ξx

β )−1/ξ if ξ ̸= 0

1− exp(− x
β ) if ξ = 0

(4)

where
x ≥ 0 if ξ ≥ 0,

0 ≤ x < −β
ξ if ξ < 0

Let X ∼ F with right-end-point xF = sup{x ∈ R; F (x) < 1}. For any high threshold u < xF define the excess
distribution function

Fu(x) = P[X − u ≤ x|X > u], 0 ≤ x < xF − u

=
F (u+ x)− F (u)

1− F (u)

(5)

The mean excess function of X is then

e(u) = E[X − u|X > u]

Balkema and de Haan [2] proved that for a sequence X1, . . . , Xn of i.i.d. random variables, the distribution
Fu(x) converge to the generalized Pareto distribution Hξ,β(x). The convergence can be described by the following
expression

lim
u→xF

sup
0<x<xF−u

|Fu(x)−Hξ,β(x)| = 0 (6)

Note that by (5) above for x > u, we may write

F̄ (x) = F̄ (u)F̄u(x− u)

Assuming that u is sufficiently large, we may then use the approximation (6) and the empirical estimator, for F̄ (u),

̂̄F (u) =
N

n
; N =

n∑
i=1

1{Xi>u},
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and where n is the total number of observations. The upper tail of F (x) for all x > u may then be estimated by

̂̄F (x) =
N

n

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

(7)

To obtain the estimator of V aRp, one simply inverts the estimator (7), which yields

V̂ aR
iid

p = u+
β̂

ξ̂

(( n

N
(1− p)

)−ξ̂

− 1

)
, (8)

The parameters estimation ξ̂ and β̂ can be founded by maximum likelihood (see Embrechts et al [4]).
Furthermore, for ξ < 1 we obtain the following CTE estimator

ĈTE
iid

p =
V̂ aR

iid

p

1− ξ̂
+

β̂ − ξ̂u

1− ξ̂
(9)

3. The Extremal Index

The main assumption in EVT is that the extreme observations are independent and identically distributed. This is
not always fulfilled when working with real data.

Primary result incorporating dependence in the extremes is summarized in Leadbetter et al [7]. For a strictly
stationary time series (Xi) under some regularity conditions for the tail of F and for some suitable constants
cn > 0 and dn ∈ R, as the sample size n → ∞

Mn − dn
cn

D−→ (G)θ, (10)

where θ ∈]0, 1[ is the extremal index and G is the GEV distribution defined in (2). The extremal index θ is the
key parameter extending extreme value theory from i.i.d. random processes to stationary time series and influences
the frequency with which extreme events arrive as well as the clustering characteristics of an extreme event. The
quantity 1/θ has a convenient heuristic interpretation, as it may be thought of as the mean cluster size of extreme
values in a large sample.

As a consequence, the maximum of n observations of a stationary series with an extremal index θ behaves like
the maximum of nθ observations of the i.i.d. associated series with the same mariginal distribution.

The problem of estimating θ has received some attention in the literature ( see Smith and Weissman [9],
Weissman and Novak [11], Ferro and Segers [6]), Süveges [10] presents the maximum likelihood estimator as

θ̂ML =

N∑
i=1

qSi +N − 1 +Nc −

(N−1∑
i=1

qSiN − 1 +Nc

)2

− 8Nc

N−1∑
i=1

qSi

1/2

2

N−1∑
i=1

qSi

(11)

where Si = Ti − 1, with Ti are the inter-exceedance times and N is the number of exceedances of a high
threshold u and q is the estimate of F̄ (u), and NC =

∑N−1
i=1 1{Si ̸=0}.

Stat., Optim. Inf. Comput. Vol. 6, June 2018



244 POT APPROACH FOR ESTIMATION OF EXTREME RISK MEASURES OF EUR/USD RETURNS

0 1000 2000 3000

0.
8

1.
0

1.
2

1.
4

1.
6

E
U

R
/U

S
D

 e
xc

ha
ng

e 
ra

te

0 1000 2000 3000

−
2

−
1

0
1

2
3

R
et

ur
ns

Figure 1: Exchange rate series of EUR/USD Figure 2: Returns of EUR/USD

An important property in practice is that one can first adjust a GPD as if the data were i.i.d., then estimate θ.
Coles [3] generalized the extreme quantile estimator (8) to the dependent case with a high threshold u > 0 as
follows

V̂ aR
dep

p = u+
β̂

ξ̂

(nθ̂(1− p)

N

)−ξ̂

− 1

 (12)

Then we have

ĈTE
dep

p =
V̂ aR

dep

p

1− ξ̂
+

β̂ − ξ̂u

1− ξ̂
(13)

4. Data Analysis

The analysis of actual financial data such as the value of an exchange rate, or financial indices is very complex
because of the influence of several factors. Many of these series appear heteroscedastic, they are not stationary.

If we have a series (Xi), i = 1, . . . , n, then we define the returns by

Ri = 100× (log(Xi+1)− log(Xi)), i = 1, . . . , n− 1,

we will treat, as an example, the daily returns for the exchange rate EUR/USD during the period from
06/09/1999 to 24/03/2014, the 3796 observations are shown in figure 1. The data, taken from the website
”https://fr.investing.com/currencies/eur-usd-historical-data”.

The corresponding 3795 returns in figure 2, showing the non-regularity of the increases and the appearance of
a number of extreme positive and negative variations. The series of returns whose statistical characteristics are
summarized in the table 1, is distributed in figure 3.
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Figure 3: Distribution of EUR/USD returns Figure 4: qq plot of EUR/USD returns

Mean 0.007071

Standard deviation 0.6506757

Min −2.731

Max 3.44

1st Qu −0.3743

3rd Qu 0.3814

Median 0.01086
Table 1. Empirical characteristics of EUR/USD returns

The value of the kurtosis of this financial series is 4.227 > 3, which would lead to the invalidity of the Gaussian
fit. The qq-plot in the figure 4 shows a clear deviation from the right direction especially at the extremities. On the
other hand, the p− value of the Shapiro-Wilk test statistic is 3.979× 10−16, thus confirming the rejection of the
assumption that the returns would normally be distributed.

To fit the GPD to the threshold excesses of the returns series we first make a subjective choice of an appropriate
threshold value.

On the figure 5, we plot the sample mean excess estimates{(
u,

1

N

N∑
i=1

(Xi − u), u < Xmax

)}
where X1, . . . , XN consist of the N observations that exceed u and Xmax is the largest of the Xi. We look for

the point u such that the plot is a straight line passed this point. However, we know that when u is too high, the
mean excess function is poorly estimated, so it is not relevant to look at it for these points. We notice a slope break
from the 0.9 point, which leads to a straight line. This point is therefore the optimal threshold for the mean excess
function.
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Figure 5: The mean excess function Figure 6: Threshold Choice plot

For different thresholds u, the maximum likelihood estimates for the shape and the modified scale parameter
(modified by subtracting the shape multiplied by the threshold) are plotted against the thresholds (see figure 6.
If the threshold u is a valid threshold to be used for peaks over threshold modelling, the parameter estimates
depicted should be approximately constant above u. Based on figure 6, we choose the threshold u = 0.9 because
the parameter estimates are approximately constant above 0.9.

The results of maximum likelihood estimation of the GPD parameters (with the chosen threshold u = 0.9) are
β̂ = 0.3542872 and ξ̂ = 0.04823426.

Now we estimate the extremal index using the estimator (11) with u = 0.9 we find θ̂ML = 0.9117315, and we
estimate V aRiid

p , CTEiid
p , V aRdep

p and CTEdep
p . By way of comparison, the empirical quantiles and the empirical

CTE of the returns are also presented in the following table

p 0.95 0.99 0.999

V̂ aR
emp

p 1.060574 1.677017 2.606811
ĈTE

emp

p 1.440882 2.082713 2.928904

V̂ aR
iid

p 1.061674 1.667644 2.620619

ĈTE
iid

p 1.442109 2.07879 3.08006

V̂ aR
dep

p 1.095209 1.703886 2.661118

ĈTE
dem

p 1.477344 2.116868 3.122612
Table 2. Estimation of extreme quantiles and CTE of the returns.

The V̂ aR
iid

p and V̂ aR
dep

p are higher than the V̂ aR
emp

p . We can say that the VaR estimators using the POT method

is more relevant because it involves a larger number of points in the calculations. In fact, the V̂ aR
emp

p take into
account only one data item, namely the greatest loss, while the POT approach takes into account all the values
above a high threshold.
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As expected the V̂ aR
dep

p and ĈTE
dep

p are higher than V̂ aR
iid

p and ĈTE
iid

p when the extremal index is neglected.

5. Conclusion

The advantage of the POT method is that we do not impose a strong hypothesis on the initial distribution. It allows
us to establish explicit and simple relationships between VaR and CTE. These latter can serve as an indicator of
extreme risk, through GPD model which fits tail distribution of the daily returns of EUR/USD more accurately. To
not underestimate the VaR and CTE it is necessary to take into account in the POT method the extremal index .

Nevertheless, the estimators obtained by the POT method are often sensitive to the choice of the threshold, which
is the reason why we must choose it well.
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