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Abstract Time series, especially those with the cubic trend component, are encountered in many data analysis situations.
The decomposition of such series into various components requires a method that can adequately estimate the cubic trend
as well as other components of the series. In this study, the chain base, fixed base and classical methods of decomposition
of time series with the cubic trend component are discussed with emphasis on the additive model. Chain base and fixed
base estimators of the additive model parameters are derived. Basic properties of these two classes of estimators are equally
determined. The derived chain base variables have the autocorrelation structure of an invertible third-order moving average
model. The chain base estimators are found to be pairwise-negatively correlated estimators. Though the classical method
and chain base method are both used for time series decomposition, the chain base method is recommended when a case of
multicollinearity has been established.
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1. Introduction

One of the tasks frequently performed by time series analysts is the decomposition of a given time series into
its various components. The classical decomposition method is the first known method of decomposing time
series. Its application is often predicated on the additive and multiplicative models. The objectives of the classical
decomposition method have been mentioned in numerous studies. It helps us to investigate the presence of trend,
seasonal and cyclical effects in a time series. Estimates of the four components of time series which include trend,
seasonal, cyclical and irregular components are found with the help of this method . Classical decomposition
models are also used for short term forecasting.

Inspite of its uses, the classical decomposition method has some limitations. Notable among the demerits is
the tedious nature of the method since the components are estimated one after the other. Another disadvantage
of this method is its frequent poor forecasting performance [3, 6]. The least squares estimation procedure, which
is used to estimate the trend component of a series in the classical decomposition approach, may not be reliable
in the presence of multicollinearity. The high level of multicollinearity between two or more powers of the time
variable(t) in a polynomial trend model often results in wrong inferences and model selection based on the least
squares estimates of the concerned parameters [4, 24]. As a consequence, the Buys-Ballot estimation procedure
proposed in [12], which is capable of yielding estimates that are robust to multicollinearity, is considered when
the multicollinearity problem exists [21]. The Buys-Ballot approach is primarily used for the decomposition
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of a relatively short series such that the trend and cyclical components are jointly estimated. The additive and
multiplicative Buys-Ballot decomposition models are stated in Equations (1) and (2) respectively:

Xt = Mt + St + et (1)

Xt = MtStet (2)

where Xt is the observed value of the time series at time t, Mt is the trend- cycle component at time t, St is the
seasonal component at t and et is the irregular component or the error term at time t. In (1), et ∼ N(0, σ2

1) while
in (2), et ∼ N(1, σ2

2).

Apart from the work of [12] in which the chain base and fixed base estimation techniques were used in
accordance with the linear trend-cycle component, the additive and multiplicative models, several studies have
been subsequently undertaken within the context of the Buys-Ballot method of analysing time series data. In this
regard, [17] developed the Buys-Ballot procedure of analysing time series data with the quadratic trend-cycle
component. Their specific contributions include the derivation of the chain base and fixed base estimators of the
parameters of each of the additive and multiplicative models. The Buys-Ballot estimates for exponential and s-
shaped curves were derived in [13]. Certain properties of the chain base and fixed estimators have been discussed
with respect to the linear trend-cycle. The unbiasedness and consistency of both estimators were established in
[15]. According to [16], if the trend-cycle component is linear, only the derived chain base variables are stationary
with the autocorrelation structure of the moving average process of order one. These authors equally found the best
linear unbiased estimate of the slope parameter using the variables associated with the chain base estimation. Works
carried out in other areas of research interest in the Buys-Ballot Method include the development of the procedures
through which one can determine when each of the additive and multiplicative models should be considered [14],
test for the presence of seasonal variations [22] and the influence of the mis-specification of error distribution on
the prediction accuracy of the fitted Buy-Ballot model [21].

Though the trends in many time series can be represented by the linear , quadratic trend or exponential trend
models, there are cases where the cubic time trend model is inevitably applicable [3, 1]. In particular, the cubic
trend model has found applications in Agronomy [19], Computational Statistics [11], Epidermology [20], Fishery
[8], Meteorology [9] and Psychology [25, 18].

Motivated by the wide applicability of the cubic trend model and robustness of the Buys-Ballot method to
multicollinearity, in this study, we discuss the Buys-Ballot method of decomposing a time series with a cubic trend-
cycle component. The chain base and fixed base estimators of the parameters of the cubic trend-cyle component
and seasonal component of the additive model are derived. We also pay attention to the properties of the derived
estimators of the parameters of the cubic trend-cycle component. The subsequent parts of this work are arranged
in the following manner. Section 2 deals with the overview of the least squares estimation of the parameters of the
cubic trend model. The theoretical results on the Buys-Ballot method are presented in Section 3. Section 4 deals
with the properties of the estimators derived in Section 3. In Section 5, we apply the results in Section 3 to real
life time series data. Also considered in this section, is the comparison of the prediction performances of the fitted
additive Buys-ballot model and the model based on the least squares approach. The conclusion of this work is given
in Section 5.

2. Overview of the Cubic Trend Estimation by Least Squares Method

Let {Xt} and {Tt} denote a given time series and the corresponding cubic trend model such that

Tt =

3∑
r=0

art
r, r = 0, 1, 2, 3. (3)
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Suppose the least squares estimator of Tt is

T̂t =

3∑
r=0

ârt
r, r = 0, 1, 2, 3. (4)

Then the least squares estimators â0, â1, â2 and â3 of a0, a1, a2 and a3 respectively, minimise the sum of squared
deviations (S) of Xt from T̂t. For S =

∑n
t=1(Xt − T̂t)

2, we evaluate ∂S
∂âr

= 0 to obtain the normal equations:

â0n+ â1

n∑
t=1

t+ â2

n∑
t=1

t2 + â3

n∑
t=1

t3 =

n∑
t=1

Xt, (5)

â0

n∑
t=1

t+ â1

n∑
t=1

t2 + â2

n∑
t=1

t3 + â3

n∑
t=1

t4 =

n∑
t=1

tXt, (6)

â0

n∑
t=1

t2 + â1

n∑
t=1

t3 + â2

n∑
t=1

t4 + â3

n∑
t=1

t5 =

n∑
t=1

t2Xt, (7)

â0

n∑
t=1

t3 + â1

n∑
t=1

t4 + â2

n∑
t=1

t5 + â3

n∑
t=1

t6 =

n∑
t=1

t3Xt. (8)

In matrix form, the system of linear equations in (5), (6), (7) and (8) becomes

B = A−1D, (9)

where

B=


â0
â1
â2
â3.

, A=


n

∑n
t=1 t

∑n
t=1 t

2
∑n

t=1 t
3∑n

t=1 t
∑n

t=1 t
2

∑n
t=1 t

3
∑n

t=1 t
4∑n

t=1 t
2

∑n
t=1 t

3
∑n

t=1 t
4

∑n
t=1 t

5∑n
t=1 t

3
∑n

t=1 t
4

∑n
t=1 t

5
∑n

t=1 t
6

 and D=


∑n

t=1 Xt∑n
t=1 tXt∑n
t=1 t

2Xt∑n
t=1 t

3Xt

.

The estimated variance-covarinace matrix for the estimators is

V (B) = σ̂2A−1 (10)

Here, σ̂2 = S
n−4 . The decision to include any of the parameter estimates in the cubic trend model is made in line

with the test of significance of the parameter. While a t-test may be appropriate for testing the significance of
a single parameter, the significance of the overall cubic trend model can be investigated through the analysis of
variance technique [7]. It is noteworthy that the regression outputs from many statistical packages contain the
requisite summary of the test results and conclusions may be drawn on the basis of the computed p-values.

Once the cubic trend model parameters have been estimated, the classical decomposition method (CDM) may
be employed in estimating the seasonal indices. Before the estimation of seasonal indices by this approach, the
original series has to be detrended. Assuming the additive model, the process of detrending the series deals with
the subtraction of the trend component from the series. If the detrended series is arranged in accordance with the
seasons(months or quarters as the case may be), the seasonal averages can be obtained. These averages are used to
find the seasonal indices.

3. Methods

3.1. Preliminary Results Based on the Buys-Ballot Table

An important aspect of the time series analysis using the Buys-Ballot approach is the arrangement of the observed
seasonal time series data in a Buys-Ballot table as shown in Table 1. All the derivations made in this section are
based on the systematic component of the additive Buys-Ballot decomposition model.
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Table 1.

The Buys-Ballot Tabular Arrangement of Time Series Data.
Season)

Period 1 2 · · · j · · · s Ti X̄i σ̂i

1 X1 X2 · · · Xj · · · Xs Ti X̄1. σ̂1.

2 Xs+1 Xs+2 · · · Xs+j · · · X2s T2 X̄2. σ̂2.

3 X2s+1 X2s+2 · · · X2s+j · · · X3s T3 X̄3. σ̂3.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
i X(i−1)s+1 X(i−1)s+2 · · · X(i−1)s+j · · · X(i−1)s+s Ti. X̄i. σ̂i.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
m X(m−1)s+1 X(m−1)s+2 · · · X(m−1)s+j · · · X(m−1)s+s Tm. X̄m. σ̂m.

Tj T1 T2 · · · Tj · · · Ts T..

X̄.j X̄.1 X̄.2 · · · X̄.j · · · X̄.s X̄..

σ̂.j σ̂.1 σ̂.2 · · · σ̂.j · · · σ̂.s σ̂..

Source: Iwueze and Nwogu (2004)

If we make the substitution Mt = a+ bt+ ct2 + dt3 into (1) and consider only the systematic part of (1), we
have

Xt = a+ bt+ ct2 + dt3 + St (11)

From Table 1, the ith row total is given as

Ti. =

s∑
j=1

X(i−1)s+j

=

s∑
j=1

[a+ b((i− 1)s+ j) + c((i− 1)s+ j)2 + d((i− 1)s+ j)3 + Sj ]

=
[
as+ b(i− 1)s2 +

bs(s+ 1)

2
+ c(i− 1)2s3 + cs2(s+ 1)(i− 1) +

cs(s+ 1)(2s+ 1)

6

+ d(i− 1)3s4 +
3d(i− 1)2s3(s+ 1)

2
+

3d(i− 1)2s2(s+ 1)(2s+ 1)

6
+ d

(s(s+ 1)

2

)2]
=

[
as+

bs((2i− 1)s+ 1)

2
+ cs2(i− 1)(is+ 1) +

cs(s+ 1)(2s+ 1)

6

+
ds2(i− 1)(is(2is− s+ 3) + 1)

2
+ d

(s(s+ 1)

2

)2]
(12)

In deriving (12), we made use of the assumption
∑s

j=1 Sj = 0. Now, the ith row average is

X̄i. =
Ti.

s

=
[
a+

b((2i− 1)s+ 1)

2
+ cs(i− 1)(is+ 1) +

c(s+ 1)(2s+ 1)

6

+
ds(i− 1)(is(2is− s+ 3) + 1)

2
+ ds

( (s+ 1)

2

)2]
(13)
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Next, we derive an expression for each of the jth column total and mean. With
∑m

i=1 Sj = mSj , the jth column
total becomes

T.j =

m∑
i=1

X(i−1)s+j

= am+ b

m∑
i=1

(
(i− 1)s+ j

)
+ c

m∑
i=1

(
(i− 1)s+ j

)2

+ d

m∑
i=1

(
(i− 1)s+ j

)3

+mSj

=
[
am+

m(m− 1)bs

2
+mbj +

m(m− 1)(2m− 1)cs2

6
+m(m− 1)csj

+mcj2 + ds3
(m(m− 1)

2

)2

+ 3ds2j
(m(m− 1)(2m− 1)

6

)
+ 3dsj2

(m(m− 1)

2

)
+ dmj3 +mSj ] (14)

Dividing both sides of (14) by m, the jth column mean is obtained to be

X̄.j =
[
a+ (ms−s+2j)b

2 + cj(j + (m− 1)s) + (m−1)(2m−1)cs2

6 +

+dj
(
j2 + (m−1)(2m−1)s2

2 + 3sj(m−1)
2

)
+ dm(m−1)2s3

4 + Sj

]
(15)

Furthermore, the grand total of the observations is given as

T.. =

m∑
i=1

T.i =

s∑
j=1

T.j

⇒ T.. =

s∑
j=1

T.j

=

s∑
j=1

[
am+

m(m− 1)bs

2
+mbj +

m(m− 1)(2m− 1)cs2

6
+m(m− 1)csj

+mcj2 + ds3
(m(m− 1)

2

)2

+ 3ds2j
(m(m− 1)(2m− 1)

6

)
+ 3dsj2

(m(m− 1)

2

)
+ dmj3 +mSj

]
= an+

bn(n+ 1)

2
+

cn(n+ 1)(2n+ 1)

6
+ d

(n(n+ 1)

2

)2

(16)

For ms = n, we have

T.. = an+ bn(n+1)
2 + cn(n+1)(2n+1)

6 + d
(

n(n+1)
2

)2

(17)

The grand mean is obtained by dividing (17) by n. Thus,

X̄.. = a+ b(n+1)
2 + c(n+1)(2n+1)

6 + dn
(

(n+1)
2

)2

(18)

3.2. The Proposed Buys-Ballot Estimators of the Cubic Trend-Cycle and Seasonal Components of the Additive
Buys-Ballot Decomposition Model

Two classes of estimators, namely chain base and fixed base estimators of the requisite parameters are derived
following the procedure of [17]. For the purpose of deriving the estimators, we find the first, second and third
differences of the ith row mean series. From (13), we obtain

X̄(i+1). =
[
a+ b(2is+s+1)

2 + cs(i2s+ is+ i) + c(s+1)(2s+1)
6

+ds(2i3s2+3i2s2+2is2+3i2s+3is+i)
2 + ds

(
(s+1)

2

)2]
(19)
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X̄(i+2). =
[
a+ b(2is+3s+1)

2 + cs(i2s+ 3is+ i+ 2s+ 1) + c(s+1)(2s+1)
6

+ds(2i3s2+9i2s2+14is2+3i2s+9is+i+6s+7s2+1)
2 + ds

(
(s+1)

2

)2]
(20)

X̄(i+3). =
[
a+ b(2is+5s+1)

2 + cs(i2s+ 5is+ i+ 6s+ 2) + c(s+1)(2s+1)
6

+ds(2i3s2+15i2s2+38is2+3i2s+15is+i+18s+32s2+2)
2 + ds

(
(s+1)

2

)2]
(21)

Given the forward difference operator △, then the first forward difference of X̄i. has the following representation

Yi. = △X̄i. = X̄(i+1). − X̄i.

=
[b(2is+ 1− 2is+ s+ 1)

2
+ cs(i2s+ is+ i− i2s− i+ is+ 1)

+
ds(2i3s2 + 3i2s2 + 2is2 + 3i2s+ 3is+ i− 2i3s2 + 3i2s2 − 2is2 − 3i2s− i+ 3is+ s2 + 1)

2

]
= bs+ cs(2is+ 1) +

ds

2
(6i2s2 + 6is+ s2 + 1) (22)

Hence,

m−1∑
i=1

Yi. =

m−1∑
i=1

(X̄(i+1). − X̄i.)

=

m−1∑
i=1

[
bs+ cs(2is+ 1) +

ds

2
(6i2s2 + 6is+ s2 + 1)

]
=

[
bs(m− 1) + 2cs2

m−1∑
i=1

i+ cs(m− 1) + 3ds3
m−1∑
i=1

i2 + 3ds2
m−1∑
i=1

i+
ds3

2
(m− 1) +

ds

2
(m− 1)

]
=

[
b(n− s) + cs2m(m− 1) + cs(m− 1) +

ds3

2
m(m− 1)(2m− 1)

+
3ds2

2
m(m− 1) +

ds3

2
(m− 1) +

ds

2
(m− 1)

]
= (n− s)b+ c(n+ 1)(n− s) +

d(n− s)

2
(n(2n− s+ 3) + s2 + 1) (23)

From the foregoing, the following relationship between the estimators of b, c and d can be easily deduced

b̂ =
X̄m − X̄1

n− s
− ĉ(n+ 1)− d̂(n(2n− s+ 3) + s2 + 1)

2
(24)

Equation (24) simply reveals that unless the estimators of c and d are known, it is practically impossible to estimate
b within the context of the Buys-Ballot methods used in this research work. Consequently, one may wish to know
if the estimator of c is a function of that of d. To obtain the estimator of c, we evaluate the second difference of X̄i..
For this purpose, we have

Zi. = △2X̄i.

= X̄(i+2). − 2X̄(i+1). + X̄i. (25)

If we substitute (13), (19) and (20) into (25) and simplify the resulting expression completely, the result in (26) is
obtained

Zi. = cs2 + 3ds2(2is+ s+ 1) (26)
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It follows from (26) that

ĉ =

∑m−2
i=1 Zi.

2s(n− 2s)
− 3d̂(n+ 1)

2
(27)

The estimator of c in (27) certainly depends on that of d. To find the estimator of d, we first evaluate the third
difference of X̄i.. Let

Qi. = △3X̄i.

= X̄(i+3). − 3X̄(i+2). + 3X̄(i+1). − X̄i. (28)

Simplifying (28) after X̄i., X̄(i+1)., X̄(i+2). and X̄(i+3). have been replaced by (13), (19), (20) and (21) respectively,
yields

Qi. = 6ds3 (29)

Definition 1: Let d̂CBE
i = Qi.

6s3 , i = 1, 2, · · · ,m− 3. The chain base estimator of d in (29), denoted by d̂CBE is the
simple average of di. That is

d̂CBE =

∑m−3
i=1 Qi.

6(m− 3)s3
(30)

Let Wi. = Z(i+1). − Zi.. Then,

Wi. = 2cs2 + 3ds2(2(i+ 1)s+ s+ 1)− (2cs2 + 3ds2(2s+ s+ 1))

∴ Wi. = 6dis3 (31)

Definition 2: A simple average of the variable d̂FBE
i. = Wi.

6is3 , i = 1, 2, · · · ,m− 3 is called the fixed base estimator
of d. Hence, the fixed base estimator of d is

d̂FBE =

∑m−3
i=1 d̂i.

FBE

(m− 3)

=

(
1

6s3(m− 3)

)m−3∑
i=1

(
Wi.

i

)
(32)

The fixed base estimator of d may also be considered to be a weighted average of a Buys-Ballot derived variable
d̂∗i. =

Wi.

6s3 , such that the weights are i−1, i = 1, 2, 3, · · · ,m− 3. In line with (18), an estimator of a is generally
given as

â = X̄.. −
b̂(n+ 1)

2
− ĉ(n+ 1)(2n+ 1)

6
− d̂n

(n+ 1

2

)2

(33)

By substituting n = ms into (15) and using (33), the estimator of Sj is found to be

Ŝj =
[
X̄.j − X̄.. +

b̂(1+s−2j)
2 + ĉ(n2+3n+3ns−s2−6nj+6js−6j2+1)

6

+d̂
(

2n2+n−4j3−6j2n+6j2s−4jn2+6jns−2js2+2n2s−ns2

4

)]
(34)

Owing to the fact that the derived estimators of a, b, c and Sj depend on that of d, those estimators are said to be
chain base estimators if there are all functions of the chain base estimator of d. On the other hand, there are called
fixed base estimators if there are determined using the fixed base estimator of d. Observe that in the absence of
trend, â = b̂ = ĉ = d̂ = 0 and

Ŝj = X̄j − X̄.. (35)
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4. Properties of the Estimators of Parameters of the Cubic Trend-Cycle Component

When two or more estimators of a particular parameter exist, as it is the case in this study, efforts are made to
determine the best among the competing estimators. To determine a better class of estimators between the chain
base and fixed base families of estimators, we derive and compare properties of the estimators belonging to the
two classes. For an estimator to be unbiased for a particular parameter, its expectation must be equal to the given
parameter. Taking expectation of both sides of (30) leads to

E
(
d̂CBE
i

)
= E

(X̄(i+3). − 3X̄(i+2). + 3X̄(i+1). − X̄i.

6s3

)
= E

(6ds3 + ē(i+3). − 3ē(i+2). + 3ē(i+1). − ēi.

6s3

)
We can deduce from the assumption of et associated with (1) that ei. ∼ N(0,

σ2
1

s ). Thus,

E
(
d̂CBE
i

)
= d (36)

Also,

E
(
d̂CBE

)
= E

(∑m−3
i=1 d̂CBE

i.

(m− 3)

)
= E

( ∑m−3
i=1 Qi.

6(m− 3)s3

)
= E

(
d+

∑m−3
i=1 (ē(i+3). − 3ē(i+2). + 3ē(i+1). − ēi.)

6(m− 3)s3

)
= E

(
d+

−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

)
= d (37)

It is now evident that both d̂CBE
i and d̂CBE are unbiased for d.

The variances of these estimators are obtained as follows:

var
(
d̂CBE
i

)
= E

(
d̂CBE
i − d

)2

= E
(
d+

ē(i+3). − 3ē(i+2). + 3ē(i+1). − ēi.

6(m− 3)s3
− d

)2

Acknowledging the fact that the errors are uncorrelated, we get

V ar
(
d̂CBE
i

)
=

5σ2
1

9s7
(38)

V ar
(
d̂CBE

)
= E

(
d̂CBE − d

)2

= E
(
d+

∑m−3
i=1 (ē(i+3). − 3ē(i+2). + 3ē(i+1). − ēi.)

6(m− 3)s3
− d

)2

= E
(−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

)2

=
σ2
1

3(m− 3)2s7
(39)
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Having knowledge of the covariance between d̂CBE
i and d̂CBE

h , where i ̸= h helps us to determine if the chain base
derived variables are independent or not. It will also help us to derive the autocorrelation function for the derived
variables. With the autocorrelation function, one can figure out whether the variables are generated by a stationary
series or a nonstationary series. Notationally,

Cov
(
d̂CBE
i , d̂CBE

h

)
=

1

36s6
E
[
ē(i+3).ē(h+3). − 3ē(i+3).ē(h+2). + 3ē(i+3).ē(h+1). − ē(i+3).ēh.

− 3ē(i+2).ē(h+3). + 9ē(i+2).ē(h+2). − 9ē(i+2).ē(h+1). + 3ē(i+2).ēh. + 3ē(i+1).ē(h+3). − 9ē(i+1).ē(h+2).

+ 9ē(i+1).ē(h+1). − 3ē(i+1).ēh. − ēiē(h+3). + 3ēiē(h+2). − 3ēi.ē(h+1). + ēi.ēh.

]
(40)

Let k = h− i. Then the autocovariance function for d̂CBE
i is

RCBE(k) =



5
9s7σ

2
1 , if k = 0;

− 5
12s7σ

2
1 , if k = ±1;

1
6s7σ

2
1 , if k = ±2;

− 1
36s7σ

2
1 , if k = ±3;

0, k ̸= 0,±1,±2,±3

The following autocorrelation function for d̂CBE
i , is derived using RCBE(k)

ρCBE(k) =



1, if k = 0;
− 3

4 , if k = ±1;
3
10 , if k = ±2;
− 1

20 , if k = ±3;
0, k ̸= 0,±1,±2,±3

It is now certain that the CBE derived variables d̂CBE
i , i = 1, 2, 3, ., ., .,m− 3 have the autocorrelation structure

of a third-order moving average process, indicating that there are generated by a stationary process. We can also
deduce from the work of [?] that the moving average process is invertible.

Next, we consider the properties of ĉCBE .

E
(
ĉCBE

)
= E

(∑m−2
i=1 Zi.

2s(n− 2s)
− 3

2
(n+ 1)d̂CBE

)
= E

(2cs2(m− 2) + 3ds2
∑m−2

i=1 (2is+ s+ 1) + ē(i+2). − 2ē(i+1). + ēi.)

2s(n− 2s)
− 3

2
(n+ 1)d̂CBE

)
= E

(
c+

∑m−2
i=1 (ē(i+2). − 2ē(i+1). + ēi.)

2(m− 2)s2
− 3

2
(n+ 1)(d̂CBE − d)

)
= E

(
c+

ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2
− 3

2
(n+ 1)(d̂CBE − d)

)
= c (41)
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∴ V ar(ĉCBE) = E(ĉCBE − c)2

= E
(
c+

ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2
− 3

2
(n+ 1)(d̂CBE − d)− c

)2

=
[E(

[ē1. − ē2. − ē(m−1). + ēm.]
)2

4(m− 2)2s4
−

3(n+ 1)E([ē1. − ē2. − ē(m−1). + ēm.][d̂
CBE − d])

2(m− 2)s2

+
9(n+ 1)2var(d̂CBE)

4

]
=

[ σ2
1

(m− 2)2s5
−

3(n+ 1)E([ē1. − ē2. − ē(m−1). + ēm.][−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.])

12(m− 2)(m− 3)s5

+
3(n+ 1)2σ2

1

4(m− 3)2s7

]
=

σ2
1(4(m− 3)2s2 + 3(n+ 1)2(m− 2)2)

4(m− 2)2(m− 3)2s7
(42)

In order to determine the nature of the relationship between ĉCBE and d̂CBE , we need to find the covariance
(Cov(ĉCBE , d̂CBE)) of ĉCBE and d̂CBE . This covariance will be needed for the derivation of V ar(b̂CBE) .

Cov(ĉCBE , d̂CBE) = E
(
(ĉCBE − c)(d̂CBE − d)

)
= E

(
(
ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2
− 3

2
(n+ 1)(d̂CBE − d))(d̂CBE − d)

)
= −3

2
(n+ 1)var(d̂CBE)

= − σ2
1

2(m− 3)2s7
(n+ 1) (43)

Basic properties of b̂CBE are given below:

E
(
b̂CBE

)
= E

(∑m−1
i=1 Yi.

(n− s)
− (n+ 1)ĉCBE − (n(2n− s) + 3n+ s2 + 1)

2
d̂CBE

)
= E

(∑m−1
i=1 (X(i+1.) −Xi.)

(n− s)
− (n+ 1)ĉCBE − (n(2n− s) + 3n+ s2 + 1)

2
d̂CBE

)
= E

( (n− s)b+ c(n+ 1)(n− s) +
∑m−1

i=1 (ē(i+1). − ēi.)

n− s
+

d(n(2n− s) + 3n+ s2 + 1)(n− s)

2(n− s)

− ĉ(n+ 1)− (n(2n− s) + 3n+ s2 + 1)

2
d̂CBE

)
= E

(
b+

∑m−1
i=1 (ē(i+1). − ēi.)

n− s
− (n+ 1)(ĉCBE − c)− (n(2n− s) + 3n+ s2 + 1)

2
(d̂CBE − d)

)
= E

(
b+

(ēm. − ē1.)

n− s
− (n+ 1)(ĉCBE − c)− (n(2n− s) + 3n+ s2 + 1)

2
(d̂CBE − d)

)
= b (44)
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V ar
(
b̂CBE

)
= E

(
b̂CBE − b

)2

= E
(
b+

(ēm. − ē1.)

n− s
− (n+ 1)(ĉCBE − c)− (n(2n− s) + 3n+ s2 + 1)

2
(d̂CBE − d)− b

)2

= E
( (ēm. − ē1.)

n− s
− (n+ 1)

( ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2

)
− (n(2n− s) + 3n+ s2 + 1)

2

(−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

))2

= E
( (ēm. − ē1.)

n− s

)2

+ E
(
(n+ 1)

( ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2

))2

+ E
(n(2n− s) + 3n+ s2 + 1

2

(−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

))2

− 2(n+ 1)E
( (ēm. − ē1.)

n− s

( ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2

))
− 2E

(( (ēm. − ē1.)

n− s

)( (n(2n− s) + 3n+ s2 + 1)

2

)(−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

))
+ 2(n+ 1)E

(( ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2

)(n(2n− s) + 3n+ s2 + 1

2

)
(−ē1. + 2ē2. − ē3. + ē(m−2). − 2ē(m−1). + ēm.

6(m− 3)s3

))
=

σ2
1

6(m− 1)2(m− 2)2(m− 3)2s7

[
12(m− 2)2(m− 3)2s4 + 6(n+ 1)2

(m− 1)2(m− 3)2s2 + (n(2n− s) + 3n+ s2 + 1)2(m− 1)2(m− 2)2

− 2(n(2n− s) + 3n+ s2 + 1)(m− 1)(m− 2)2(m− 3)s2
]

(45)

Cov(b̂CBE , ĉCBE) = E(b̂CBE − b)(ĉCBE − c))

= E
(( (ēm. − ē1.)

n− s
− (n+ 1)(ĉCBE − c)− (n(2n− s) + 3n+ s2 + 1)

2
(d̂CBE − d)

)
( ē1. − ē2. − ē(m−1). + ēm.

2(m− 2)s2
− 3

2
(n+ 1)(d̂CBE − d))

)
= − σ2

1(n+ 1)

4(m− 1)(m− 2)2(m− 3)2s7
R (46)

where

R =
[
2(m− 2)2(m− 3)s2 + (m− 1)(4(m− 3)2s2 + 3(n+ 1)2(m− 2)2)− (m− 1)(m− 2)2(n(2n− s) + 3n+ s2 + 1)

]

Cov(b̂CBE , d̂CBE) = E(b̂CBE − b)(d̂CBE − d))

= E
(( (ēm. − ē1.)

n− s
− (n+ 1)(ĉCBE − c)− (n(2n− s) + 3n+ s2 + 1)

2

)
(d̂CBE − d)

)
(d̂CBE − d)

)
= σ2

1

[2(m− 3)s2 − 3(n+ 1)2(m− 1)− (n(2n− s) + 3n+ s2 + 1)(m− 1)

6(m− 1)(m− 3)2s7

]
(47)

The properties of âCBE are derived as follows
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E
(
âCBE

)
= E

(
X̄.. −

(n+ 1)

2
b̂CBE − (n+ 1)(2n+ 1)

6
ĉCBE − n

(n+ 1

2

)2

d̂CBE
)

= E
(
a− (n+ 1)

2
(b̂CBE − b)− (n+ 1)(2n+ 1)

6
(ĉCBE − c)− n

(n+ 1

2

)2

(d̂CBE − d)
)

= a (48)

V ar
(
âCBE

)
= E

(
âCBE − a

)2

= E
(
− (n+ 1)

2
(b̂CBE − b)− (n+ 1)(2n+ 1)

6
(ĉCBE − c)− n

(n+ 1

2

)2

(d̂CBE − d)
)2

=
(n+ 1

2

)2

V ar
(
b̂CBE

)
+
( (n+ 1)(2n+ 1)

6

)2

V ar
(
ĉCBE

)
+ n2

(n+ 1

2

)4

V ar
(
d̂CBE

)
+
( (n+ 1)2(2n+ 1)

6

)
Cov

(
b̂CBE , ĉCBE

)
+
(n(n+ 1)3

4

)
Cov

(
b̂CBE , d̂CBE

)
+
(n(n+ 1)3(2n+ 1)

12

)
Cov

(
ĉCBE , d̂CBE

)
(49)

where V ar
(
b̂CBE

)
, V ar

(
ĉCBE

)
, V ar

(
d̂CBE

)
, Cov

(
b̂CBE , ĉCBE

)
, Cov

(
b̂CBE , d̂CBE

)
and Cov

(
ĉCBE , d̂CBE

)
are given in (45), (42), (39), (46), (47) and (43) respectively. For the covariance of âCBE

with the other chain base estimators, we have

Cov
(
âCBE , b̂CBE

)
= E

(
(âCBE − a)(b̂CBE − b)

)
= E

((
− (n+ 1)

2
(b̂CBE − b)− (n+ 1)(2n+ 1)

6
(ĉCBE − c)

− n
(n+ 1

2

)2

(d̂CBE − d)
)(

b̂CBE − b
))

= − (n+ 1)

12

(
6V ar

(
b̂CBE

)
+ (4n+ 2)Cov

(
b̂CBE , ĉCBE

)
+ (3n2 + 3n)Cov

(
b̂CBE , d̂CBE

))
(50)

Cov
(
âCBE , ĉCBE

)
= E

(
(âCBE − a)(ĉCBE − c)

)
= E

((
− (n+ 1)

2
(b̂CBE − b)− (n+ 1)(2n+ 1)

6
(ĉCBE − c)

− n
(n+ 1

2

)2

(d̂CBE − d)
)(

ĉCBE − c
))

= − (n+ 1)

12

(
6Cov

(
b̂CBE , ĉCBE

)
+ (4n+ 2)V ar

(
ĉCBE

)
+ (3n2 + 3n)Cov

(
ĉCBE , d̂CBE

))
(51)

Cov
(
âCBE , d̂CBE

)
= E

(
(âCBE − a)(d̂CBE − c)

)
= E

((
− (n+ 1)

2
(b̂CBE − b)− (n+ 1)(2n+ 1)

6
(ĉCBE − c)

− n
(n+ 1

2

)2

(d̂CBE − d)
)(

d̂CBE − d
))

= − (n+ 1)

12

(
6Cov

(
b̂CBE , d̂CBE

)
+ (4n+ 2)Cov

(
ĉCBE , d̂CBE

)
+ (3n2 + 3n)V ar

(
d̂CBE

))
(52)
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The chain base estimator (ŜCBE
j ) of the seasonal component formulated in Equation (35) is easily seen to be

unbiased for (SCBE
j ).

Let Vc be the variance- covariance matrix pertaining to the derived chain base estimators. Then

Vc =


V ar(âCBE) Cov(âCBE , b̂CBE) Cov(âCBE , ĉCBE) Cov(âCBE , d̂CBE)

Cov(âCBE , b̂CBE) V ar(b̂CBE) Cov(b̂CBE , ĉCBE) Cov(b̂CBE , d̂CBE)

Cov(âCBE , ĉCBE) Cov(b̂CBE , ĉCBE) V ar(ĉCBE) Cov(ĉCBE , d̂CBE)

Cov(âCBE , d̂CBE) Cov(b̂CBE , d̂CBE) Cov(ĉCBE , d̂CBE) V ar(d̂CBE)

 (53)

Efficiency comparison based on determinants of variance-covariance matrices has been discussed by [10]. Given
two point estimation methods, then one of the methods is said to be more efficient than the other if its corresponding
variance- covariance matrix has a smaller determinant. We may observe that Vc depends on σ2

1 . Since σ2
1 is often

not known, it is estimated by the mean squared error(MSE). If we replace σ2
1 by MSE, we obtain the estimated

variance-covariance matrix.
So far, we have focused on the properties of the chain base estimators based on (1). In what follows, properties

of fixed base estimators are discussed. Considering (32) and the associated error terms, we have

E
(
d̂FBE
i

)
= E

(6dis3 + ē(i+2). − 2ē(i+1). + ēi. − ē3. + 2ē2. − ē1.

6is3

)
= d (54)

V ar
(
d̂FBE
i

)
= E

(
d̂CBE
i − d

)2

= E
(
d+

ē(i+2). − 2ē(i+1). + ēi. − ē3. + 2ē2. − ē1.

6is3
− d

)2

=
σ2
1

3i2s7
(55)

E
(
d̂FBE

)
= E

(∑m−3
i=1 d̂FBE

i.

(m− 3)

)
= E

( ∑m−3
i=1 Wi.

6i(m− 3)s3

)
= E

(
d+

∑m−3
i=1 (ē(i+2). − 2ē(i+1). + ēi. − ē3. + 2ē2. − ē1.)

6i(m− 3)s3

)
= E

(
d+

−(m− 4)ē1. + (2m− 7)ē2. − (m− 3)ē3. + ē(m−1). − ē(m−2). + ēm.

6i(m− 3)s3

)
= d (56)

∴ V ar
(
d̂FBE

)
= E

(
d̂FBE − d

)2

= E
(−(m− 4)ē1. + (2m− 7)ē2. − (m− 3)ē3. + ē(m−1). − ē(m−2). + ēm.

6i(m− 3)s3

)2

=
σ2
1((m− 4)2 + (2m− 7)2 + (m− 3)2 + 3)

36i2(m− 3)2s7
(57)

Both d̂FBE
i and d̂FBE are unbiased for d. Generally, the fixed base estimators are unbiased for their respective

parameters. Variances of d̂FBE
i and d̂FBE are functions of i, indicating nonstationarity of the fixed base derived

variables and d̂FBE . For this reason, an empirical example based on the fixed base method will not be considered.
After estimating parameters of the cubic trend-cycle model, it will be expedient to test hypothesis about the

individual parameters. Notably, each of the concerned chain base estimators of the cubic trend- cycle model is
a linear function of the observed time series. Suppose we wish to test the null hypothesis H0 : g = g0 against
H1 : g ̸= g0, where g is any of the parameters a, b, c and d. For a Guassian white noise process and unknown σ2

1 ,
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the t-test statistic

t = ĝ−g0
est.std(ĝ) (58)

may be used, where est.std(ĝ) is the estimated standard deviation of the given parameter. At α level of significance,
we reject H0 if |t| ≥ tα

2 ,n−4.

5. Empirical Results

A numerical example is given to illustrate the chain base method (CBM). We also compare the method with the
classical decomposition method (CDM) through the decomposition of a real time series data set. The prediction
accuracy measures employed in this work are the mean squared error (MSE), mean absolute error(MAE) and mean
absolute percentage error (MAPE).

5.1. Real Life Example

As a practical application of CDM and CBM, we consider the time series decomposition of the monthly
concentrations of atmospheric co2 .The monthly atmospheric concentrations of co2 data set for the period January,
1959 to December, 1997 is available in R package.

Following [5]and [2], it can be deduced that co2 data exhibit trend and seasonal variation. In particular, the
monthly atmospheric concentrations of co2 data set for the period January, 1959 to December have been shown to
have cubic trend and seasonal variations [26].

The estimated least squares cubic trend model for the time series is T̂t = 316.265 + 0.0290513t+
0.000292787t2 − 2.90208× 10−7t3. Having fitted a cubic trend model, we proceed to investigate the significance
of the overall regression using the results in Table 2.

Table 2.

Analysis of Variance Results for
the Cubic Trend Model for the Time Series
Data on Atmospheric Carbon (IV) Oxide.

Source DF SS MS F P
Regression 3 102536 34178.6 7674.04 0.000

Error 464 2067 4.5
Total 467 104602

With a p-value of 0.000, it is obvious that the the fitted cubic trend model is statistically significant at 5 per cent
significance level. This shows that the time series has a cubic trend component. Consequently, it is imperative to
determine the coefficients that should be included in the fitted cubic trend model for the time series data. This calls
for tests for significance of coefficients of the model parameters. Results based on these tests, are summarised in
terms of p-values in Table 3.
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Table 3.

Estimates of the Parameters
of the Cubic Trend Model

and their Corresponding P-values.

Term Coefficient P
Constant 316.265 0.000

t 0.0290513 0.000
t2 0.00029278 0.000
t3 -2.90208×10−7 0.000

From all indications, it is necessary to consider a cubic trend model containing all the four coefficients. Trend
parameter estimates as well as seasonal indices are given in Table 4 for CDM and CBM.

Table 4.

Decomposition Methods, Trend Parameter Estimates, Seasonal Indices and Associated MSE, MAE and MAPE
for the Monthly Atmospheric Carbon (IV) Oxide Series.

Method Cubic Trend Parameter Estimates Month Estimates of SI
′
s MSE MAE MAPE

CDM 316.265 Jan -0.0601 0.251115 0.388781 0.114726
0.0290513 Feb 0.6108

0.000292787 Mar 1.3602
-2.90208×10−7 Apr 2.4979

May 2.9833
Jun 2.3270
Jul 0.8126

Aug -1.2486
Sep -3.0667
Oct -3.2435
Nov -2.0480
Dec -0.9249

CBM 315.237 Jan -0.04783 277.228 11.1467 3.16444
0.0451198 Feb 0.61908

0.000228465 Mar 1.37398
-2.13569×10−7 Apr 2.49476

May 2.98169
Jun 2.33897
Jul 0.81557

Aug -1.24826
Sep -3.05251
Oct -3.24903
Nov -2.06545
Dec -0.96097
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It is not surprising that minimum values of MSE, MAE and MAPE are associated with the classical
decomposition method (CDM) since the chain base method (CBM) is basically meant for short series. The issue is
then how short should the series be for CBM to be a good rival of CDM, when assumptions of the latter hold. To
address this issue, we examine the following Figures. From Figure 1, it is evident that the series has a cubic trend

Figure 1. Plot of monthly co2 concentrations (ppm), cubic trend values and fitted values

Figure 2. Time Plot of Monthly Co2 Concentrations(ppm) and Fitted Values based on the first 108 Observations

and seasonal components. The Figure 2 shows that fits based on CDM are quite close to the actual observations
for all time points. On the other hand, fits based on CBM are close to the actual observations from January of 1959
to December, 1967. Within this period, fits based on the two methods are also close, as indicated in Figure 2. The
closeness of the two sets of fitted values, may be attributed to closeness of the corresponding least squares and
chain base estimates in Table 4. Beyond the period, the two cubic trend curves (LSTV and CBTV) as well as their
corresponding fits (LSFV and CBFV) in Figure 2, become more and more divergent as time increases. Lack of
parallelism of least squares cubic trend curve and chain base cubic trend curve, can be deduced from Figure 3.
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Figure 3. Trend Estimates based on CDM and CBM

6. Conclusion

Presented in this paper, are the Buys-Ballot and classical methods of decomposing a time series with a cubic
trend component. Two sets of estimators, namely chain base and fixed base estimators have been derived and
their properties investigated. While the two sets of estimators are generally unbiased, there is still a remarkable
difference between their properties. The chain base estimators are functions of stationary variables with the third-
order moving average model autocorrelation structure whereas the fixed base estimators depend on nonstationary
variables. This is in agreement with the findings in [15, 16]. One might think of differencing the nonstationary
variables to obtain the modified fixed base estimators based on stationary variables. We may note that the first
difference of the derived fixed base variables yields the derived chain base variables which are stationary. As a
result, the modified fixed base estimators will not be different from the already derived estimators of chain base
type.

Being a linear combination of the derived chain base variables, each of the chain base estimators, is normally
distributed when the underlying time series is normally distributed. It follows that hypothesis testing about the
significance of a cubic model parameter can be carried out using a t statistic and an appropriate chain base estimate.
There is no doubt that the chain base estimators are not mutually independent. Undoubtedly, the estimators are
pairwise-negatively correlated.

We have graphically illustrated that for the first 108 obervations on the time series, CBM competes favourably
with CDM. However, if there is a case of multicollinearity, CBM may be considered.
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