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Abstract This paper is devoted to the investigation of conditions for the weak convergence in the space C(T ) of the
stochastic processes from the space Fψ(Ω). Using these conditions the limit theorem for stochastic processes from the space
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1. Introduction

In this paper we describe conditions for the weak convergence in the space C(T ) of the stochastic processes from
the space Fψ(Ω). The limit theorem for stochastic processes from this space is proved based on the conditions
obtained. One can use this theorem to find approximation accuracy in C(T ) and reliability of integrals depending
on parameter by Monte Carlo method.

The space Fψ(Ω) was introduced by Yermakov and Ostrovsky in the paper [5]. The paper [8] is devoted to
studying properties of such spaces and there were found rules of fulfilling the condition H in this spaces.

Limits theorems for different classes of processes are investigated, for example, in books [3, 12, 16]. Estimates
for the distribution of suprema for the Gaussian stochastic processes can be found in books [3, 16] and papers
[2, 6]. Some applications of these results are presented in [7, 13]. The probabilities of large deviations for the
sums of independent stochastic processes from the space Fψ(Ω) are considered in the paper [9]. Estimates for the
distribution of suprema on R for the stochastic processes from such spaces are describe.

This paper is organized as follows. In Section 2 we introduce the basic definitions related to the weak
convergence of random elements. Kσ-space of random variable and Kσ-processes are introduced and discussed
in Section 3. In the next Section 4, we deal with properties of Fψ(Ω) random variables and processes. Section 5
contains conditions of the weak convergence in the space C(T ) for stochastic processes from the space Fψ(Ω)
defined on the compact set. In Section 6 we apply the results obtained to the stochastic processes from Fψ(Ω) and
derive the limit theorem for such processes. The accuracy and reliability of estimates of the integrals depending
on the parameter evaluated by the Monte Carlo methods are describe in Section 7. In Section 8 we give estimates
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for the distribution of the supremum for Gaussian stochastic processes and examples. Conclusions are presented in
Section 9.

2. Weak convergence of random elements

Suppose that (S, ρ) is a metric space, B(S) is the Borel σ-algebra in (S, ρ) and (S,B(S)) is a mesurable space. A
measure µ(·) on (S,B(S)) is called a probability measure if µ(S) = 1.

Definition 2.1 ([3]). A family µn, n = 1,∞ of probability measures on (S,B(S)) is called weakly convergent as
n→ ∞ if there exists a probability measure µ∞ such that we have

lim
n→∞

∫
S

f(x)dµn(x) =

∫
S

f(x)dµ∞(x) (1)

for any bounded continuous real-valued function f = {f(x), x ∈ S}. We denote the weak convergence of measures
as µn ⇒ µ∞.

Remark 2.1. It is well known that µn ⇒ µ∞ if and only if limn→∞ µn(B) = µ∞(B) for any B ∈ B(S) such that
µ∞(∂B) = 0, where ∂B denotes the boundary of the set B.

Consider the condition for the weak convergence in the space of continuous functions. Suppose that (T, ρ) is a
compact metric space and C(T ) is the space of continuous real-valued functions on T .

Let Xn = {Xn(t), t ∈ T}, n = 1,∞ be a family of random elements in C(T ) (stochastic processes).

Definition 2.2 ( [3]). We say, that all finite-dimensional distributions of the stochastic processes Xn converge
weakly as n→ ∞ to the corresponding finite-dimensional distributions of the process X = {X(t), t ∈ T}
if the random vectors (Xn(t1), Xn(t2), . . . , Xn(tk)) converge weakly as n→ ∞ to the random vector
(X(t1), X(t2), . . . , X(tk)) for any k ≥ 1 and all t1, t2, . . . , tk ∈ T .

Theorem 2.1 ( [3], p. 231)
Let (T, ρ) be a metric space. One has Xn ⇒ X∞ in C(T ) as n→ ∞, where X∞ = {X∞(t), t ∈ T} is a random
element in C(T ) (stochastic process), if and only if the following conditions hold:

1) all finite-dimensional distributions of the processes Xn = {Xn(t), t ∈ T} converge weakly as n→ ∞ to the
corresponding finite dimensional distributions of the process X∞ = {X∞(t), t ∈ T};

2) for any ε > 0 we have

lim
h↓0

sup
n=1,∞

P

 sup
t,s∈T
ρ(t,s)<h

|Xn(t)−Xn(s)| > ε

 = 0. (2)

3. Kσ-space of random variable and Kσ-processes

Definition 3.1. [3] A linear subspace K(Ω) of the space of all random variables L0(Ω) is called a lattice if
max {ξ, η} ∈ K(Ω), min {ξ, η} ∈ K(Ω) for all ξ, η ∈ K(Ω).

If K(Ω) is a lattice and ξ ∈ K(Ω) then |ξ| ∈ K(Ω) since |ξ| = max(−ξ, ξ).

Definition 3.2. [3] A lattice K(Ω) is called a Kσ-space of random variable if K(Ω) is a Banach space equipped
with a norm ∥·∥K and the following conditions hold:

a) if ξ, η ∈ K(Ω) and |ξ| ≤ |η| almost surely, then ∥ξ∥K ≤ ∥η∥K ;
b) if for a sequence {ξn, n ≥ 1} belonging to K(Ω), one can find a random variable η ∈ K(Ω) such that

sup
n≥1

|ξn| < η almost surely, then sup
n≥1

|ξn| ∈ K(Ω).
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Definition 3.3 ([1],[3]). A monotonically nondecreasing sequence of positive numbers (κ(n), n ≥ 1) is called
an M -characteristic (majorant characteristic) of Kσ-space K(Ω) if for any n ≥ 1 and ξk ∈ K(Ω), k = 1, n the
folowing inequality holds ∥∥∥∥ max

1≤k≤n
|ξk|
∥∥∥∥
K

≤ κ(n) max
1≤k≤n

∥ξk∥K . (3)

Let K = K(Ω) be a Kσ-space of random variables and let κ(n), n ≥ 1 be the M -characteristic of the space
K(Ω).

Definition 3.4. [3] The stochastic process X = {X(t), t ∈ T} is called Kσ-stochastic process if random variables
X(t) ∈ K(Ω) for all t ∈ T .

Consider Xn = {Xn(t), t ∈ T}, n = 1,∞ as a family of stochastic processes from K(Ω). Suppose that the
following conditions hold:

B1) ε0 = sup
n=1,∞

sup
t,s∈T

∥Xn(t)−Xn(s)∥K <∞.

B2) Let ρn(t, s) = ∥Xn(t)−Xn(s)∥K , ρ(t, s) = sup
n=1,∞

ρn(t, s). The pseudometric space (T, ρ) is separable and

each process Xn is separable on (T, ρ).

It is clear that ε0 = sup
t,s∈T

ρ(t, s).

Remark 3.1. [3] A pseudometric satisfies all the assumptions of a metric except for the condition: if ρ(t, s) = 0
then t = s; that is, the set {(t, s) : ρ(t, s) = 0} for a pseudometric may be larger than the diagonal {(t, s) : t = s}.
The pair (T, ρ) is called a pseudometric space.

Theorem 3.1 ([3], p. 109)
Assume that a family of stochastic processes Xn, n = 1,∞ satisfies conditions B1 and B2, and suppose that for all
τ > 0 ∫ τ

0

κ(N(u))du <∞,

where N(u), u > 0 is the metric massiveness of the space (T, ρ) (that is least number of close circles with radius
less or equal to u and covering the set T), κ(n) is the M -characteristic of K(Ω). Then

a) lim
h↓0

sup
n=1,∞

∥∥∥∥∥∥∥ sup
t,s∈T
ρ(t,s)<h

|Xn(t)−Xn(s)|

∥∥∥∥∥∥∥
K

= 0;

b) for each ε > 0

lim
h↓0

sup
n=1,∞

P

 sup
t,s∈T
ρ(t,s)<h

|Xn(t)−Xn(s)| > ε

 = 0;

c) the processes Xn are almost surely sample uniformly continuous on (T, ρ) for any n.

Theorem 3.2
Assume that a family of stochastic processes Xn, n = 1,∞ satisfies conditions of Theorem 3.1 and all finite-
dimensional distributions of the processes Xn(t), t ∈ T converge weakly to the corresponding finite-dimensional
distributions of the processes X∞(t), t ∈ T as n→ ∞. Then Xn(t) converge weakly in C(T ) to the stochastic
processes X∞(t) as n→ ∞.

Proof
This theorem follows from Theorem 2.1 and Theorem 3.1.
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4. The space of random variables Fψ(Ω) and stochastic processes from this space

Definition 4.1. [8, 9, 10] Let ψ(u) > 0, u ≥ 1 be monotonically increasing, continuous function for which
ψ(u) → ∞ as u→ ∞. A random variable ξ belongs to the space Fψ(Ω) if

sup
u≥1

(E |ξ|u)1/u

ψ(u)
<∞.

Similar definition was formulated in the paper by S. M. Yermakov & Ye. I. Ostrovskii [5]. But there was required
that Eξ = 0 as ξ ∈ Fψ(Ω). Moreover, there were considered the random variables for which E |ξ|u = ∞ for some
u > 0.

It is proved in [5, 11] that Fψ(Ω) is a Banach space with the norm

∥ξ∥ψ = sup
u≥1

(E |ξ|u)1/u

ψ(u)
.

The space Fψ(Ω) is a Kσ-space with the norm ∥ξ∥ψ.
Let us provide some examples of random variables from the spaces Fψ(Ω).

Example 4.1. [10] The random variable ξ satisfying the condition |ξ| < C with probability one, where C > 0 is a
constant, belongs to the space Fψ(Ω). Herewith

∥ξ∥ψ = sup
u≥1

(E |ξ|u)1/u

ψ(u)
≤ sup

u≥1

(Cu)
1/u

ψ(u)
= sup

u≥1

C

ψ(u)
=

C

ψ(1)
.

Example 4.2. [10] The random variable with Laplace distribution (its density function is p(x) = 1
2e

−|x|) belongs

to the space Fψ(Ω), where ψ(u) = u. This follows from the equivalence k

√
E |ξ|k = k

√
k! ∼ k for k ≥ 1.

Example 4.3. [10] The normally distributed random variable ξ ∼ N(0, 1) belongs to the space Fψ(Ω), where

ψ(u) = u1/2 since 2l

√
E |ξ|2l = 2l

√
(2l)!
2ll!

∼ l1/2 for l ≥ 1.

Definition 4.2. [8] We say that the condition H is fulfilled for the Banach space of random variables B(Ω), if there
exists an absolute constant CB such that for any centered and independent random variables ξ1, ξ2, . . . , ξn from
B(Ω), the following is true: ∥∥∥∥∥

n∑
i=1

ξi

∥∥∥∥∥
2

≤ CB

n∑
i=1

∥ξi∥2 .

The constant CB is called a scale constant for the space B(Ω). For space Fψ(Ω) we shall denote the constants
CFψ(Ω) as Cψ.

Theorem 4.1 ([15])
For the space Fψ(Ω), where ψ(u) = uα, α ≥ 1

2 , the condition H is fulfilled and the following inequality is true:∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
2

ψ

≤ 4 · 9α
n∑
i=1

∥ξi∥2ψ .

Note, that when α < 1
2 , then the condition H is not fulfilled for such a space.

Theorem 4.2 ([14])
Let Fψ(Ω) be the space defined by the function ψ(u) = eau

β

, where a > 0, 0 < β < 1. If 1
(2aβ)1/β

= 1, then the

condition H is fulfilled for the space Fψ(Ω) with the constant Cψ = 4e2
βa. And if 1

(2aβ)1/β
> 1, then for Fψ(Ω)
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the condition H is true with the constant

Cψ =
4ea(2

β+1)− 1
2β

(2aβ)1/2β
.

Definition 4.3. [9] It is said that a stochastic process X = {X(t), t ∈ T}, belongs to the space Fψ(Ω) if for any
t ∈ T the random variable X(t) belongs to the space Fψ(Ω).

Theorem 4.3
Assume that a family of stochastic processes Xn = {Xn(t), t ∈ T}, n = 1,∞ from the space Fψ(Ω) is such that
following conditions hold:

B̃1) ε̂0 = sup
n=1,∞

sup
t,s∈T

∥Xn(t)−Xn(s)∥ψ <∞.

B̃2) The space (T, ρ̂x)

(
ρ̂x(t, s) = sup

n=1,∞
ρn(t, s)

)
is separable and each process Xn is separable on (T, ρ̂x) and

suppose that for any τ > 0 ∫ τ

0

κψ(N(u))du <∞, (4)

where N(u) is the metric massiveness of the space (T, ρ̂x), κψ(n) is the M -characteristic of Fψ(Ω).

If all finite-dimensional distributions of the processes Xn(t), t ∈ T converge weakly to the corresponding finite-
dimensional distribution of the process X∞(t), t ∈ T as n→ ∞, then Xn(t) converge weakly in C(T ) to the
process X∞(t) as n→ ∞.

Proof
Theorem 4.3 follows from Theorem 3.2 since the space Fψ(Ω) is Kσ-space.

5. Limit theorem for stochastic processes from a space Fψ(Ω)

Let X = {X(t), t ∈ T} be a stochastic process from the space Fψ(Ω), EX(t) = 0. Let the condition H is fulfilled
for this space.

Assume that compact pseudometric space (T, ρψ), ρψ(t, s) = ∥X(t)−X(s)∥ψ is separable and the process
X = {X(t), t ∈ T} is separable as well. Let Xk(t), k = 1, 2, . . . , n be independent copies of X(t). Consider a
stochastic process

Yn(t) =
1√
n

n∑
k=1

Xk(t).

By Definition (4.2) we have

∥Yn(t)− Yn(s)∥2ψ ≤ Cψ
1

n

n∑
k=1

∥Xk(t)−Xk(s)∥2ψ = Cψρ
2
ψ(t, s).

The pseudometric space (T, ρψ) is separable and the processes Yn(t) are separable in this space.

Theorem 5.1
If the following condition holds

ε̂0 = sup
t,s∈T

∥X(t)−X(s)∥ψ <∞,

and for any τ > 0 ∫ τ

0

κψ(Ñ(u))du <∞, (5)
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where κψ(n) is the M -characteristic of the space Fψ(Ω), Ñ(ε) is the metric massiveness of the space (T, ρψ), then
Yn(t) converge weakly in C(T, ρψ) to the Gaussian process X∞(t) such that EX∞(t) = 0, EX∞(t)X∞(s) =
EX(t)X(s).

Proof
The Central Limit Theorem for random vectors implies that all finite-dimensional distributions of Yn(t) converge
to the ones of the process X∞(t).

So, Theorem 5.1 follows from Theorem 4.3.

6. Stochastic processes defined on a metric spaces

Let (T,m) be a compact metric space and let Nm(u) be a metric massiveness of this space. Let Xn(t), t ∈ T be
stochastic processes such that Xn(t) is separable on (T,m) and Xn(t) ∈ Fψ(Ω).

Theorem 6.1
Assume that there exists such a continuous and monotonically increasing function σ(h), h > 0, σ(0) = 0 that the
following inequality holds

sup
n=1,∞

sup
m(t,s)≤h

∥Xn(t)−Xn(s)∥ψ ≤ σ(h) (6)

and σ(h) < ε̂0 <∞. Suppose that for any τ > 0∫ τ

0

κψ(Nm(σ(−1)(u)))du <∞,

where κψ(n) is the M -characteristic of Fψ(Ω), Nm(u) is metric massiveness of the space (T,m).
If all finite-dimensional distributions of the processes Xn(t), t ∈ (T,m) converge weakly to the corresponding

all finite-dimensional distributions of a process X∞(t), t ∈ (T,m) as n→ ∞, then Xn(t) converge weakly in
C(T,m) to the process X∞(t).

Proof
This Theorem 6.1 follows from Theorem 4.3. Indeed, the condition B̃1 follows from the condition (6). The
condition B̃2 is fulfilled, because the process X(t) is separable on (T,m), that is separable on (T, ρ̂x). It is
evident that for metric massiveness of the space (T, ρ̂x) we have then inequality N(u) ≤ Nm(σ(−1)(u)). Therefore
condition (4) is satisfied. If a function f(t) is continuous on (T, ρ̂x) it is continuous on (T,m).

Example 6.1 ([3], p. 90). Let T ∈ Rd, d > 1 and ρ(t, s) = ∥t− s∥d, where ∥·∥ is a norm in Rd. It is bounded, then
there exist such constants β1 and β2 that

β1u
−d ≤ Nm(T, u) ≤ β2u

−d.

Other examples we can found in the book ([3], p. 90-91).
The next Theorem can be easily proved.

Theorem 6.2
Let (T,m) be a compact metric space, let X = {X(t), t ∈ (T,m)} be a stochastic process from the space Fψ(Ω),
EX(t) = 0. Assume that the condition H is satisfied for the space Fψ(Ω) and process X is separable. Let Xk(t),
k = 1, 2, . . . , n be independent copies of X(t). Let

Ỹn(t) =
1√
n

n∑
k=1

Xk(t),

∥Xk(t)−Xk(s)∥2ψ = ρψ(t, s).

Then ∥∥Ỹn(t)− Ỹn(s)
∥∥2
ψ
≤ Cψρ

2
ψ(t, s).
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Theorem 6.3
Let the assumptions of the Theorem 6.2 be satisfied and the following conditions hold:

a) ε̂0 = sup
t,s∈T

∥X(t)−X(s)∥ψ <∞;

b) sup
m(t,s)≤h

∥X(t)−X(s)∥ψ ≤ σ(h), where σ(h), h > 0 is a continuous, monotonically increasing function and

σ(0) = 0;
c) for any τ > 0 ∫ τ

0

κψ(Nm(σ(−1)(u)))du <∞,

where κψ(n) is the M -characteristic of Fψ(Ω), Nm(u) is metric massiveness of the space (T,m).

Then Ỹn(t) converge weakly in C(T,m) to the Gaussian process X∞(t) such that

EX∞(t) = 0, EX∞(t)X∞(s) = EX(t)X(s).

Proof
This Theorem 6.3 follows from Theorem 6.1.

7. On calculation of the integrals depending on a parameter by Monte-Carlo method

Let {S,A, µ} be a measurable space, µ be a σ-finite measure and p(s) ≥ 0, s ∈ S be a measurable function such
that

∫
S
p(s)dµ(s) = 1. Let P (A), A ∈ A be the measure P (A) =

∫
A

p(s)dµ(s). The measure P (A) is a probability

measure and the space {S,A, P} is a probability space.
Let f(s) be a measurable function on {S,A, µ}. Suppose, that this integral

∫
S
f(s)p(s)dµ(s) = I exists.

Remark 7.1. [10] We can consider the integral of the form
∫
S
φ(s)dµ(s). If p(s) > 0 is a probability density function

in the space {S,A, µ}, then ∫
S

φ(s)dµ(s) =

∫
S

φ(s)

p(s)
p(s)dµ(s) =

∫
S

f(s)p(s)dµ(s),

where f(s) = φ(s)/p(s).

We can consider f(s) = ξ as random variables on {S,A, P} and
∫
S
f(s)p(s)dµ(s) =

∫
S
f(s)dm(s) = Eξ.

Let ξk, k = 1, 2, . . . , n, be the independent copies of random variable ξ and Zn = 1
n

n∑
k=1

ξk. Then according to

the strong law of large numbers Zn → Eξ1 = I with probability one. We consider Zn as an estimate for I .
Let us consider the integral

∫
S
f(s, t)p(s)dµ(s) = I(t) assuming that it exists. Let the function f(s, t) depend on

the parameter t ∈ T , where (T, ρ) is some compact set and the function f(s, t) is continuous with regard to t.
Suppose f(s, t) is a stochastic process on {S,A, P} and which we denote as ξ(s, t) = ξ(t) and

I(t) =

∫
S

f(s, t)p(s)dµ(s) =

∫
S

f(s, t)dm(s) = Eξ(t).

Let ξk(t), k = 1, 2, . . . , n, be the independent copies of the stochastic process ξ(t) and Zn(t) = 1
n

n∑
k=1

ξk(t). So,

according to the strong law of large numbers Zn(t) → Eξ(t) = I(t) with probability one for any t ∈ T .
Let ξ(t) ∈ Fψ(Ω) and the condition H is fulfilled for the space Fψ(Ω).
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Theorem 7.1
Let σ(h), h > 0 be continuous, monotonically increasing function such that σ(0) = 0, σ(h) < ε̂0 <∞. Let the
following condition hold

sup
ρ(t,s)≤h

∥Y (t)− Y (s)∥ψ ≤ σ(h),

where Y (t) = ξ(t)− I(t) and for any τ > 0∫ τ

0

κψ(Nρ(σ(−1)(u)))du <∞, (7)

where κψ(n) is the M -characteristic of Fψ(Ω), Nρ(u) is the metric massiveness of the space (T, ρ).

Then Yn(t) =
√
nZn(t) =

1√
n

n∑
k=1

ξk(t) converge weakly in C(T ) to the Gaussian process X∞(t) such that

EX∞(t) = 0, EX∞(t)X∞(s) = Eξk(t)ξk(s)− I(t)I(s).

Proof
This Theorem 7.1 follows from Theorem 6.3.

Remark 7.2. In paper [9] it is shown that

∥Y (t)− Y (s)∥ψ ≤ 2Cψ ∥ξ(t)− ξ(s)∥ψ ,

where Cψ is the constant from Defnition 4.2. Therefore, the Theorem 7.1 will be fulfilled when there exists
continuous, monotonically increasing function σ̂(h) = 2Cψσ(h) such that

∥ξ(t)− ξ(s)∥ψ ≤ σ̂(h)

and ∫ τ

0

κψ(Nρ(σ̂(−1)(u)))du <∞.

Corollary 7.1
It follows from Remark 2.1 that

P

{
sup
t∈T

∣∣∣∣∣ 1n
n∑
k=1

ξk(t)− I(t)

∣∣∣∣∣ > ε

}
= P

{
sup
t∈T

∣∣∣∣∣ 1n
n∑
k=1

(ξk(t)− I(t))

∣∣∣∣∣ > ε

}
=

P

{
sup
t∈T

∣∣∣∣∣ 1√
n

n∑
k=1

(ξk(t)− I(t))

∣∣∣∣∣ > √
nε

}
= P

{
sup
t∈T

∣∣∣∣∣ 1√
n

n∑
k=1

Xk(t)

∣∣∣∣∣ > √
nε

}
∼= P

{
sup
t∈T

|X∞(t)| >
√
nε

}
,

where Xk(t) = ξk(t)− I(t) and X∞(t) is defined in the Theorem 2.1.
Estimating the last inequality for given n and ε one can find the approximate reliability for the integral estimator

with accuracy ε.

8. Theorems about distribution of supremum of Gaussian stochastic processes and examples

Description of distribution of Gaussian stochastic processes we can find in the books [3, 16] and paper [2].
Now we will consider one of the proved theorems.
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Theorem 8.1
Let T = [a, b], X = {X(t), t ∈ [a, b]} be a centered separable Gaussian process and D([a, b]) =

supt∈[a,b]

(
E |X(t)|2

)1/2
<∞. Assume that the following inequality holds true

sup
|t−s|≤h
t,s∈[a,b]

(
E |X(t)−X(s)|2

)1/2
≤ chβ ,

where c > 0, 0 < β ≤ 1. Then for any 0 < θ < 1 and λ > 0

E exp

{
λ sup
t∈[a,b]

|X(t)|

}
≤ R exp

{
λ2(D([a, b]))2

2(1− θ)2

}
, (8)

where R = 22/β−1
(

22/β−1(b−a)c1/β
(θD([a,b]))1/β

+ 1
)

.

Proof
This Theorem 8.1 follows from Theorem 3.44 ([3], p. 107).

Corollary 8.1
Let the assumptions of Theorem 8.1 be true. Then for any 0 < β ≤ 1, 0 < θ < 1, ε > 0, the following inequality
holds true

P

{
sup
t∈[a,b]

|X(t)| > ε

}
≤ R exp

{
− ε2(1− θ)2

2(D([a, b]))2

}
. (9)

Proof
By the Chebyshev inequality we have

P

{
sup
t∈[a,b]

|X(t)| > ε

}
≤
E exp

{
λ supt∈[a,b] |X(t)|

}
exp {λε}

≤ R exp

{
λ2(D([a, b]))2

2(1− θ)2

}
exp {−λε} . (10)

The inequality (9) follows from (10) if one takes λ = ε(1−θ)2
(D([a,b]))2 .

Theorem 8.2
Let assumption of Theorem 8.1 be true. Then for any 0 < β ≤ 1, ε >

√
2D([a, b]) the following inequality holds

true

P

{
sup
t∈[a,b]

|X(t)| > ε

}
≤ 22/β−1e

(
22/β−1(b− a)c1/βε2/β

21/β(D([a, b]))3/β
+ 1

)
exp

{
− ε2

2(D([a, b]))2

}
. (11)

Proof
The inequality (11) follows from (9) putting (1− θ)2 = 1− 2(D([a,b]))2

ε2 if 1− 2(D([a,b]))2

ε2 > 0. In this case

R = 22/β−1

 22/β−1(b− a)c1/β((
1−

√
1− 2(D([a,b]))2

ε2

)
D([a, b])

)1/β
+ 1

 =

22/β−1

22/β−1(b− a)c1/β

(D([a, b]))1/β


(
1 +

√
1− 2(D([a,b]))2

ε2

)
(
1−

√
1− 2(D([a,b]))2

ε2

)(
1−

√
1− 2(D([a,b]))2

ε2

)


1/β

+ 1

 =
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22/β−1

22/β−1(b− a)c1/β

(D([a, b]))1/β

1 +

√
1− 2(D([a,b]))2

ε2

2(D([a,b]))2

ε2

1/β

+ 1

 ≤

22/β−1

(
22/β−1(b− a)c1/β

(D([a, b]))1/β

(
ε2

2(D([a, b]))2

)1/β

+ 1

)
=

22/β−1

(
22/β−1(b− a)c1/βε2/β

21/β(D([a, b]))3/β
+ 1

)
.

Example 8.1. Consider the integral

I(t) = rq

+∞∫
0

+∞∫
0

1
√
xy
e−rx−qy sin

(√
txy
)
dxdy,

where 0 ≤ t ≤ l, r > 0 and q > 0.
Let ξ and η be the independent random variables exponentially distributed with parameters r and q respectively.

Then

I(t) =

+∞∫
0

+∞∫
0

1
√
xy
re−rxqe−qy sin

(√
txy
)
dxdy = E

(
sin
(√

tξη
)

√
ξη

)
.

Consider the space Fψ(Ω) with ψ(u) = u
1
2 . The condition H is fulfilled for this space with the constant Cψ = 12

(See [15]). Let

ξ(t) =
sin
(√

tξη
)

√
ξη

and let ξk(t), k = 1, 2, . . . , n be independent copies of the stochastic process ξ(t). Then Zn(t) =
1
n

n∑
k=1

ξk(t)

approximates the integral I(t).
Next we estimate the norm of the process

∥ξ(t)∥ψ =

∥∥∥∥∥ sin
(√

tξη
)

√
ξη

∥∥∥∥∥
ψ

≤
√
t

and inf0≤t≤T ∥ξ(t)∥ψ = 0.
An estimate for the norm of increments for this process is given by

∥ξ(t)− ξ(s)∥ψ =

∥∥∥∥∥ sin
(√

tξη
)

√
ξη

−
sin
(√

sξη
)

√
ξη

∥∥∥∥∥
ψ

≤

≤ 2

∥∥∥∥∥ sin
(√

ξη
(√

t−
√
s
))

2
√
ξη

∥∥∥∥∥
ψ

≤
∥∥∥√t−√

s
∥∥∥
ψ
≤ |t− s|

1
2 .

Therefore
σ(h) = Ch

1
2 ,

with C = 1.
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Let us check the condition (7). For the space Fψ(Ω), where ψ(u) = u
1
2 the majorant characteristic has the form

(see [8, 9, 10])
κ(u) =

( e
α

)α
(lnu)

α
.

The condition (7) is fulfilled, when the integral is convergent for any τ > 0

I(τ) =

∫ τ

0

(ln(Nρ(σ
(−1)(u))))1/2du.

This integral is convergent, when, for example, it is convergent for τ = 1/
√
2

I(1/
√
2) =

∫ 1/
√
2

0

(ln(Nρ(σ
(−1)(u))))1/2du.

It’s easy to see that Nρ(σ(−1)(u)) ≤ l
2σ(−1)(u)

+ 1 and for r ≤ 1, x > 1

ln(1 + x) =
1

r
ln(1 + x)r ≤ 1

r
ln(1 + xr) ≤ xr

r
.

Therefore I(1/
√
2) ≤ 1

r1/2

∫ 1/
√
2

0

(
l

2u2

)r/2
du. If r = 1

3 then I(1/
√
2) <∞. So, for this example, conditions of

Theorem 7.1 are fulfilled. It follows from Corollary 7.1 that for ε > 0

P

{
sup
t∈[0,l]

∣∣∣∣∣ 1n
n∑
k=1

ξk(t)− I(t)

∣∣∣∣∣ > ε

}
∼= P

{
sup
t∈[0,l]

|X∞(t)| >
√
nε

}
,

where X∞(t) is a Gaussian process such that EX∞(t) = Eξ(t)− I(t) = 0, EX∞(t)X∞(s) = E(ξ(t)−
I(s))(ξ(t)− I(s)) = Eξ(t)ξ(s)− I(t)I(s). Therefore

E(X∞(t)−X∞(s))2 = E(ξ(t)− ξ(s) + (I(t)− I(s)))2 ≤ 2(E(ξ(t)− ξ(s))2 + (I(t)− I(s))2).

So
(I(t)− I(s))2 = (E(ξ(t)− ξ(s)))2 ≤ E(ξ(t)− ξ(s))2.

Then

E(X∞(t)−X∞(s))2 ≤ 4(E(ξ(t)− ξ(s))2) ≤ 4E

(
sin
(√

tξη
)

√
ξη

−
sin
(√

sξη
)

√
ξη

)2

≤

≤ 4E

(
sin
(
(
√
t−

√
s)
√
ξη
)

2
√
ξη

)2

≤ |t− s| .

Therefore, from Theorems 8.1 and 8.2 it follows that c = 1, β = 1/2. Moreover

D([0, l]) = sup
0≤t≤l

(
E(ξ(t)− I(t))2

)1/2
= sup

0≤t≤l

(
(Eξ(t))2 − I2(t)

)1/2 ≤ sup
0≤t≤l

(
Eξ2(t)

)1/2 ≤ 1.

The Theorem 8.2 implies for ε >
√
2 that

P

{
sup
t∈[0,l]

|X∞(t)| > ε

}
≤ 23e(2lε4 + 1) exp

{
−ε

2

2

}
.

Then

P

{
sup
t∈[0,l]

∣∣∣∣∣ 1n
n∑
k=1

ξk(t)− I(t)

∣∣∣∣∣ > v

}
≤ 23e(2ln2v4 + 1) exp

{
−nv

2

2

}
.
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9. Conclusions

In this paper we describe the conditions of the weak convergence in the space C(T ) of the stochastic processes
from the space Fψ(Ω). Using these conditions the limit theorem for stochastic processes from the space Fψ(Ω) is
obtained. Application of this theorem can be used for achieving the approximation accuracy in C(T ) and reliability
of integrals depending on parameter by Monte Carlo method.

REFERENCES

1. E. A. Abzhanov, and Y. V. Kozachenko, Some Properties of Random Processes in Banach Kσ-spaces, Ukrainian Mathem. Journal,
vol. 37, no. 3, pp. 275–280, 1985.

2. V. V. Buldygin, and Y. V. Kozachenko, On sub-Gaussian Random Variables, Ukrainian Mathem. Journal, vol. 32, no. 6, pp. 483–489,
2013.

3. V. V. Buldygin, and Y. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, American Mathematical
Society, Providence, Rhode Island, 2000.

4. M. Dozzi, Y. Kozachenko, Y. Mishura, and K. Ralchenko, Asymptotic Growth of Trajectories of Multifractional Brownian Motion, with
Statistical Applications to Drift Parameter Estimation, Statistical Inference for Stochastic Processes, DOI: 10.1007/s11203-016-9147-
z, pp. 1–32, 2016.

5. S. V. Ermakov, and E. I. Ostrovskii, Continuity Conditions, Exponential Estimates, and the Central Limit Theorem for Random Fields,
VINITI, Moscow, 1986. (in Russian)

6. Y. Kozachenko, A. Olenko, and O. Polosmak, Uniform Convergence of Wavelet Expansions of Gaussian Random Processes, Stochastic
Analysis and Applications, vol. 29, no. 2, pp. 169–184, 2011.

7. Yu. V. Kozachenko, I. V. Rozora, and Ye. V. Turchyn, Properties of Some Random Series, Communications in Statistics – Theory and
Methods, vol. 40, no. 19-20, pp. 3672–3683, 2011.

8. Y. V. Kozachenko, and Y. Y. Mlavets, The Banach Spaces Fψ(Ω) of Random Variables, Theory Probab. and Math. Statist., vol. 86, pp.
105–121, 2013.

9. Y. V. Kozachenko, and Y. Y. Mlavets, Stochastic Processes from Fψ(Ω) Spaces, Contemporary Mathematics and Statistics, vol. 2, no.
1, pp. 55–75, 2014.

10. Y. V. Kozachenko, and Y. Y. Mlavets, Reliability and Accuracy in the Space Lp(T ) for the Calculation of Integrals Depending on a
Parameter by Monte-Carlo Method, Monte Carlo Methods Appl., vol. 21, no. 3, pp. 233–244, 2015.

11. Y. V. Kozachenko, Y. Y. Mlavets, and O. M. Moklyachuk, Qasi-Banach Spaces of Random Variables, Carpathians, Uzhhorod, 2015.
(in Ukrainian)

12. Yu. Kozachenko, O. Pogoriliak, I. Rozora, and A. Tegza, Simulation of Stochastic Processes with Given Accuracy and Reliability,
London: ISTE Press Ltd and Elsevier Ltd, 2016.

13. Yu. V. Kozacenko, and I. V. Rozora, A Criterion for Testing Hypothesis About Impulse Response Function, Stat., Optim. Inf. Comput.,
vol. 4, no. 3, pp. 214–232, 2016.

14. Y. Y. Mlavets, Fψ(Ω) – spaces of Random Variables with Exponential Function ψ, Bull. Taras Shevchenko Nat. Univ. Kiev., vol. 2,
pp. 19–22, 2012. (in Ukrainian)

15. Y. Y. Mlavets, A Relationship Between the Spaces Fψ(Ω) and Orlicz Spaces Random Variables, Sci. Bull. Uzhhorod Univ., vol. 25,
no. 1, pp. 77–84, 2014. (in Ukrainian)

16. O. I. Vasylyk, Y. V. Kozachenko, and R. E. Yamnenko, φ-sub-Gaussian Stochastic Process, Vydavnycho-Poligrafichnyi Tsentr,
Kyivskyi Universytet, Kyiv, 2008. (In Ukrainian)

Stat., Optim. Inf. Comput. Vol. 6, June 2018


