A New Generalized Cauchy Distribution with an Application to Annual One Day Maximum Rainfall Data

  • Cory Ball Florida Atlantic University
  • Binod Rimal Florida Atlantic University
  • Sher Chhetri University of South Carolina, Sumter
Keywords: Cauchy distribution, transmuted Cauchy distribution, Quadratic rank transmuted map, Maximum likelihood estimation, Hazard rate function.

Abstract

In this article, we introduce a new three-parameter transmuted Cauchy distribution usingthe quadratic rank transmutation map approach. Some mathematical properties of the pro-posed model are discussed. A simulation study is conducted using the method of maximumlikelihood estimation to estimate the parameters of the proposed model. We used two real datasets and compare various statistics to show the fitting and versatility of the model.

Author Biographies

Cory Ball, Florida Atlantic University
Department of Mathematical Sciences
Binod Rimal, Florida Atlantic University
Department of Mathematical Sciences

References

M. Alizadeh, M. Emadi, and M. Doostparast (2019). A New Two-Parameter Lifetime Distribution: Properties, Applications and Different Method of Estimations, Statistics, Optimization & Information Computing, vol. 7, 291-310.

M. Aljarrah, C. Lee, and F. Famoye (2014). On generating T-X family of distributions using quantile functions. J. Stat. Distrib. App.,15(2).

E. Alshawarbeh, F. Famoye, and C. Lee (2013). Beta-Cauchy distribution: some properties and applications. Journal of Statistical Theory and Applications, 12(4):378-391.

R. Alshkaki (2020). A Generalized Modification of the Kumaraswamy Distribution for Modeling and Analyzing Real-Life Data. Statistics, Optimization & Information Computing, 8(2), 521-548.

A. Alzaatreh, C. Lee, and F. Famoye (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79.

A. Alzaatreh, F. Famoye, and C. Lee (2014). The gamma-normal distribution: Properties and applications. Computational Statistics & Data Analysis, 69:67-80.

A. Alzaatreh, C. Lee, F. Famoye, and I. Ghosh (2016). The generalized Cauchy family of distributions with applications. J. Stat. Distrib. App., 3(12).

G. Aryal, and C. Tsokos (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods and Applications, 71:1401-1407.

GR Aryal (2013). Transmuted Log-Logistic Distribution. Journal of Statistics Applications & Probability, 2(1): 11-20.

G. Aryal, (2019) . On The Beta Exponential Pareto Distribution. Statistics, Optimization & Information Computing, 7(2), 417-438.

S. Ashour, and M. Eltehiwy (2013). Transmuted Lomax distribution. American Journal of Applied Mathematics and Statistics,1(6):121-127.

W. Barreto-Souza, A.H. Santos, and G. M. Cordeiro (2010). The beta generalized exponential distribution. Journal of Statistical Computation and Simulation, 80(2):159-172.

R. Carrillo, T. Aysal, and K. Barner (2010). A generalized Cauchy distribution framework for problems requiring robust behavior. EURASIP J. Adv. Signal Process, (312989).

C. Chesneau, H. S. Bakouch, and M. N. Khan, (2020). A weighted transmuted exponential distribution with environmental applications. Statistics, Optimization & Information Computing, 8(1), 36-53.

S. Chhetri, A. Akinsete, G. Aryal, and H. Long (2017). The Kumaraswamy transmuted Pareto distribution. J. Stat. Distrib. App.,4(11).

S. B. Chhetri, H. Long, and G. Aryal (2017). The Beta Transmuted Pareto Distribution: Theory and Applications. Journal of Statistics Applications & Probability, 6(2), 243-258.

G. M. Cordeiro, and A. J. Lemonte (2011). The Beta-Half-Cauchy distribution. Journal of Probability and Statistics, 1-18.

G. M. Cordeiro, and M. D.Castro (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7):883-898.

G. M. Cordeiro, and A. J. Lemonte (2011). The -BirnbaumSaunders distribution: an improved distribution for fatigue life modeling. Computational Statistics & Data Analysis, 55(3):1445-1461.

D. Desai, V. Mariappan, and M. Sakhardande (2011). Nature of reversed hazard rate: an investigation. Int J Perform Eng, 7(2):165-171.

I. Elbatal, and G. Aryal (2015). Transmuted Dagum distribution with applications. Chilean J. of Statistics, 6(2):31-45.

M. Kateregga, S. Mataramvura, and D. Taylor (2017). Parameter estimation for stable distributions with application to commodity futures log-returns. Cogent Economics & Finance, 5(1).

M. Khan, R. King, and I. Hudson (2016). Transmuted Kumaraswamy distribution. Stat. Transit., 17(2):183-210.

F. Merovci, and L. Puka (2014). Transmuted Pareto distribution. ProbStat. Forum, 7:1-11.

S. Nadarajah, and S. Kotz (2007). A skewed truncated Cauchy distribution with applications in economics, Applied Economics Letters, 14:13, 957-961, DOI: 10.1080/13504850600705950

M. Pal, and M. Tiensuwan (2014). The beta transmuted Weibull distribution. Austrian Journal of Statistics, 43(2):133-149.

PRISM Climate Group, Oregon State University (2019). Time series values for individual locations. http://prism.oregonstate.edu, Created: 2019-11-10.

W. Shaw, and I. Buckley (2007). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtoticnormal distribution from a rank transmutation map. Research report, pages 2760-2778.

W. Shaw, and I. Buckley (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtoticnormal distribution from a rank transmutation map. Conference on Computational Finance, IMA, 09010434, Research report.

R. L. Smith, and J. C. Naylor (1987). A comparison of maximum likelihood and Bayesian estimators for the three- parameterWeibull distribution. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(3):358-369.

Published
2021-01-09
How to Cite
Ball, C., Rimal, B., & Chhetri, S. (2021). A New Generalized Cauchy Distribution with an Application to Annual One Day Maximum Rainfall Data. Statistics, Optimization & Information Computing, 9(1), 123-136. https://doi.org/10.19139/soic-2310-5070-1000
Section
Research Articles