Data Flow Optimization in the Internet of Things

  • Abderrahim Zannou LPMIC Laboratory, Faculty of Sciences and Techniques, Al Hoceima, Abdelmalek Essaâdi University,Tétouan, Morocco
  • Abdelhak Boulaalam LISA Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • El Habib Nfaoui LISAC Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Keywords: IoT, Internet Of Things, Data Flow, Constrained Nodes, Sensors, Data Gathering.

Abstract

The Internet of Things (IoT) is constituted of an important number of constrained nodes limited in terms of power energy, computation capacity, storage capacity. They produce a considerable amount of data, which increases the data flflow in the network. The ineffificient transmission of data via constrained nodes makes the network unstable, the energy consumption increases rapidly, and the data delay increases strictly. To overcome these limitations, we propose a new approach that allows nodes to select the effificient path to transmit data from source nodes to base stations (BSs) to optimize the data flflow in the constrained network. First, we grouped nodes using a density peaks (DP) clustering algorithm based on the coordinate’s location of these nodes. Second, using the group nodes, the assignment of nodes to BSs that are considered as the collectors of data is performed. Third, the nodes make a dynamic and automated path plan to optimize the data flflow in the constrained network. Simulation results on a real network data set demonstrate that our proposal outperforms the state-of-the-art approaches in terms of the number of hops to achieve the cluster head (CH) node, the data delay, the network lifetime, and the number of the alive nodes.

References

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world with pervasive networks,” IEEE pervasive Comput., vol. 1, no. 1, pp. 59–69, 2002, doi: 10.1109/MPRV.2002.993145.

N.-C. Gaitan, V. G. Gaitan, and I. Ungurean, “A survey on the internet of things software architecture,” Int. J. Adv. Comput. Sci. Appl.(IJACSA), vol. 6, p. 12, 2015

E. Bakker and M. Telting-Diaz, “Electrochemical sensors,” Anal. Chem., vol. 74, no. 12, pp. 2781–2800, 2002, doi:

1021/ac0202278.

R. Weinstein, “RFID: a technical overview and its application to the enterprise,” IT Prof., vol. 7, no. 3, pp. 27–33, 2005, doi: 10.1109/MITP.2005.69.

K. Uchino, “Electrostrictive actuators: materials and applications.,” 1986.

M. A. Shapiro, M. So, and H. Woo Park, “Quantifying the national innovation system: inter-regional collaboration networks in South Korea,” Technol. Anal. Strateg. Manag., vol. 22, no. 7, pp. 845–857, 2010, doi: 10.1080/09537325.2010.511158.

P. Dutta and A. Kumar, “Modelling of liquid flow control system using optimized genetic algorithm,” Stat. Optim. Inf. Comput., vol. 8, no. 2, pp. 565–582, 2020, doi: 10.19139/soic-2310-5070-618.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, “A Node Capability Classification in Internet of Things,” 2020. doi:

1109/ISCV49265.2020.9204024.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, “Path length optimization in heterogeneous network for internet of things,” 2020. doi:10.1109/ICECOCS50124.2020.9314437.

S. S. Yulin and I. N. Palamar, “Probability model based on cluster analysis to classify sequences of observations for small training sets,” Stat. Optim. Inf. Comput., vol. 8, no. 1, pp. 296–303, 2020, doi: 10.19139/soic-2310-5070-690.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, “Relevant node discovery and selection approach for the Internet of Things based on neural networks and ant colony optimization,” Pervasive Mob. Comput., vol. 70, 2021, doi: 10.1016/j.pmcj.2020.101311.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, “An Optimal Base Stations Positioning for the Internet of Things Devices,” 2021. doi: 10.1109/ICOA51614.2021.9442661.

A. Brenon, F. Portet, and M. Vacher, “Arcades: A deep model for adaptive decision making in voice controlled smart-home,” Pervasive Mob. Comput., vol. 49, pp. 92–110, 2018, doi: https://doi.org/10.1016/j.pmcj.2018.06.011.

Q. Ni, I. Cleland, C. Nugent, A. B. G. Hernando, and I. P. de la Cruz, “Design and assessment of the data analysis process for a wrist-worn smart object to detect atomic activities in the smart home,” Pervasive Mob. Comput., vol. 56, pp. 57–70, 2019.

R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “Distributed load balancing for heterogeneous fog computing infrastructures in smart cities,” Pervasive Mob. Comput., p. 101221, 2020, doi: 0.1109/JIOT.2019.2952767.

J. Curzon, A. Almehmadi, and K. El-Khatib, “A survey of privacy enhancing technologies for smart cities,” Pervasive Mob. Comput., vol. 55, pp. 76–95, 2019, doi: https://doi.org/10.1016/j.pmcj.2019.03.001.

S. Srivastava, M. Singh, and S. Gupta, “Wireless Sensor Network: A Survey,” 2018. doi: 10.1109/ICACE.2018.8687059.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, “SIoT: A new strategy to improve the network lifetime with an efficient search process,” Futur. Internet, vol. 13, no. 1, pp. 1–23, 2021, doi: 10.3390/fi13010004.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, A multi-layer architecture for services management in IoT, vol. 37. 2018.

O. D. Garzon–Rivera, L. F. Grisales–Nore˜na, J. A. Ocampo, O. D. Montoya, and J. J. Rojas–Montano, “Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer,” Stat. Optim. Inf. Comput., vol. 8, no. 4, pp. 846–857, 2020, doi: 10.19139/soic-2310-5070-1022.

H. A. Noughabi, H. A. Noughabi, and J. Jarrahiferiz, “Informational energy and entropy applied to testing exponentiality,” Stat. Optim. Inf. Comput., vol. 8, no. 1, pp. 220–228, 2020, doi: 10.19139/soic-2310-5070-616.

A. Zannou, A. Boulaaam, and E. H. Nfaoui, “A Task Allocation in IoT Using Ant Colony Optimization,” 2019. doi:

1109/ISACS48493.2019.9068889.

A. Zannou, A. Boulaalam, and E. H. Nfaoui, System Service Provider–Customer for IoT (SSPC-IoT), vol. 1076. 2020. doi:

1007/978-981-15-0947-6-70.

M. Elhoseny and A. E. Hassanien, “Optimizing cluster head selection in WSN to prolong its existence,” in Dynamic Wireless Sensor Networks, Springer, 2019, pp. 93–111. doi: https://doi.org/10.1007/s10586-017-1608-7.

K. Vijayalakshmi and P. Anandan, “A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN,” Cluster Comput., vol. 22, no. 5, pp. 12275–12282, 2019, doi: https://doi.org/10.1007/s10586-017-1608-7.

S. Mahajan, J. Malhotra, and S. Sharma, “An energy balanced QoS based cluster head selection strategy for WSN,” Egypt. Informatics J., vol. 15, no. 3, pp. 189–199, 2014, doi: https://doi.org/10.1016/j.eij.2014.09.001.

M. J. Handy, M. Haase, and D. Timmermann, “Low energy adaptive clustering hierarchy with deterministic clusterhead selection,” in 4th international workshop on mobile and wireless communications network, 2002, pp. 368–372. doi: 10.1109/MWCN.2002.1045790.

S. B. H. Shah, Z. Chen, and F. Yin, “Open: Optimized path planning algorithm with energy efficiency and extending network-lifetime in wsn,” J. Comput. Inf. Technol., vol. 25, no. 1, pp. 1–14, 2017, doi: https://doi.org/10.20532/cit.2017.1003259.

A. Laouid, A. Dahmani, A. Bounceur, R. Euler, F. Lalem, and A. Tari, “A distributed multi-path routing algorithm

to balance energy consumption in wireless sensor networks,” Ad Hoc Networks, vol. 64, pp. 53–64, 2017, doi:

https://doi.org/10.1016/j.adhoc.2017.06.006.

M. Dorigo and G. Di Caro, “Ant colony optimization: A new meta-heuristic,” 1999. doi: 10.1109/CEC.1999.782657.

D. R. Edla, M. C. Kongara, and R. Cheruku, “A PSO based routing with novel fitness function for improving lifetime of WSNs,” Wirel. Pers. Commun., vol. 104, no. 1, pp. 73–89, 2019, doi: https://doi.org/10.1007/s11277-018-6009-6.

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An overview,” Swarm Intell., 2007, doi: 10.1007/s11721-007-0002-0.

E. Fitzgerald, M. Pi´oro, and A. Tomaszwski, “Energy-optimal data aggregation and dissemination for the Internet of Things,” IEEE Internet Things J., vol. 5, no. 2, pp. 955–969, 2018, doi: 10.1109/JIOT.2018.2803792.

[34] S. Rani, S. H. Ahmed, and R. Rastogi, “Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications,” Wirel. Networks, pp. 1–10, 2019, doi: https://doi.org/10.1007/s11276-019-02083-7.

D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, 1994, doi: https://doi.org/10.1007/BF00175354.

S. Yousefi, F. Derakhshan, H. S. Aghdasi, and H. Karimipour, “An energy-efficient artificial bee colony-based clustering in the internet of things,” Comput. Electr. Eng., vol. 86, p. 106733, 2020, doi: https://doi.org/10.1016/j.compeleceng.2020.106733.

D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Appl. Soft Comput., vol. 8, no. 1, pp. 687–697, 2008.

C. Iwendi, P. K. R. Maddikunta, T. R. Gadekallu, K. Lakshmanna, A. K. Bashir, and M. J. Piran, “A metaheuristic optimization approach for energy efficiency in the IoT networks,” Softw. Pract. Exp., 2020, doi: https://doi.org/10.1002/spe.2797.

M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm with simulated annealing for feature selection,”

Neurocomputing, vol. 260, pp. 302–312, 2017, doi: https://doi.org/10.1016/j.neucom.2017.04.053.

E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad hoc mobile wireless networks,” IEEE Pers. Commun., vol. 6, no. 2, pp. 46–55, 1999, doi: 10.1109/98.760423.

W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Trans. Wirel. Commun., vol. 1, no. 4, pp. 660–670, 2002, doi: 10.1109/TWC.2002.804190.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science (80-. )., vol. 344, no. 6191, pp. 1492–1496, 2014, doi: 10.1126/science.1242072.

J. I. A. Hu and D. Lihui, “Water flooding flowing area identification for oil reservoirs based on the method of streamline clustering artificial intelligence,” Pet. Explor. Dev., vol. 45, no. 2, pp. 328–335, 2018, doi: https://doi.org/10.1016/S1876-3804(18)30036-3.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp. 855–864. doi: https://doi.org/10.1145/2939672.2939754.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd annual Hawaii international conference on system sciences, 2000, pp. 10-pp. doi: 10.1109/HICSS.2000.926982.

T. S. Rappaport, Wireless communications: principles and practice, vol. 2. 1996.

Published
2022-02-08
How to Cite
Zannou, A., Boulaalam, A., & Nfaoui, E. H. (2022). Data Flow Optimization in the Internet of Things. Statistics, Optimization & Information Computing, 10(1), 93-106. https://doi.org/10.19139/soic-2310-5070-1166
Section
Research Articles