Random Polygons and Optimal Extrapolation Estimates of pi

  • Shasha Wang
  • Wen-Qing Xu California State University, Long Beach, USA
  • Jitao Liu Beijing University of Technology
Keywords: Random Approximations of pi, Extrapolation, Convergence, Stochastic Optimization, Central Limit Theorems

Abstract

We construct optimal extrapolation estimates of π based on random polygons generated by n independent points uniformly distributed on a unit circle in R2. While the semiperimeters and areas of these random n-gons converge to π almost surely and are asymptotically normal as n → ∞, in this paper we develop various extrapolation processes to further accelerate such convergence. By simultaneously considering the random n-gons and suitably constructed random 2n-gons and then optimizing over functionals of the semiperimeters and areas of these random polygons, we derive several new estimates of π with faster convergence rates. These extrapolation improvements are also shown to be asymptotically normal as n → ∞.

References

P. Beckmann, A History of pi, Fifth edition, The Golem Press, 1982.

C. Belisle, On the polygon generated by n random points on a circle, Statist. Probab. Lett., 81 (2011) 236-242.

P. Billingsley, Probability and Measure, Third edition, Wiley, 1995.

D. A. Darling, On a class of problems related to the random division of an interval, Ann. Math. Statistics, 24 (1953) 239-253.

W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, 1966.

T. S. Ferguson, A Course in Large Sample Theory, Chapman & Hall, New York, 1996.

T. Hsing, On the asymptotic distribution of the area outside a random convex hull in a disk, Ann. Appl. Probab, 4 (1994), no. 2,478-493.

I. Hueter, The convex hull of a normal sample, Adv. in Appl. Probab, 26 (1994), no. 4, 855-875.

D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Review, 13 (1971) 435-490.

T. Li, Essays on pi (Chinese), Higher Education Press, 2007.

R. Pyke, Spacings, J. Roy. Statist. Soc. Ser. B, 27 (1965) 395-449.

P. Rabinowitz, Extrapolation methods in numerical integration, Numer. Algorithms, 3 (1992) 17-28.

A. Renyi, R. Sulanke, U¨ ber die konvexe Hu¨lle von n zufa¨llig gewa¨hlten Punkten I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,2 (1963), 75-84.

A. Renyi, R. Sulanke, U¨ ber die konvexe Hu¨lle von n zufa¨llig gewa¨hlten Punkten II, Z.Wahrscheinlichkeitstheorie und Verw. Gebiete,3 (1964), 138-147.

R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, 1980.

T. Tang, Brief Discussions on Computation Mathematics from the Calculations of pi (Chinese), Higher Education Press, 2018.

V. Vu, Central limit theorems for random polytopes in a smooth convex set, Adv. Math., 207 (2006), no. 1, 221-243.

S.-S. Wang and W.-Q. Xu, Random cyclic polygons from Dirichlet distributions and approximations of pi, Statist. Probab. Lett., 140 (2018) 84-90.

W.-Q. Xu, Extrapolation methods for random approximations of pi, J. Numer. Math. Stoch., 5 (2013) 81-92.

W.-Q. Xu, Random circumscribing polygons and approximations of pi, Statist. Probab. Lett., 106 (2015) 52-57.

W.-Q. Xu, L. Meng and Y. Li, Random polygons and estimations of pi, Open Math., 17 (2019) 575-581.

Published
2021-03-28
How to Cite
Wang, S., Xu, W.-Q., & Liu, J. (2021). Random Polygons and Optimal Extrapolation Estimates of pi. Statistics, Optimization & Information Computing, 9(1), 241-249. https://doi.org/10.19139/soic-2310-5070-1193
Section
Research Articles